Metamath Proof Explorer


Theorem lgsquadlem1

Description: Lemma for lgsquad . Count the members of S with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015)

Ref Expression
Hypotheses lgseisen.1 φ P 2
lgseisen.2 φ Q 2
lgseisen.3 φ P Q
lgsquad.4 M = P 1 2
lgsquad.5 N = Q 1 2
lgsquad.6 S = x y | x 1 M y 1 N y P < x Q
Assertion lgsquadlem1 φ 1 u = M 2 + 1 M Q P 2 u = 1 z S | ¬ 2 1 st z

Proof

Step Hyp Ref Expression
1 lgseisen.1 φ P 2
2 lgseisen.2 φ Q 2
3 lgseisen.3 φ P Q
4 lgsquad.4 M = P 1 2
5 lgsquad.5 N = Q 1 2
6 lgsquad.6 S = x y | x 1 M y 1 N y P < x Q
7 neg1cn 1
8 7 a1i φ 1
9 neg1ne0 1 0
10 9 a1i φ 1 0
11 fzfid φ M 2 + 1 M Fin
12 2 gausslemma2dlem0a φ Q
13 12 nnred φ Q
14 1 gausslemma2dlem0a φ P
15 13 14 nndivred φ Q P
16 15 adantr φ u M 2 + 1 M Q P
17 2z 2
18 elfzelz u M 2 + 1 M u
19 18 adantl φ u M 2 + 1 M u
20 zmulcl 2 u 2 u
21 17 19 20 sylancr φ u M 2 + 1 M 2 u
22 21 zred φ u M 2 + 1 M 2 u
23 16 22 remulcld φ u M 2 + 1 M Q P 2 u
24 23 flcld φ u M 2 + 1 M Q P 2 u
25 11 24 fsumzcl φ u = M 2 + 1 M Q P 2 u
26 8 10 25 expclzd φ 1 u = M 2 + 1 M Q P 2 u
27 fzfid φ 1 M Fin
28 fzfid φ 1 N Fin
29 xpfi 1 M Fin 1 N Fin 1 M × 1 N Fin
30 27 28 29 syl2anc φ 1 M × 1 N Fin
31 opabssxp x y | x 1 M y 1 N y P < x Q 1 M × 1 N
32 6 31 eqsstri S 1 M × 1 N
33 ssfi 1 M × 1 N Fin S 1 M × 1 N S Fin
34 30 32 33 sylancl φ S Fin
35 ssrab2 z S | ¬ 2 1 st z S
36 ssfi S Fin z S | ¬ 2 1 st z S z S | ¬ 2 1 st z Fin
37 34 35 36 sylancl φ z S | ¬ 2 1 st z Fin
38 hashcl z S | ¬ 2 1 st z Fin z S | ¬ 2 1 st z 0
39 37 38 syl φ z S | ¬ 2 1 st z 0
40 expcl 1 z S | ¬ 2 1 st z 0 1 z S | ¬ 2 1 st z
41 7 39 40 sylancr φ 1 z S | ¬ 2 1 st z
42 39 nn0zd φ z S | ¬ 2 1 st z
43 8 10 42 expne0d φ 1 z S | ¬ 2 1 st z 0
44 41 43 recidd φ 1 z S | ¬ 2 1 st z 1 1 z S | ¬ 2 1 st z = 1
45 1div1e1 1 1 = 1
46 45 negeqi 1 1 = 1
47 ax-1cn 1
48 ax-1ne0 1 0
49 divneg2 1 1 1 0 1 1 = 1 1
50 47 47 48 49 mp3an 1 1 = 1 1
51 46 50 eqtr3i 1 = 1 1
52 51 oveq1i 1 z S | ¬ 2 1 st z = 1 1 z S | ¬ 2 1 st z
53 8 10 42 exprecd φ 1 1 z S | ¬ 2 1 st z = 1 1 z S | ¬ 2 1 st z
54 52 53 syl5eq φ 1 z S | ¬ 2 1 st z = 1 1 z S | ¬ 2 1 st z
55 54 oveq2d φ 1 z S | ¬ 2 1 st z 1 z S | ¬ 2 1 st z = 1 z S | ¬ 2 1 st z 1 1 z S | ¬ 2 1 st z
56 34 adantr φ u M 2 + 1 M S Fin
57 ssrab2 z S | 1 st z = P 2 u S
58 ssfi S Fin z S | 1 st z = P 2 u S z S | 1 st z = P 2 u Fin
59 56 57 58 sylancl φ u M 2 + 1 M z S | 1 st z = P 2 u Fin
60 fveqeq2 z = v 1 st z = P 2 u 1 st v = P 2 u
61 60 elrab v z S | 1 st z = P 2 u v S 1 st v = P 2 u
62 61 simprbi v z S | 1 st z = P 2 u 1 st v = P 2 u
63 62 ad2antll φ u M 2 + 1 M v z S | 1 st z = P 2 u 1 st v = P 2 u
64 63 oveq2d φ u M 2 + 1 M v z S | 1 st z = P 2 u P 1 st v = P P 2 u
65 14 adantr φ u M 2 + 1 M P
66 65 nncnd φ u M 2 + 1 M P
67 66 adantrr φ u M 2 + 1 M v z S | 1 st z = P 2 u P
68 21 zcnd φ u M 2 + 1 M 2 u
69 68 adantrr φ u M 2 + 1 M v z S | 1 st z = P 2 u 2 u
70 67 69 nncand φ u M 2 + 1 M v z S | 1 st z = P 2 u P P 2 u = 2 u
71 64 70 eqtrd φ u M 2 + 1 M v z S | 1 st z = P 2 u P 1 st v = 2 u
72 71 oveq1d φ u M 2 + 1 M v z S | 1 st z = P 2 u P 1 st v 2 = 2 u 2
73 19 zcnd φ u M 2 + 1 M u
74 73 adantrr φ u M 2 + 1 M v z S | 1 st z = P 2 u u
75 2cnd φ u M 2 + 1 M v z S | 1 st z = P 2 u 2
76 2ne0 2 0
77 76 a1i φ u M 2 + 1 M v z S | 1 st z = P 2 u 2 0
78 74 75 77 divcan3d φ u M 2 + 1 M v z S | 1 st z = P 2 u 2 u 2 = u
79 72 78 eqtrd φ u M 2 + 1 M v z S | 1 st z = P 2 u P 1 st v 2 = u
80 79 ralrimivva φ u M 2 + 1 M v z S | 1 st z = P 2 u P 1 st v 2 = u
81 invdisj u M 2 + 1 M v z S | 1 st z = P 2 u P 1 st v 2 = u Disj u = M 2 + 1 M z S | 1 st z = P 2 u
82 80 81 syl φ Disj u = M 2 + 1 M z S | 1 st z = P 2 u
83 11 59 82 hashiun φ u = M 2 + 1 M z S | 1 st z = P 2 u = u = M 2 + 1 M z S | 1 st z = P 2 u
84 iunrab u = M 2 + 1 M z S | 1 st z = P 2 u = z S | u M 2 + 1 M 1 st z = P 2 u
85 eldifsni P 2 P 2
86 1 85 syl φ P 2
87 86 necomd φ 2 P
88 87 neneqd φ ¬ 2 = P
89 88 ad2antrr φ z S u M 2 + 1 M ¬ 2 = P
90 uzid 2 2 2
91 17 90 ax-mp 2 2
92 1 eldifad φ P
93 92 ad2antrr φ z S u M 2 + 1 M P
94 dvdsprm 2 2 P 2 P 2 = P
95 91 93 94 sylancr φ z S u M 2 + 1 M 2 P 2 = P
96 89 95 mtbird φ z S u M 2 + 1 M ¬ 2 P
97 14 ad2antrr φ z S u M 2 + 1 M P
98 97 nncnd φ z S u M 2 + 1 M P
99 21 adantlr φ z S u M 2 + 1 M 2 u
100 99 zcnd φ z S u M 2 + 1 M 2 u
101 98 100 npcand φ z S u M 2 + 1 M P - 2 u + 2 u = P
102 101 breq2d φ z S u M 2 + 1 M 2 P - 2 u + 2 u 2 P
103 96 102 mtbird φ z S u M 2 + 1 M ¬ 2 P - 2 u + 2 u
104 18 adantl φ z S u M 2 + 1 M u
105 dvdsmul1 2 u 2 2 u
106 17 104 105 sylancr φ z S u M 2 + 1 M 2 2 u
107 17 a1i φ z S u M 2 + 1 M 2
108 97 nnzd φ z S u M 2 + 1 M P
109 108 99 zsubcld φ z S u M 2 + 1 M P 2 u
110 dvds2add 2 P 2 u 2 u 2 P 2 u 2 2 u 2 P - 2 u + 2 u
111 107 109 99 110 syl3anc φ z S u M 2 + 1 M 2 P 2 u 2 2 u 2 P - 2 u + 2 u
112 106 111 mpan2d φ z S u M 2 + 1 M 2 P 2 u 2 P - 2 u + 2 u
113 103 112 mtod φ z S u M 2 + 1 M ¬ 2 P 2 u
114 breq2 1 st z = P 2 u 2 1 st z 2 P 2 u
115 114 notbid 1 st z = P 2 u ¬ 2 1 st z ¬ 2 P 2 u
116 113 115 syl5ibrcom φ z S u M 2 + 1 M 1 st z = P 2 u ¬ 2 1 st z
117 116 rexlimdva φ z S u M 2 + 1 M 1 st z = P 2 u ¬ 2 1 st z
118 simpr φ z S z S
119 32 118 sseldi φ z S z 1 M × 1 N
120 xp1st z 1 M × 1 N 1 st z 1 M
121 119 120 syl φ z S 1 st z 1 M
122 elfzelz 1 st z 1 M 1 st z
123 odd2np1 1 st z ¬ 2 1 st z n 2 n + 1 = 1 st z
124 121 122 123 3syl φ z S ¬ 2 1 st z n 2 n + 1 = 1 st z
125 1 4 gausslemma2dlem0b φ M
126 125 nnred φ M
127 126 ad2antrr φ z S n 2 n + 1 = 1 st z M
128 127 rehalfcld φ z S n 2 n + 1 = 1 st z M 2
129 reflcl M 2 M 2
130 128 129 syl φ z S n 2 n + 1 = 1 st z M 2
131 125 ad2antrr φ z S n 2 n + 1 = 1 st z M
132 131 nnzd φ z S n 2 n + 1 = 1 st z M
133 simprl φ z S n 2 n + 1 = 1 st z n
134 132 133 zsubcld φ z S n 2 n + 1 = 1 st z M n
135 134 zred φ z S n 2 n + 1 = 1 st z M n
136 flle M 2 M 2 M 2
137 128 136 syl φ z S n 2 n + 1 = 1 st z M 2 M 2
138 zre n n
139 138 ad2antrl φ z S n 2 n + 1 = 1 st z n
140 simprr φ z S n 2 n + 1 = 1 st z 2 n + 1 = 1 st z
141 121 adantr φ z S n 2 n + 1 = 1 st z 1 st z 1 M
142 140 141 eqeltrd φ z S n 2 n + 1 = 1 st z 2 n + 1 1 M
143 elfzle2 2 n + 1 1 M 2 n + 1 M
144 142 143 syl φ z S n 2 n + 1 = 1 st z 2 n + 1 M
145 zmulcl 2 n 2 n
146 17 133 145 sylancr φ z S n 2 n + 1 = 1 st z 2 n
147 zltp1le 2 n M 2 n < M 2 n + 1 M
148 146 132 147 syl2anc φ z S n 2 n + 1 = 1 st z 2 n < M 2 n + 1 M
149 144 148 mpbird φ z S n 2 n + 1 = 1 st z 2 n < M
150 2re 2
151 150 a1i φ z S n 2 n + 1 = 1 st z 2
152 2pos 0 < 2
153 152 a1i φ z S n 2 n + 1 = 1 st z 0 < 2
154 ltmuldiv2 n M 2 0 < 2 2 n < M n < M 2
155 139 127 151 153 154 syl112anc φ z S n 2 n + 1 = 1 st z 2 n < M n < M 2
156 149 155 mpbid φ z S n 2 n + 1 = 1 st z n < M 2
157 128 recnd φ z S n 2 n + 1 = 1 st z M 2
158 125 nncnd φ M
159 158 ad2antrr φ z S n 2 n + 1 = 1 st z M
160 159 2halvesd φ z S n 2 n + 1 = 1 st z M 2 + M 2 = M
161 157 157 160 mvlraddd φ z S n 2 n + 1 = 1 st z M 2 = M M 2
162 156 161 breqtrd φ z S n 2 n + 1 = 1 st z n < M M 2
163 139 127 128 162 ltsub13d φ z S n 2 n + 1 = 1 st z M 2 < M n
164 130 128 135 137 163 lelttrd φ z S n 2 n + 1 = 1 st z M 2 < M n
165 128 flcld φ z S n 2 n + 1 = 1 st z M 2
166 zltp1le M 2 M n M 2 < M n M 2 + 1 M n
167 165 134 166 syl2anc φ z S n 2 n + 1 = 1 st z M 2 < M n M 2 + 1 M n
168 164 167 mpbid φ z S n 2 n + 1 = 1 st z M 2 + 1 M n
169 2t0e0 2 0 = 0
170 2cn 2
171 zcn n n
172 171 ad2antrl φ z S n 2 n + 1 = 1 st z n
173 mulcl 2 n 2 n
174 170 172 173 sylancr φ z S n 2 n + 1 = 1 st z 2 n
175 pncan 2 n 1 2 n + 1 - 1 = 2 n
176 174 47 175 sylancl φ z S n 2 n + 1 = 1 st z 2 n + 1 - 1 = 2 n
177 elfznn 2 n + 1 1 M 2 n + 1
178 nnm1nn0 2 n + 1 2 n + 1 - 1 0
179 142 177 178 3syl φ z S n 2 n + 1 = 1 st z 2 n + 1 - 1 0
180 176 179 eqeltrrd φ z S n 2 n + 1 = 1 st z 2 n 0
181 180 nn0ge0d φ z S n 2 n + 1 = 1 st z 0 2 n
182 169 181 eqbrtrid φ z S n 2 n + 1 = 1 st z 2 0 2 n
183 0red φ z S n 2 n + 1 = 1 st z 0
184 lemul2 0 n 2 0 < 2 0 n 2 0 2 n
185 183 139 151 153 184 syl112anc φ z S n 2 n + 1 = 1 st z 0 n 2 0 2 n
186 182 185 mpbird φ z S n 2 n + 1 = 1 st z 0 n
187 127 139 subge02d φ z S n 2 n + 1 = 1 st z 0 n M n M
188 186 187 mpbid φ z S n 2 n + 1 = 1 st z M n M
189 165 peano2zd φ z S n 2 n + 1 = 1 st z M 2 + 1
190 elfz M n M 2 + 1 M M n M 2 + 1 M M 2 + 1 M n M n M
191 134 189 132 190 syl3anc φ z S n 2 n + 1 = 1 st z M n M 2 + 1 M M 2 + 1 M n M n M
192 168 188 191 mpbir2and φ z S n 2 n + 1 = 1 st z M n M 2 + 1 M
193 92 ad2antrr φ z S n 2 n + 1 = 1 st z P
194 prmnn P P
195 193 194 syl φ z S n 2 n + 1 = 1 st z P
196 195 nncnd φ z S n 2 n + 1 = 1 st z P
197 peano2cn 2 n 2 n + 1
198 174 197 syl φ z S n 2 n + 1 = 1 st z 2 n + 1
199 196 198 nncand φ z S n 2 n + 1 = 1 st z P P 2 n + 1 = 2 n + 1
200 1cnd φ z S n 2 n + 1 = 1 st z 1
201 196 174 200 sub32d φ z S n 2 n + 1 = 1 st z P - 2 n - 1 = P - 1 - 2 n
202 196 174 200 subsub4d φ z S n 2 n + 1 = 1 st z P - 2 n - 1 = P 2 n + 1
203 2cnd φ z S n 2 n + 1 = 1 st z 2
204 203 159 172 subdid φ z S n 2 n + 1 = 1 st z 2 M n = 2 M 2 n
205 4 oveq2i 2 M = 2 P 1 2
206 14 nnzd φ P
207 206 ad2antrr φ z S n 2 n + 1 = 1 st z P
208 peano2zm P P 1
209 207 208 syl φ z S n 2 n + 1 = 1 st z P 1
210 209 zcnd φ z S n 2 n + 1 = 1 st z P 1
211 76 a1i φ z S n 2 n + 1 = 1 st z 2 0
212 210 203 211 divcan2d φ z S n 2 n + 1 = 1 st z 2 P 1 2 = P 1
213 205 212 syl5eq φ z S n 2 n + 1 = 1 st z 2 M = P 1
214 213 oveq1d φ z S n 2 n + 1 = 1 st z 2 M 2 n = P - 1 - 2 n
215 204 214 eqtr2d φ z S n 2 n + 1 = 1 st z P - 1 - 2 n = 2 M n
216 201 202 215 3eqtr3d φ z S n 2 n + 1 = 1 st z P 2 n + 1 = 2 M n
217 216 oveq2d φ z S n 2 n + 1 = 1 st z P P 2 n + 1 = P 2 M n
218 199 217 140 3eqtr3rd φ z S n 2 n + 1 = 1 st z 1 st z = P 2 M n
219 oveq2 u = M n 2 u = 2 M n
220 219 oveq2d u = M n P 2 u = P 2 M n
221 220 rspceeqv M n M 2 + 1 M 1 st z = P 2 M n u M 2 + 1 M 1 st z = P 2 u
222 192 218 221 syl2anc φ z S n 2 n + 1 = 1 st z u M 2 + 1 M 1 st z = P 2 u
223 222 rexlimdvaa φ z S n 2 n + 1 = 1 st z u M 2 + 1 M 1 st z = P 2 u
224 124 223 sylbid φ z S ¬ 2 1 st z u M 2 + 1 M 1 st z = P 2 u
225 117 224 impbid φ z S u M 2 + 1 M 1 st z = P 2 u ¬ 2 1 st z
226 225 rabbidva φ z S | u M 2 + 1 M 1 st z = P 2 u = z S | ¬ 2 1 st z
227 84 226 syl5eq φ u = M 2 + 1 M z S | 1 st z = P 2 u = z S | ¬ 2 1 st z
228 227 fveq2d φ u = M 2 + 1 M z S | 1 st z = P 2 u = z S | ¬ 2 1 st z
229 6 relopabi Rel S
230 relss z S | 1 st z = P 2 u S Rel S Rel z S | 1 st z = P 2 u
231 57 229 230 mp2 Rel z S | 1 st z = P 2 u
232 relxp Rel P 2 u × 1 2 N Q P 2 u
233 6 eleq2i x y S x y x y | x 1 M y 1 N y P < x Q
234 opabidw x y x y | x 1 M y 1 N y P < x Q x 1 M y 1 N y P < x Q
235 233 234 bitri x y S x 1 M y 1 N y P < x Q
236 anass y y N y P < P 2 u Q y y N y P < P 2 u Q
237 24 peano2zd φ u M 2 + 1 M Q P 2 u + 1
238 237 zred φ u M 2 + 1 M Q P 2 u + 1
239 238 adantr φ u M 2 + 1 M y Q P 2 u + 1
240 13 ad2antrr φ u M 2 + 1 M y Q
241 nnre y y
242 241 adantl φ u M 2 + 1 M y y
243 lesub Q P 2 u + 1 Q y Q P 2 u + 1 Q y y Q Q P 2 u + 1
244 239 240 242 243 syl3anc φ u M 2 + 1 M y Q P 2 u + 1 Q y y Q Q P 2 u + 1
245 13 adantr φ u M 2 + 1 M Q
246 245 recnd φ u M 2 + 1 M Q
247 66 246 mulcomd φ u M 2 + 1 M P Q = Q P
248 68 246 mulcomd φ u M 2 + 1 M 2 u Q = Q 2 u
249 65 nnne0d φ u M 2 + 1 M P 0
250 246 66 249 divcan1d φ u M 2 + 1 M Q P P = Q
251 250 oveq1d φ u M 2 + 1 M Q P P 2 u = Q 2 u
252 16 recnd φ u M 2 + 1 M Q P
253 252 66 68 mul32d φ u M 2 + 1 M Q P P 2 u = Q P 2 u P
254 248 251 253 3eqtr2d φ u M 2 + 1 M 2 u Q = Q P 2 u P
255 247 254 oveq12d φ u M 2 + 1 M P Q 2 u Q = Q P Q P 2 u P
256 66 68 246 subdird φ u M 2 + 1 M P 2 u Q = P Q 2 u Q
257 23 recnd φ u M 2 + 1 M Q P 2 u
258 246 257 66 subdird φ u M 2 + 1 M Q Q P 2 u P = Q P Q P 2 u P
259 255 256 258 3eqtr4d φ u M 2 + 1 M P 2 u Q = Q Q P 2 u P
260 259 adantr φ u M 2 + 1 M y P 2 u Q = Q Q P 2 u P
261 260 breq2d φ u M 2 + 1 M y y P < P 2 u Q y P < Q Q P 2 u P
262 23 adantr φ u M 2 + 1 M y Q P 2 u
263 240 262 resubcld φ u M 2 + 1 M y Q Q P 2 u
264 65 adantr φ u M 2 + 1 M y P
265 264 nnred φ u M 2 + 1 M y P
266 264 nngt0d φ u M 2 + 1 M y 0 < P
267 ltmul1 y Q Q P 2 u P 0 < P y < Q Q P 2 u y P < Q Q P 2 u P
268 242 263 265 266 267 syl112anc φ u M 2 + 1 M y y < Q Q P 2 u y P < Q Q P 2 u P
269 ltsub13 y Q Q P 2 u y < Q Q P 2 u Q P 2 u < Q y
270 242 240 262 269 syl3anc φ u M 2 + 1 M y y < Q Q P 2 u Q P 2 u < Q y
271 261 268 270 3bitr2d φ u M 2 + 1 M y y P < P 2 u Q Q P 2 u < Q y
272 12 adantr φ u M 2 + 1 M Q
273 272 nnzd φ u M 2 + 1 M Q
274 nnz y y
275 zsubcl Q y Q y
276 273 274 275 syl2an φ u M 2 + 1 M y Q y
277 fllt Q P 2 u Q y Q P 2 u < Q y Q P 2 u < Q y
278 262 276 277 syl2anc φ u M 2 + 1 M y Q P 2 u < Q y Q P 2 u < Q y
279 24 adantr φ u M 2 + 1 M y Q P 2 u
280 zltp1le Q P 2 u Q y Q P 2 u < Q y Q P 2 u + 1 Q y
281 279 276 280 syl2anc φ u M 2 + 1 M y Q P 2 u < Q y Q P 2 u + 1 Q y
282 271 278 281 3bitrd φ u M 2 + 1 M y y P < P 2 u Q Q P 2 u + 1 Q y
283 5 oveq2i 2 N = 2 Q 1 2
284 peano2rem Q Q 1
285 245 284 syl φ u M 2 + 1 M Q 1
286 285 recnd φ u M 2 + 1 M Q 1
287 2cnd φ u M 2 + 1 M 2
288 76 a1i φ u M 2 + 1 M 2 0
289 286 287 288 divcan2d φ u M 2 + 1 M 2 Q 1 2 = Q 1
290 283 289 syl5eq φ u M 2 + 1 M 2 N = Q 1
291 290 oveq1d φ u M 2 + 1 M 2 N Q P 2 u = Q - 1 - Q P 2 u
292 1cnd φ u M 2 + 1 M 1
293 24 zcnd φ u M 2 + 1 M Q P 2 u
294 246 292 293 sub32d φ u M 2 + 1 M Q - 1 - Q P 2 u = Q - Q P 2 u - 1
295 246 293 292 subsub4d φ u M 2 + 1 M Q - Q P 2 u - 1 = Q Q P 2 u + 1
296 291 294 295 3eqtrd φ u M 2 + 1 M 2 N Q P 2 u = Q Q P 2 u + 1
297 296 adantr φ u M 2 + 1 M y 2 N Q P 2 u = Q Q P 2 u + 1
298 297 breq2d φ u M 2 + 1 M y y 2 N Q P 2 u y Q Q P 2 u + 1
299 244 282 298 3bitr4d φ u M 2 + 1 M y y P < P 2 u Q y 2 N Q P 2 u
300 299 anbi2d φ u M 2 + 1 M y y N y P < P 2 u Q y N y 2 N Q P 2 u
301 2nn 2
302 2 5 gausslemma2dlem0b φ N
303 nnmulcl 2 N 2 N
304 301 302 303 sylancr φ 2 N
305 304 adantr φ u M 2 + 1 M 2 N
306 305 nnred φ u M 2 + 1 M 2 N
307 302 adantr φ u M 2 + 1 M N
308 307 nnred φ u M 2 + 1 M N
309 24 zred φ u M 2 + 1 M Q P 2 u
310 302 nncnd φ N
311 310 adantr φ u M 2 + 1 M N
312 311 2timesd φ u M 2 + 1 M 2 N = N + N
313 311 311 312 mvrladdd φ u M 2 + 1 M 2 N N = N
314 245 rehalfcld φ u M 2 + 1 M Q 2
315 245 ltm1d φ u M 2 + 1 M Q 1 < Q
316 150 a1i φ u M 2 + 1 M 2
317 152 a1i φ u M 2 + 1 M 0 < 2
318 ltdiv1 Q 1 Q 2 0 < 2 Q 1 < Q Q 1 2 < Q 2
319 285 245 316 317 318 syl112anc φ u M 2 + 1 M Q 1 < Q Q 1 2 < Q 2
320 315 319 mpbid φ u M 2 + 1 M Q 1 2 < Q 2
321 5 320 eqbrtrid φ u M 2 + 1 M N < Q 2
322 308 314 321 ltled φ u M 2 + 1 M N Q 2
323 246 287 66 288 div32d φ u M 2 + 1 M Q 2 P = Q P 2
324 126 adantr φ u M 2 + 1 M M
325 324 rehalfcld φ u M 2 + 1 M M 2
326 peano2re M 2 M 2 + 1
327 325 129 326 3syl φ u M 2 + 1 M M 2 + 1
328 19 zred φ u M 2 + 1 M u
329 flltp1 M 2 M 2 < M 2 + 1
330 325 329 syl φ u M 2 + 1 M M 2 < M 2 + 1
331 elfzle1 u M 2 + 1 M M 2 + 1 u
332 331 adantl φ u M 2 + 1 M M 2 + 1 u
333 325 327 328 330 332 ltletrd φ u M 2 + 1 M M 2 < u
334 ltdivmul M u 2 0 < 2 M 2 < u M < 2 u
335 324 328 316 317 334 syl112anc φ u M 2 + 1 M M 2 < u M < 2 u
336 333 335 mpbid φ u M 2 + 1 M M < 2 u
337 4 336 eqbrtrrid φ u M 2 + 1 M P 1 2 < 2 u
338 65 nnred φ u M 2 + 1 M P
339 peano2rem P P 1
340 338 339 syl φ u M 2 + 1 M P 1
341 ltdivmul P 1 2 u 2 0 < 2 P 1 2 < 2 u P 1 < 2 2 u
342 340 22 316 317 341 syl112anc φ u M 2 + 1 M P 1 2 < 2 u P 1 < 2 2 u
343 337 342 mpbid φ u M 2 + 1 M P 1 < 2 2 u
344 206 adantr φ u M 2 + 1 M P
345 zmulcl 2 2 u 2 2 u
346 17 21 345 sylancr φ u M 2 + 1 M 2 2 u
347 zlem1lt P 2 2 u P 2 2 u P 1 < 2 2 u
348 344 346 347 syl2anc φ u M 2 + 1 M P 2 2 u P 1 < 2 2 u
349 343 348 mpbird φ u M 2 + 1 M P 2 2 u
350 ledivmul P 2 u 2 0 < 2 P 2 2 u P 2 2 u
351 338 22 316 317 350 syl112anc φ u M 2 + 1 M P 2 2 u P 2 2 u
352 349 351 mpbird φ u M 2 + 1 M P 2 2 u
353 338 rehalfcld φ u M 2 + 1 M P 2
354 272 nngt0d φ u M 2 + 1 M 0 < Q
355 lemul2 P 2 2 u Q 0 < Q P 2 2 u Q P 2 Q 2 u
356 353 22 245 354 355 syl112anc φ u M 2 + 1 M P 2 2 u Q P 2 Q 2 u
357 352 356 mpbid φ u M 2 + 1 M Q P 2 Q 2 u
358 323 357 eqbrtrd φ u M 2 + 1 M Q 2 P Q 2 u
359 245 22 remulcld φ u M 2 + 1 M Q 2 u
360 65 nngt0d φ u M 2 + 1 M 0 < P
361 lemuldiv Q 2 Q 2 u P 0 < P Q 2 P Q 2 u Q 2 Q 2 u P
362 314 359 338 360 361 syl112anc φ u M 2 + 1 M Q 2 P Q 2 u Q 2 Q 2 u P
363 358 362 mpbid φ u M 2 + 1 M Q 2 Q 2 u P
364 246 68 66 249 div23d φ u M 2 + 1 M Q 2 u P = Q P 2 u
365 363 364 breqtrd φ u M 2 + 1 M Q 2 Q P 2 u
366 308 314 23 322 365 letrd φ u M 2 + 1 M N Q P 2 u
367 302 nnzd φ N
368 367 adantr φ u M 2 + 1 M N
369 flge Q P 2 u N N Q P 2 u N Q P 2 u
370 23 368 369 syl2anc φ u M 2 + 1 M N Q P 2 u N Q P 2 u
371 366 370 mpbid φ u M 2 + 1 M N Q P 2 u
372 313 371 eqbrtrd φ u M 2 + 1 M 2 N N Q P 2 u
373 306 308 309 372 subled φ u M 2 + 1 M 2 N Q P 2 u N
374 373 adantr φ u M 2 + 1 M y 2 N Q P 2 u N
375 305 nnzd φ u M 2 + 1 M 2 N
376 375 24 zsubcld φ u M 2 + 1 M 2 N Q P 2 u
377 376 adantr φ u M 2 + 1 M y 2 N Q P 2 u
378 377 zred φ u M 2 + 1 M y 2 N Q P 2 u
379 302 ad2antrr φ u M 2 + 1 M y N
380 379 nnred φ u M 2 + 1 M y N
381 letr y 2 N Q P 2 u N y 2 N Q P 2 u 2 N Q P 2 u N y N
382 242 378 380 381 syl3anc φ u M 2 + 1 M y y 2 N Q P 2 u 2 N Q P 2 u N y N
383 374 382 mpan2d φ u M 2 + 1 M y y 2 N Q P 2 u y N
384 383 pm4.71rd φ u M 2 + 1 M y y 2 N Q P 2 u y N y 2 N Q P 2 u
385 300 384 bitr4d φ u M 2 + 1 M y y N y P < P 2 u Q y 2 N Q P 2 u
386 385 pm5.32da φ u M 2 + 1 M y y N y P < P 2 u Q y y 2 N Q P 2 u
387 386 adantr φ u M 2 + 1 M x = P 2 u y y N y P < P 2 u Q y y 2 N Q P 2 u
388 236 387 syl5bb φ u M 2 + 1 M x = P 2 u y y N y P < P 2 u Q y y 2 N Q P 2 u
389 simpr φ u M 2 + 1 M x = P 2 u x = P 2 u
390 344 21 zsubcld φ u M 2 + 1 M P 2 u
391 elfzle2 u M 2 + 1 M u M
392 391 adantl φ u M 2 + 1 M u M
393 392 4 breqtrdi φ u M 2 + 1 M u P 1 2
394 lemuldiv2 u P 1 2 0 < 2 2 u P 1 u P 1 2
395 328 340 316 317 394 syl112anc φ u M 2 + 1 M 2 u P 1 u P 1 2
396 393 395 mpbird φ u M 2 + 1 M 2 u P 1
397 338 ltm1d φ u M 2 + 1 M P 1 < P
398 22 340 338 396 397 lelttrd φ u M 2 + 1 M 2 u < P
399 22 338 posdifd φ u M 2 + 1 M 2 u < P 0 < P 2 u
400 398 399 mpbid φ u M 2 + 1 M 0 < P 2 u
401 elnnz P 2 u P 2 u 0 < P 2 u
402 390 400 401 sylanbrc φ u M 2 + 1 M P 2 u
403 66 68 292 sub32d φ u M 2 + 1 M P - 2 u - 1 = P - 1 - 2 u
404 4 4 oveq12i M + M = P 1 2 + P 1 2
405 65 nnzd φ u M 2 + 1 M P
406 405 208 syl φ u M 2 + 1 M P 1
407 406 zcnd φ u M 2 + 1 M P 1
408 407 2halvesd φ u M 2 + 1 M P 1 2 + P 1 2 = P 1
409 404 408 syl5eq φ u M 2 + 1 M M + M = P 1
410 409 oveq1d φ u M 2 + 1 M M + M - M = P - 1 - M
411 158 adantr φ u M 2 + 1 M M
412 411 411 pncan2d φ u M 2 + 1 M M + M - M = M
413 410 412 eqtr3d φ u M 2 + 1 M P - 1 - M = M
414 413 336 eqbrtrd φ u M 2 + 1 M P - 1 - M < 2 u
415 340 324 22 414 ltsub23d φ u M 2 + 1 M P - 1 - 2 u < M
416 403 415 eqbrtrd φ u M 2 + 1 M P - 2 u - 1 < M
417 125 adantr φ u M 2 + 1 M M
418 417 nnzd φ u M 2 + 1 M M
419 zlem1lt P 2 u M P 2 u M P - 2 u - 1 < M
420 390 418 419 syl2anc φ u M 2 + 1 M P 2 u M P - 2 u - 1 < M
421 416 420 mpbird φ u M 2 + 1 M P 2 u M
422 fznn M P 2 u 1 M P 2 u P 2 u M
423 418 422 syl φ u M 2 + 1 M P 2 u 1 M P 2 u P 2 u M
424 402 421 423 mpbir2and φ u M 2 + 1 M P 2 u 1 M
425 424 adantr φ u M 2 + 1 M x = P 2 u P 2 u 1 M
426 389 425 eqeltrd φ u M 2 + 1 M x = P 2 u x 1 M
427 426 biantrurd φ u M 2 + 1 M x = P 2 u y 1 N x 1 M y 1 N
428 367 ad2antrr φ u M 2 + 1 M x = P 2 u N
429 fznn N y 1 N y y N
430 428 429 syl φ u M 2 + 1 M x = P 2 u y 1 N y y N
431 427 430 bitr3d φ u M 2 + 1 M x = P 2 u x 1 M y 1 N y y N
432 389 oveq1d φ u M 2 + 1 M x = P 2 u x Q = P 2 u Q
433 432 breq2d φ u M 2 + 1 M x = P 2 u y P < x Q y P < P 2 u Q
434 431 433 anbi12d φ u M 2 + 1 M x = P 2 u x 1 M y 1 N y P < x Q y y N y P < P 2 u Q
435 376 adantr φ u M 2 + 1 M x = P 2 u 2 N Q P 2 u
436 fznn 2 N Q P 2 u y 1 2 N Q P 2 u y y 2 N Q P 2 u
437 435 436 syl φ u M 2 + 1 M x = P 2 u y 1 2 N Q P 2 u y y 2 N Q P 2 u
438 388 434 437 3bitr4d φ u M 2 + 1 M x = P 2 u x 1 M y 1 N y P < x Q y 1 2 N Q P 2 u
439 235 438 syl5bb φ u M 2 + 1 M x = P 2 u x y S y 1 2 N Q P 2 u
440 439 pm5.32da φ u M 2 + 1 M x = P 2 u x y S x = P 2 u y 1 2 N Q P 2 u
441 vex x V
442 vex y V
443 441 442 op1std z = x y 1 st z = x
444 443 eqeq1d z = x y 1 st z = P 2 u x = P 2 u
445 444 elrab x y z S | 1 st z = P 2 u x y S x = P 2 u
446 445 biancomi x y z S | 1 st z = P 2 u x = P 2 u x y S
447 opelxp x y P 2 u × 1 2 N Q P 2 u x P 2 u y 1 2 N Q P 2 u
448 velsn x P 2 u x = P 2 u
449 448 anbi1i x P 2 u y 1 2 N Q P 2 u x = P 2 u y 1 2 N Q P 2 u
450 447 449 bitri x y P 2 u × 1 2 N Q P 2 u x = P 2 u y 1 2 N Q P 2 u
451 440 446 450 3bitr4g φ u M 2 + 1 M x y z S | 1 st z = P 2 u x y P 2 u × 1 2 N Q P 2 u
452 231 232 451 eqrelrdv φ u M 2 + 1 M z S | 1 st z = P 2 u = P 2 u × 1 2 N Q P 2 u
453 452 fveq2d φ u M 2 + 1 M z S | 1 st z = P 2 u = P 2 u × 1 2 N Q P 2 u
454 fzfid φ u M 2 + 1 M 1 2 N Q P 2 u Fin
455 xpsnen2g P 2 u 1 2 N Q P 2 u Fin P 2 u × 1 2 N Q P 2 u 1 2 N Q P 2 u
456 390 454 455 syl2anc φ u M 2 + 1 M P 2 u × 1 2 N Q P 2 u 1 2 N Q P 2 u
457 hasheni P 2 u × 1 2 N Q P 2 u 1 2 N Q P 2 u P 2 u × 1 2 N Q P 2 u = 1 2 N Q P 2 u
458 456 457 syl φ u M 2 + 1 M P 2 u × 1 2 N Q P 2 u = 1 2 N Q P 2 u
459 ltmul2 2 u P Q 0 < Q 2 u < P Q 2 u < Q P
460 22 338 245 354 459 syl112anc φ u M 2 + 1 M 2 u < P Q 2 u < Q P
461 398 460 mpbid φ u M 2 + 1 M Q 2 u < Q P
462 ltdivmul2 Q 2 u Q P 0 < P Q 2 u P < Q Q 2 u < Q P
463 359 245 338 360 462 syl112anc φ u M 2 + 1 M Q 2 u P < Q Q 2 u < Q P
464 461 463 mpbird φ u M 2 + 1 M Q 2 u P < Q
465 364 464 eqbrtrrd φ u M 2 + 1 M Q P 2 u < Q
466 fllt Q P 2 u Q Q P 2 u < Q Q P 2 u < Q
467 23 273 466 syl2anc φ u M 2 + 1 M Q P 2 u < Q Q P 2 u < Q
468 465 467 mpbid φ u M 2 + 1 M Q P 2 u < Q
469 zltlem1 Q P 2 u Q Q P 2 u < Q Q P 2 u Q 1
470 24 273 469 syl2anc φ u M 2 + 1 M Q P 2 u < Q Q P 2 u Q 1
471 468 470 mpbid φ u M 2 + 1 M Q P 2 u Q 1
472 471 290 breqtrrd φ u M 2 + 1 M Q P 2 u 2 N
473 eluz2 2 N Q P 2 u Q P 2 u 2 N Q P 2 u 2 N
474 24 375 472 473 syl3anbrc φ u M 2 + 1 M 2 N Q P 2 u
475 uznn0sub 2 N Q P 2 u 2 N Q P 2 u 0
476 hashfz1 2 N Q P 2 u 0 1 2 N Q P 2 u = 2 N Q P 2 u
477 474 475 476 3syl φ u M 2 + 1 M 1 2 N Q P 2 u = 2 N Q P 2 u
478 453 458 477 3eqtrd φ u M 2 + 1 M z S | 1 st z = P 2 u = 2 N Q P 2 u
479 478 sumeq2dv φ u = M 2 + 1 M z S | 1 st z = P 2 u = u = M 2 + 1 M 2 N Q P 2 u
480 83 228 479 3eqtr3rd φ u = M 2 + 1 M 2 N Q P 2 u = z S | ¬ 2 1 st z
481 304 nncnd φ 2 N
482 481 adantr φ u M 2 + 1 M 2 N
483 11 482 293 fsumsub φ u = M 2 + 1 M 2 N Q P 2 u = u = M 2 + 1 M 2 N u = M 2 + 1 M Q P 2 u
484 480 483 eqtr3d φ z S | ¬ 2 1 st z = u = M 2 + 1 M 2 N u = M 2 + 1 M Q P 2 u
485 484 oveq2d φ u = M 2 + 1 M Q P 2 u + z S | ¬ 2 1 st z = u = M 2 + 1 M Q P 2 u + u = M 2 + 1 M 2 N - u = M 2 + 1 M Q P 2 u
486 25 zcnd φ u = M 2 + 1 M Q P 2 u
487 11 375 fsumzcl φ u = M 2 + 1 M 2 N
488 487 zcnd φ u = M 2 + 1 M 2 N
489 486 488 pncan3d φ u = M 2 + 1 M Q P 2 u + u = M 2 + 1 M 2 N - u = M 2 + 1 M Q P 2 u = u = M 2 + 1 M 2 N
490 fsumconst M 2 + 1 M Fin 2 N u = M 2 + 1 M 2 N = M 2 + 1 M 2 N
491 11 481 490 syl2anc φ u = M 2 + 1 M 2 N = M 2 + 1 M 2 N
492 hashcl M 2 + 1 M Fin M 2 + 1 M 0
493 11 492 syl φ M 2 + 1 M 0
494 493 nn0cnd φ M 2 + 1 M
495 2cnd φ 2
496 494 495 310 mul12d φ M 2 + 1 M 2 N = 2 M 2 + 1 M N
497 491 496 eqtrd φ u = M 2 + 1 M 2 N = 2 M 2 + 1 M N
498 485 489 497 3eqtrd φ u = M 2 + 1 M Q P 2 u + z S | ¬ 2 1 st z = 2 M 2 + 1 M N
499 498 oveq2d φ 1 u = M 2 + 1 M Q P 2 u + z S | ¬ 2 1 st z = 1 2 M 2 + 1 M N
500 17 a1i φ 2
501 493 nn0zd φ M 2 + 1 M
502 501 367 zmulcld φ M 2 + 1 M N
503 expmulz 1 1 0 2 M 2 + 1 M N 1 2 M 2 + 1 M N = -1 2 M 2 + 1 M N
504 8 10 500 502 503 syl22anc φ 1 2 M 2 + 1 M N = -1 2 M 2 + 1 M N
505 neg1sqe1 1 2 = 1
506 505 oveq1i -1 2 M 2 + 1 M N = 1 M 2 + 1 M N
507 1exp M 2 + 1 M N 1 M 2 + 1 M N = 1
508 502 507 syl φ 1 M 2 + 1 M N = 1
509 506 508 syl5eq φ -1 2 M 2 + 1 M N = 1
510 499 504 509 3eqtrd φ 1 u = M 2 + 1 M Q P 2 u + z S | ¬ 2 1 st z = 1
511 44 55 510 3eqtr4d φ 1 z S | ¬ 2 1 st z 1 z S | ¬ 2 1 st z = 1 u = M 2 + 1 M Q P 2 u + z S | ¬ 2 1 st z
512 expaddz 1 1 0 u = M 2 + 1 M Q P 2 u z S | ¬ 2 1 st z 1 u = M 2 + 1 M Q P 2 u + z S | ¬ 2 1 st z = 1 u = M 2 + 1 M Q P 2 u 1 z S | ¬ 2 1 st z
513 8 10 25 42 512 syl22anc φ 1 u = M 2 + 1 M Q P 2 u + z S | ¬ 2 1 st z = 1 u = M 2 + 1 M Q P 2 u 1 z S | ¬ 2 1 st z
514 511 513 eqtr2d φ 1 u = M 2 + 1 M Q P 2 u 1 z S | ¬ 2 1 st z = 1 z S | ¬ 2 1 st z 1 z S | ¬ 2 1 st z
515 26 41 41 43 514 mulcan2ad φ 1 u = M 2 + 1 M Q P 2 u = 1 z S | ¬ 2 1 st z