Metamath Proof Explorer


Theorem lgsquadlem1

Description: Lemma for lgsquad . Count the members of S with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Hypotheses lgseisen.1 φP2
lgseisen.2 φQ2
lgseisen.3 φPQ
lgsquad.4 M=P12
lgsquad.5 N=Q12
lgsquad.6 S=xy|x1My1NyP<xQ
Assertion lgsquadlem1 φ1u=M2+1MQP2u=1zS|¬21stz

Proof

Step Hyp Ref Expression
1 lgseisen.1 φP2
2 lgseisen.2 φQ2
3 lgseisen.3 φPQ
4 lgsquad.4 M=P12
5 lgsquad.5 N=Q12
6 lgsquad.6 S=xy|x1My1NyP<xQ
7 neg1cn 1
8 7 a1i φ1
9 neg1ne0 10
10 9 a1i φ10
11 fzfid φM2+1MFin
12 2 gausslemma2dlem0a φQ
13 12 nnred φQ
14 1 gausslemma2dlem0a φP
15 13 14 nndivred φQP
16 15 adantr φuM2+1MQP
17 2z 2
18 elfzelz uM2+1Mu
19 18 adantl φuM2+1Mu
20 zmulcl 2u2u
21 17 19 20 sylancr φuM2+1M2u
22 21 zred φuM2+1M2u
23 16 22 remulcld φuM2+1MQP2u
24 23 flcld φuM2+1MQP2u
25 11 24 fsumzcl φu=M2+1MQP2u
26 8 10 25 expclzd φ1u=M2+1MQP2u
27 fzfid φ1MFin
28 fzfid φ1NFin
29 xpfi 1MFin1NFin1M×1NFin
30 27 28 29 syl2anc φ1M×1NFin
31 opabssxp xy|x1My1NyP<xQ1M×1N
32 6 31 eqsstri S1M×1N
33 ssfi 1M×1NFinS1M×1NSFin
34 30 32 33 sylancl φSFin
35 ssrab2 zS|¬21stzS
36 ssfi SFinzS|¬21stzSzS|¬21stzFin
37 34 35 36 sylancl φzS|¬21stzFin
38 hashcl zS|¬21stzFinzS|¬21stz0
39 37 38 syl φzS|¬21stz0
40 expcl 1zS|¬21stz01zS|¬21stz
41 7 39 40 sylancr φ1zS|¬21stz
42 39 nn0zd φzS|¬21stz
43 8 10 42 expne0d φ1zS|¬21stz0
44 41 43 recidd φ1zS|¬21stz11zS|¬21stz=1
45 1div1e1 11=1
46 45 negeqi 11=1
47 ax-1cn 1
48 ax-1ne0 10
49 divneg2 111011=11
50 47 47 48 49 mp3an 11=11
51 46 50 eqtr3i 1=11
52 51 oveq1i 1zS|¬21stz=11zS|¬21stz
53 8 10 42 exprecd φ11zS|¬21stz=11zS|¬21stz
54 52 53 eqtrid φ1zS|¬21stz=11zS|¬21stz
55 54 oveq2d φ1zS|¬21stz1zS|¬21stz=1zS|¬21stz11zS|¬21stz
56 34 adantr φuM2+1MSFin
57 ssrab2 zS|1stz=P2uS
58 ssfi SFinzS|1stz=P2uSzS|1stz=P2uFin
59 56 57 58 sylancl φuM2+1MzS|1stz=P2uFin
60 fveqeq2 z=v1stz=P2u1stv=P2u
61 60 elrab vzS|1stz=P2uvS1stv=P2u
62 61 simprbi vzS|1stz=P2u1stv=P2u
63 62 ad2antll φuM2+1MvzS|1stz=P2u1stv=P2u
64 63 oveq2d φuM2+1MvzS|1stz=P2uP1stv=PP2u
65 14 adantr φuM2+1MP
66 65 nncnd φuM2+1MP
67 66 adantrr φuM2+1MvzS|1stz=P2uP
68 21 zcnd φuM2+1M2u
69 68 adantrr φuM2+1MvzS|1stz=P2u2u
70 67 69 nncand φuM2+1MvzS|1stz=P2uPP2u=2u
71 64 70 eqtrd φuM2+1MvzS|1stz=P2uP1stv=2u
72 71 oveq1d φuM2+1MvzS|1stz=P2uP1stv2=2u2
73 19 zcnd φuM2+1Mu
74 73 adantrr φuM2+1MvzS|1stz=P2uu
75 2cnd φuM2+1MvzS|1stz=P2u2
76 2ne0 20
77 76 a1i φuM2+1MvzS|1stz=P2u20
78 74 75 77 divcan3d φuM2+1MvzS|1stz=P2u2u2=u
79 72 78 eqtrd φuM2+1MvzS|1stz=P2uP1stv2=u
80 79 ralrimivva φuM2+1MvzS|1stz=P2uP1stv2=u
81 invdisj uM2+1MvzS|1stz=P2uP1stv2=uDisju=M2+1MzS|1stz=P2u
82 80 81 syl φDisju=M2+1MzS|1stz=P2u
83 11 59 82 hashiun φu=M2+1MzS|1stz=P2u=u=M2+1MzS|1stz=P2u
84 iunrab u=M2+1MzS|1stz=P2u=zS|uM2+1M1stz=P2u
85 eldifsni P2P2
86 1 85 syl φP2
87 86 necomd φ2P
88 87 neneqd φ¬2=P
89 88 ad2antrr φzSuM2+1M¬2=P
90 uzid 222
91 17 90 ax-mp 22
92 1 eldifad φP
93 92 ad2antrr φzSuM2+1MP
94 dvdsprm 22P2P2=P
95 91 93 94 sylancr φzSuM2+1M2P2=P
96 89 95 mtbird φzSuM2+1M¬2P
97 14 ad2antrr φzSuM2+1MP
98 97 nncnd φzSuM2+1MP
99 21 adantlr φzSuM2+1M2u
100 99 zcnd φzSuM2+1M2u
101 98 100 npcand φzSuM2+1MP-2u+2u=P
102 101 breq2d φzSuM2+1M2P-2u+2u2P
103 96 102 mtbird φzSuM2+1M¬2P-2u+2u
104 18 adantl φzSuM2+1Mu
105 dvdsmul1 2u22u
106 17 104 105 sylancr φzSuM2+1M22u
107 17 a1i φzSuM2+1M2
108 97 nnzd φzSuM2+1MP
109 108 99 zsubcld φzSuM2+1MP2u
110 dvds2add 2P2u2u2P2u22u2P-2u+2u
111 107 109 99 110 syl3anc φzSuM2+1M2P2u22u2P-2u+2u
112 106 111 mpan2d φzSuM2+1M2P2u2P-2u+2u
113 103 112 mtod φzSuM2+1M¬2P2u
114 breq2 1stz=P2u21stz2P2u
115 114 notbid 1stz=P2u¬21stz¬2P2u
116 113 115 syl5ibrcom φzSuM2+1M1stz=P2u¬21stz
117 116 rexlimdva φzSuM2+1M1stz=P2u¬21stz
118 simpr φzSzS
119 32 118 sselid φzSz1M×1N
120 xp1st z1M×1N1stz1M
121 119 120 syl φzS1stz1M
122 elfzelz 1stz1M1stz
123 odd2np1 1stz¬21stzn2n+1=1stz
124 121 122 123 3syl φzS¬21stzn2n+1=1stz
125 1 4 gausslemma2dlem0b φM
126 125 nnred φM
127 126 ad2antrr φzSn2n+1=1stzM
128 127 rehalfcld φzSn2n+1=1stzM2
129 128 flcld φzSn2n+1=1stzM2
130 129 peano2zd φzSn2n+1=1stzM2+1
131 125 ad2antrr φzSn2n+1=1stzM
132 131 nnzd φzSn2n+1=1stzM
133 simprl φzSn2n+1=1stzn
134 132 133 zsubcld φzSn2n+1=1stzMn
135 reflcl M2M2
136 128 135 syl φzSn2n+1=1stzM2
137 134 zred φzSn2n+1=1stzMn
138 flle M2M2M2
139 128 138 syl φzSn2n+1=1stzM2M2
140 zre nn
141 140 ad2antrl φzSn2n+1=1stzn
142 simprr φzSn2n+1=1stz2n+1=1stz
143 121 adantr φzSn2n+1=1stz1stz1M
144 142 143 eqeltrd φzSn2n+1=1stz2n+11M
145 elfzle2 2n+11M2n+1M
146 144 145 syl φzSn2n+1=1stz2n+1M
147 zmulcl 2n2n
148 17 133 147 sylancr φzSn2n+1=1stz2n
149 zltp1le 2nM2n<M2n+1M
150 148 132 149 syl2anc φzSn2n+1=1stz2n<M2n+1M
151 146 150 mpbird φzSn2n+1=1stz2n<M
152 2re 2
153 152 a1i φzSn2n+1=1stz2
154 2pos 0<2
155 154 a1i φzSn2n+1=1stz0<2
156 ltmuldiv2 nM20<22n<Mn<M2
157 141 127 153 155 156 syl112anc φzSn2n+1=1stz2n<Mn<M2
158 151 157 mpbid φzSn2n+1=1stzn<M2
159 128 recnd φzSn2n+1=1stzM2
160 125 nncnd φM
161 160 ad2antrr φzSn2n+1=1stzM
162 161 2halvesd φzSn2n+1=1stzM2+M2=M
163 159 159 162 mvlraddd φzSn2n+1=1stzM2=MM2
164 158 163 breqtrd φzSn2n+1=1stzn<MM2
165 141 127 128 164 ltsub13d φzSn2n+1=1stzM2<Mn
166 136 128 137 139 165 lelttrd φzSn2n+1=1stzM2<Mn
167 zltp1le M2MnM2<MnM2+1Mn
168 129 134 167 syl2anc φzSn2n+1=1stzM2<MnM2+1Mn
169 166 168 mpbid φzSn2n+1=1stzM2+1Mn
170 2t0e0 20=0
171 2cn 2
172 zcn nn
173 172 ad2antrl φzSn2n+1=1stzn
174 mulcl 2n2n
175 171 173 174 sylancr φzSn2n+1=1stz2n
176 pncan 2n12n+1-1=2n
177 175 47 176 sylancl φzSn2n+1=1stz2n+1-1=2n
178 elfznn 2n+11M2n+1
179 nnm1nn0 2n+12n+1-10
180 144 178 179 3syl φzSn2n+1=1stz2n+1-10
181 177 180 eqeltrrd φzSn2n+1=1stz2n0
182 181 nn0ge0d φzSn2n+1=1stz02n
183 170 182 eqbrtrid φzSn2n+1=1stz202n
184 0red φzSn2n+1=1stz0
185 lemul2 0n20<20n202n
186 184 141 153 155 185 syl112anc φzSn2n+1=1stz0n202n
187 183 186 mpbird φzSn2n+1=1stz0n
188 127 141 subge02d φzSn2n+1=1stz0nMnM
189 187 188 mpbid φzSn2n+1=1stzMnM
190 130 132 134 169 189 elfzd φzSn2n+1=1stzMnM2+1M
191 92 ad2antrr φzSn2n+1=1stzP
192 prmnn PP
193 191 192 syl φzSn2n+1=1stzP
194 193 nncnd φzSn2n+1=1stzP
195 peano2cn 2n2n+1
196 175 195 syl φzSn2n+1=1stz2n+1
197 194 196 nncand φzSn2n+1=1stzPP2n+1=2n+1
198 1cnd φzSn2n+1=1stz1
199 194 175 198 sub32d φzSn2n+1=1stzP-2n-1=P-1-2n
200 194 175 198 subsub4d φzSn2n+1=1stzP-2n-1=P2n+1
201 2cnd φzSn2n+1=1stz2
202 201 161 173 subdid φzSn2n+1=1stz2Mn=2 M2n
203 4 oveq2i 2 M=2P12
204 14 nnzd φP
205 204 ad2antrr φzSn2n+1=1stzP
206 peano2zm PP1
207 205 206 syl φzSn2n+1=1stzP1
208 207 zcnd φzSn2n+1=1stzP1
209 76 a1i φzSn2n+1=1stz20
210 208 201 209 divcan2d φzSn2n+1=1stz2P12=P1
211 203 210 eqtrid φzSn2n+1=1stz2 M=P1
212 211 oveq1d φzSn2n+1=1stz2 M2n=P-1-2n
213 202 212 eqtr2d φzSn2n+1=1stzP-1-2n=2Mn
214 199 200 213 3eqtr3d φzSn2n+1=1stzP2n+1=2Mn
215 214 oveq2d φzSn2n+1=1stzPP2n+1=P2Mn
216 197 215 142 3eqtr3rd φzSn2n+1=1stz1stz=P2Mn
217 oveq2 u=Mn2u=2Mn
218 217 oveq2d u=MnP2u=P2Mn
219 218 rspceeqv MnM2+1M1stz=P2MnuM2+1M1stz=P2u
220 190 216 219 syl2anc φzSn2n+1=1stzuM2+1M1stz=P2u
221 220 rexlimdvaa φzSn2n+1=1stzuM2+1M1stz=P2u
222 124 221 sylbid φzS¬21stzuM2+1M1stz=P2u
223 117 222 impbid φzSuM2+1M1stz=P2u¬21stz
224 223 rabbidva φzS|uM2+1M1stz=P2u=zS|¬21stz
225 84 224 eqtrid φu=M2+1MzS|1stz=P2u=zS|¬21stz
226 225 fveq2d φu=M2+1MzS|1stz=P2u=zS|¬21stz
227 6 relopabiv RelS
228 relss zS|1stz=P2uSRelSRelzS|1stz=P2u
229 57 227 228 mp2 RelzS|1stz=P2u
230 relxp RelP2u×12 NQP2u
231 6 eleq2i xySxyxy|x1My1NyP<xQ
232 opabidw xyxy|x1My1NyP<xQx1My1NyP<xQ
233 231 232 bitri xySx1My1NyP<xQ
234 anass yyNyP<P2uQyyNyP<P2uQ
235 24 peano2zd φuM2+1MQP2u+1
236 235 zred φuM2+1MQP2u+1
237 236 adantr φuM2+1MyQP2u+1
238 13 ad2antrr φuM2+1MyQ
239 nnre yy
240 239 adantl φuM2+1Myy
241 lesub QP2u+1QyQP2u+1QyyQQP2u+1
242 237 238 240 241 syl3anc φuM2+1MyQP2u+1QyyQQP2u+1
243 13 adantr φuM2+1MQ
244 243 recnd φuM2+1MQ
245 66 244 mulcomd φuM2+1MPQ=QP
246 68 244 mulcomd φuM2+1M2uQ=Q2u
247 65 nnne0d φuM2+1MP0
248 244 66 247 divcan1d φuM2+1MQPP=Q
249 248 oveq1d φuM2+1MQPP2u=Q2u
250 16 recnd φuM2+1MQP
251 250 66 68 mul32d φuM2+1MQPP2u=QP2uP
252 246 249 251 3eqtr2d φuM2+1M2uQ=QP2uP
253 245 252 oveq12d φuM2+1MPQ2uQ=QPQP2uP
254 66 68 244 subdird φuM2+1MP2uQ=PQ2uQ
255 23 recnd φuM2+1MQP2u
256 244 255 66 subdird φuM2+1MQQP2uP=QPQP2uP
257 253 254 256 3eqtr4d φuM2+1MP2uQ=QQP2uP
258 257 adantr φuM2+1MyP2uQ=QQP2uP
259 258 breq2d φuM2+1MyyP<P2uQyP<QQP2uP
260 23 adantr φuM2+1MyQP2u
261 238 260 resubcld φuM2+1MyQQP2u
262 65 adantr φuM2+1MyP
263 262 nnred φuM2+1MyP
264 262 nngt0d φuM2+1My0<P
265 ltmul1 yQQP2uP0<Py<QQP2uyP<QQP2uP
266 240 261 263 264 265 syl112anc φuM2+1Myy<QQP2uyP<QQP2uP
267 ltsub13 yQQP2uy<QQP2uQP2u<Qy
268 240 238 260 267 syl3anc φuM2+1Myy<QQP2uQP2u<Qy
269 259 266 268 3bitr2d φuM2+1MyyP<P2uQQP2u<Qy
270 12 adantr φuM2+1MQ
271 270 nnzd φuM2+1MQ
272 nnz yy
273 zsubcl QyQy
274 271 272 273 syl2an φuM2+1MyQy
275 fllt QP2uQyQP2u<QyQP2u<Qy
276 260 274 275 syl2anc φuM2+1MyQP2u<QyQP2u<Qy
277 24 adantr φuM2+1MyQP2u
278 zltp1le QP2uQyQP2u<QyQP2u+1Qy
279 277 274 278 syl2anc φuM2+1MyQP2u<QyQP2u+1Qy
280 269 276 279 3bitrd φuM2+1MyyP<P2uQQP2u+1Qy
281 5 oveq2i 2 N=2Q12
282 peano2rem QQ1
283 243 282 syl φuM2+1MQ1
284 283 recnd φuM2+1MQ1
285 2cnd φuM2+1M2
286 76 a1i φuM2+1M20
287 284 285 286 divcan2d φuM2+1M2Q12=Q1
288 281 287 eqtrid φuM2+1M2 N=Q1
289 288 oveq1d φuM2+1M2 NQP2u=Q-1-QP2u
290 1cnd φuM2+1M1
291 24 zcnd φuM2+1MQP2u
292 244 290 291 sub32d φuM2+1MQ-1-QP2u=Q-QP2u-1
293 244 291 290 subsub4d φuM2+1MQ-QP2u-1=QQP2u+1
294 289 292 293 3eqtrd φuM2+1M2 NQP2u=QQP2u+1
295 294 adantr φuM2+1My2 NQP2u=QQP2u+1
296 295 breq2d φuM2+1Myy2 NQP2uyQQP2u+1
297 242 280 296 3bitr4d φuM2+1MyyP<P2uQy2 NQP2u
298 297 anbi2d φuM2+1MyyNyP<P2uQyNy2 NQP2u
299 2nn 2
300 2 5 gausslemma2dlem0b φN
301 nnmulcl 2N2 N
302 299 300 301 sylancr φ2 N
303 302 adantr φuM2+1M2 N
304 303 nnred φuM2+1M2 N
305 300 adantr φuM2+1MN
306 305 nnred φuM2+1MN
307 24 zred φuM2+1MQP2u
308 300 nncnd φN
309 308 adantr φuM2+1MN
310 309 2timesd φuM2+1M2 N=N+N
311 309 309 310 mvrladdd φuM2+1M2 NN=N
312 243 rehalfcld φuM2+1MQ2
313 243 ltm1d φuM2+1MQ1<Q
314 152 a1i φuM2+1M2
315 154 a1i φuM2+1M0<2
316 ltdiv1 Q1Q20<2Q1<QQ12<Q2
317 283 243 314 315 316 syl112anc φuM2+1MQ1<QQ12<Q2
318 313 317 mpbid φuM2+1MQ12<Q2
319 5 318 eqbrtrid φuM2+1MN<Q2
320 306 312 319 ltled φuM2+1MNQ2
321 244 285 66 286 div32d φuM2+1MQ2P=QP2
322 126 adantr φuM2+1MM
323 322 rehalfcld φuM2+1MM2
324 peano2re M2M2+1
325 323 135 324 3syl φuM2+1MM2+1
326 19 zred φuM2+1Mu
327 flltp1 M2M2<M2+1
328 323 327 syl φuM2+1MM2<M2+1
329 elfzle1 uM2+1MM2+1u
330 329 adantl φuM2+1MM2+1u
331 323 325 326 328 330 ltletrd φuM2+1MM2<u
332 ltdivmul Mu20<2M2<uM<2u
333 322 326 314 315 332 syl112anc φuM2+1MM2<uM<2u
334 331 333 mpbid φuM2+1MM<2u
335 4 334 eqbrtrrid φuM2+1MP12<2u
336 65 nnred φuM2+1MP
337 peano2rem PP1
338 336 337 syl φuM2+1MP1
339 ltdivmul P12u20<2P12<2uP1<22u
340 338 22 314 315 339 syl112anc φuM2+1MP12<2uP1<22u
341 335 340 mpbid φuM2+1MP1<22u
342 204 adantr φuM2+1MP
343 zmulcl 22u22u
344 17 21 343 sylancr φuM2+1M22u
345 zlem1lt P22uP22uP1<22u
346 342 344 345 syl2anc φuM2+1MP22uP1<22u
347 341 346 mpbird φuM2+1MP22u
348 ledivmul P2u20<2P22uP22u
349 336 22 314 315 348 syl112anc φuM2+1MP22uP22u
350 347 349 mpbird φuM2+1MP22u
351 336 rehalfcld φuM2+1MP2
352 270 nngt0d φuM2+1M0<Q
353 lemul2 P22uQ0<QP22uQP2Q2u
354 351 22 243 352 353 syl112anc φuM2+1MP22uQP2Q2u
355 350 354 mpbid φuM2+1MQP2Q2u
356 321 355 eqbrtrd φuM2+1MQ2PQ2u
357 243 22 remulcld φuM2+1MQ2u
358 65 nngt0d φuM2+1M0<P
359 lemuldiv Q2Q2uP0<PQ2PQ2uQ2Q2uP
360 312 357 336 358 359 syl112anc φuM2+1MQ2PQ2uQ2Q2uP
361 356 360 mpbid φuM2+1MQ2Q2uP
362 244 68 66 247 div23d φuM2+1MQ2uP=QP2u
363 361 362 breqtrd φuM2+1MQ2QP2u
364 306 312 23 320 363 letrd φuM2+1MNQP2u
365 300 nnzd φN
366 365 adantr φuM2+1MN
367 flge QP2uNNQP2uNQP2u
368 23 366 367 syl2anc φuM2+1MNQP2uNQP2u
369 364 368 mpbid φuM2+1MNQP2u
370 311 369 eqbrtrd φuM2+1M2 NNQP2u
371 304 306 307 370 subled φuM2+1M2 NQP2uN
372 371 adantr φuM2+1My2 NQP2uN
373 303 nnzd φuM2+1M2 N
374 373 24 zsubcld φuM2+1M2 NQP2u
375 374 adantr φuM2+1My2 NQP2u
376 375 zred φuM2+1My2 NQP2u
377 300 ad2antrr φuM2+1MyN
378 377 nnred φuM2+1MyN
379 letr y2 NQP2uNy2 NQP2u2 NQP2uNyN
380 240 376 378 379 syl3anc φuM2+1Myy2 NQP2u2 NQP2uNyN
381 372 380 mpan2d φuM2+1Myy2 NQP2uyN
382 381 pm4.71rd φuM2+1Myy2 NQP2uyNy2 NQP2u
383 298 382 bitr4d φuM2+1MyyNyP<P2uQy2 NQP2u
384 383 pm5.32da φuM2+1MyyNyP<P2uQyy2 NQP2u
385 384 adantr φuM2+1Mx=P2uyyNyP<P2uQyy2 NQP2u
386 234 385 bitrid φuM2+1Mx=P2uyyNyP<P2uQyy2 NQP2u
387 simpr φuM2+1Mx=P2ux=P2u
388 342 21 zsubcld φuM2+1MP2u
389 elfzle2 uM2+1MuM
390 389 adantl φuM2+1MuM
391 390 4 breqtrdi φuM2+1MuP12
392 lemuldiv2 uP120<22uP1uP12
393 326 338 314 315 392 syl112anc φuM2+1M2uP1uP12
394 391 393 mpbird φuM2+1M2uP1
395 336 ltm1d φuM2+1MP1<P
396 22 338 336 394 395 lelttrd φuM2+1M2u<P
397 22 336 posdifd φuM2+1M2u<P0<P2u
398 396 397 mpbid φuM2+1M0<P2u
399 elnnz P2uP2u0<P2u
400 388 398 399 sylanbrc φuM2+1MP2u
401 66 68 290 sub32d φuM2+1MP-2u-1=P-1-2u
402 4 4 oveq12i M+M=P12+P12
403 65 nnzd φuM2+1MP
404 403 206 syl φuM2+1MP1
405 404 zcnd φuM2+1MP1
406 405 2halvesd φuM2+1MP12+P12=P1
407 402 406 eqtrid φuM2+1MM+M=P1
408 407 oveq1d φuM2+1MM+M-M=P-1-M
409 160 adantr φuM2+1MM
410 409 409 pncan2d φuM2+1MM+M-M=M
411 408 410 eqtr3d φuM2+1MP-1-M=M
412 411 334 eqbrtrd φuM2+1MP-1-M<2u
413 338 322 22 412 ltsub23d φuM2+1MP-1-2u<M
414 401 413 eqbrtrd φuM2+1MP-2u-1<M
415 125 adantr φuM2+1MM
416 415 nnzd φuM2+1MM
417 zlem1lt P2uMP2uMP-2u-1<M
418 388 416 417 syl2anc φuM2+1MP2uMP-2u-1<M
419 414 418 mpbird φuM2+1MP2uM
420 fznn MP2u1MP2uP2uM
421 416 420 syl φuM2+1MP2u1MP2uP2uM
422 400 419 421 mpbir2and φuM2+1MP2u1M
423 422 adantr φuM2+1Mx=P2uP2u1M
424 387 423 eqeltrd φuM2+1Mx=P2ux1M
425 424 biantrurd φuM2+1Mx=P2uy1Nx1My1N
426 365 ad2antrr φuM2+1Mx=P2uN
427 fznn Ny1NyyN
428 426 427 syl φuM2+1Mx=P2uy1NyyN
429 425 428 bitr3d φuM2+1Mx=P2ux1My1NyyN
430 387 oveq1d φuM2+1Mx=P2uxQ=P2uQ
431 430 breq2d φuM2+1Mx=P2uyP<xQyP<P2uQ
432 429 431 anbi12d φuM2+1Mx=P2ux1My1NyP<xQyyNyP<P2uQ
433 374 adantr φuM2+1Mx=P2u2 NQP2u
434 fznn 2 NQP2uy12 NQP2uyy2 NQP2u
435 433 434 syl φuM2+1Mx=P2uy12 NQP2uyy2 NQP2u
436 386 432 435 3bitr4d φuM2+1Mx=P2ux1My1NyP<xQy12 NQP2u
437 233 436 bitrid φuM2+1Mx=P2uxySy12 NQP2u
438 437 pm5.32da φuM2+1Mx=P2uxySx=P2uy12 NQP2u
439 vex xV
440 vex yV
441 439 440 op1std z=xy1stz=x
442 441 eqeq1d z=xy1stz=P2ux=P2u
443 442 elrab xyzS|1stz=P2uxySx=P2u
444 443 biancomi xyzS|1stz=P2ux=P2uxyS
445 opelxp xyP2u×12 NQP2uxP2uy12 NQP2u
446 velsn xP2ux=P2u
447 446 anbi1i xP2uy12 NQP2ux=P2uy12 NQP2u
448 445 447 bitri xyP2u×12 NQP2ux=P2uy12 NQP2u
449 438 444 448 3bitr4g φuM2+1MxyzS|1stz=P2uxyP2u×12 NQP2u
450 229 230 449 eqrelrdv φuM2+1MzS|1stz=P2u=P2u×12 NQP2u
451 450 fveq2d φuM2+1MzS|1stz=P2u=P2u×12 NQP2u
452 fzfid φuM2+1M12 NQP2uFin
453 xpsnen2g P2u12 NQP2uFinP2u×12 NQP2u12 NQP2u
454 388 452 453 syl2anc φuM2+1MP2u×12 NQP2u12 NQP2u
455 hasheni P2u×12 NQP2u12 NQP2uP2u×12 NQP2u=12 NQP2u
456 454 455 syl φuM2+1MP2u×12 NQP2u=12 NQP2u
457 ltmul2 2uPQ0<Q2u<PQ2u<QP
458 22 336 243 352 457 syl112anc φuM2+1M2u<PQ2u<QP
459 396 458 mpbid φuM2+1MQ2u<QP
460 ltdivmul2 Q2uQP0<PQ2uP<QQ2u<QP
461 357 243 336 358 460 syl112anc φuM2+1MQ2uP<QQ2u<QP
462 459 461 mpbird φuM2+1MQ2uP<Q
463 362 462 eqbrtrrd φuM2+1MQP2u<Q
464 fllt QP2uQQP2u<QQP2u<Q
465 23 271 464 syl2anc φuM2+1MQP2u<QQP2u<Q
466 463 465 mpbid φuM2+1MQP2u<Q
467 zltlem1 QP2uQQP2u<QQP2uQ1
468 24 271 467 syl2anc φuM2+1MQP2u<QQP2uQ1
469 466 468 mpbid φuM2+1MQP2uQ1
470 469 288 breqtrrd φuM2+1MQP2u2 N
471 eluz2 2 NQP2uQP2u2 NQP2u2 N
472 24 373 470 471 syl3anbrc φuM2+1M2 NQP2u
473 uznn0sub 2 NQP2u2 NQP2u0
474 hashfz1 2 NQP2u012 NQP2u=2 NQP2u
475 472 473 474 3syl φuM2+1M12 NQP2u=2 NQP2u
476 451 456 475 3eqtrd φuM2+1MzS|1stz=P2u=2 NQP2u
477 476 sumeq2dv φu=M2+1MzS|1stz=P2u=u=M2+1M2 NQP2u
478 83 226 477 3eqtr3rd φu=M2+1M2 NQP2u=zS|¬21stz
479 302 nncnd φ2 N
480 479 adantr φuM2+1M2 N
481 11 480 291 fsumsub φu=M2+1M2 NQP2u=u=M2+1M2 Nu=M2+1MQP2u
482 478 481 eqtr3d φzS|¬21stz=u=M2+1M2 Nu=M2+1MQP2u
483 482 oveq2d φu=M2+1MQP2u+zS|¬21stz=u=M2+1MQP2u+u=M2+1M2 N-u=M2+1MQP2u
484 25 zcnd φu=M2+1MQP2u
485 11 373 fsumzcl φu=M2+1M2 N
486 485 zcnd φu=M2+1M2 N
487 484 486 pncan3d φu=M2+1MQP2u+u=M2+1M2 N-u=M2+1MQP2u=u=M2+1M2 N
488 fsumconst M2+1MFin2 Nu=M2+1M2 N=M2+1M2 N
489 11 479 488 syl2anc φu=M2+1M2 N=M2+1M2 N
490 hashcl M2+1MFinM2+1M0
491 11 490 syl φM2+1M0
492 491 nn0cnd φM2+1M
493 2cnd φ2
494 492 493 308 mul12d φM2+1M2 N=2M2+1M N
495 489 494 eqtrd φu=M2+1M2 N=2M2+1M N
496 483 487 495 3eqtrd φu=M2+1MQP2u+zS|¬21stz=2M2+1M N
497 496 oveq2d φ1u=M2+1MQP2u+zS|¬21stz=12M2+1M N
498 17 a1i φ2
499 491 nn0zd φM2+1M
500 499 365 zmulcld φM2+1M N
501 expmulz 1102M2+1M N12M2+1M N=-12M2+1M N
502 8 10 498 500 501 syl22anc φ12M2+1M N=-12M2+1M N
503 neg1sqe1 12=1
504 503 oveq1i -12M2+1M N=1M2+1M N
505 1exp M2+1M N1M2+1M N=1
506 500 505 syl φ1M2+1M N=1
507 504 506 eqtrid φ-12M2+1M N=1
508 497 502 507 3eqtrd φ1u=M2+1MQP2u+zS|¬21stz=1
509 44 55 508 3eqtr4d φ1zS|¬21stz1zS|¬21stz=1u=M2+1MQP2u+zS|¬21stz
510 expaddz 110u=M2+1MQP2uzS|¬21stz1u=M2+1MQP2u+zS|¬21stz=1u=M2+1MQP2u1zS|¬21stz
511 8 10 25 42 510 syl22anc φ1u=M2+1MQP2u+zS|¬21stz=1u=M2+1MQP2u1zS|¬21stz
512 509 511 eqtr2d φ1u=M2+1MQP2u1zS|¬21stz=1zS|¬21stz1zS|¬21stz
513 26 41 41 43 512 mulcan2ad φ1u=M2+1MQP2u=1zS|¬21stz