Description: This lemma proves that for all t in T there is a j as in the proof of BrosowskiDeutsh p. 91 (at the bottom of page 91 and at the top of page 92): (j-4/3) * ε < f(t) <= (j-1/3) * ε , g(t) < (j+1/3) * ε, and g(t) > (j-4/3) * ε. Here E is used to represent ε in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | stoweidlem34.1 | |
|
stoweidlem34.2 | |
||
stoweidlem34.3 | |
||
stoweidlem34.4 | |
||
stoweidlem34.5 | |
||
stoweidlem34.6 | |
||
stoweidlem34.7 | |
||
stoweidlem34.8 | |
||
stoweidlem34.9 | |
||
stoweidlem34.10 | |
||
stoweidlem34.11 | |
||
stoweidlem34.12 | |
||
stoweidlem34.13 | |
||
stoweidlem34.14 | |
||
stoweidlem34.15 | |
||
stoweidlem34.16 | |
||
stoweidlem34.17 | |
||
stoweidlem34.18 | |
||
Assertion | stoweidlem34 | |