Metamath Proof Explorer


Theorem fourierdlem49

Description: The given periodic function F has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem49.a φ A
fourierdlem49.b φ B
fourierdlem49.altb φ A < B
fourierdlem49.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
fourierdlem49.t T = B A
fourierdlem49.m φ M
fourierdlem49.q φ Q P M
fourierdlem49.d φ D
fourierdlem49.f φ F : D
fourierdlem49.dper φ x D k x + k T D
fourierdlem49.per φ x D k F x + k T = F x
fourierdlem49.cn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
fourierdlem49.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
fourierdlem49.x φ X
fourierdlem49.z Z = x B x T T
fourierdlem49.e E = x x + Z x
Assertion fourierdlem49 φ F −∞ X lim X

Proof

Step Hyp Ref Expression
1 fourierdlem49.a φ A
2 fourierdlem49.b φ B
3 fourierdlem49.altb φ A < B
4 fourierdlem49.p P = m p 0 m | p 0 = A p m = B i 0 ..^ m p i < p i + 1
5 fourierdlem49.t T = B A
6 fourierdlem49.m φ M
7 fourierdlem49.q φ Q P M
8 fourierdlem49.d φ D
9 fourierdlem49.f φ F : D
10 fourierdlem49.dper φ x D k x + k T D
11 fourierdlem49.per φ x D k F x + k T = F x
12 fourierdlem49.cn φ i 0 ..^ M F Q i Q i + 1 : Q i Q i + 1 cn
13 fourierdlem49.l φ i 0 ..^ M L F Q i Q i + 1 lim Q i + 1
14 fourierdlem49.x φ X
15 fourierdlem49.z Z = x B x T T
16 fourierdlem49.e E = x x + Z x
17 ovex B x T T V
18 15 fvmpt2 x B x T T V Z x = B x T T
19 17 18 mpan2 x Z x = B x T T
20 19 oveq2d x x + Z x = x + B x T T
21 20 mpteq2ia x x + Z x = x x + B x T T
22 16 21 eqtri E = x x + B x T T
23 1 2 3 5 22 fourierdlem4 φ E : A B
24 23 14 ffvelrnd φ E X A B
25 simpr φ E X A B E X ran Q E X ran Q
26 4 fourierdlem2 M Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
27 6 26 syl φ Q P M Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
28 7 27 mpbid φ Q 0 M Q 0 = A Q M = B i 0 ..^ M Q i < Q i + 1
29 28 simpld φ Q 0 M
30 elmapi Q 0 M Q : 0 M
31 29 30 syl φ Q : 0 M
32 ffn Q : 0 M Q Fn 0 M
33 31 32 syl φ Q Fn 0 M
34 33 ad2antrr φ E X A B E X ran Q Q Fn 0 M
35 fvelrnb Q Fn 0 M E X ran Q j 0 M Q j = E X
36 34 35 syl φ E X A B E X ran Q E X ran Q j 0 M Q j = E X
37 25 36 mpbid φ E X A B E X ran Q j 0 M Q j = E X
38 1zzd φ E X A B j 0 M Q j = E X 1
39 elfzelz j 0 M j
40 39 ad2antlr φ E X A B j 0 M Q j = E X j
41 1e0p1 1 = 0 + 1
42 41 a1i φ E X A B j 0 M Q j = E X 1 = 0 + 1
43 40 zred φ E X A B j 0 M Q j = E X j
44 elfzle1 j 0 M 0 j
45 44 ad2antlr φ E X A B j 0 M Q j = E X 0 j
46 id Q j = E X Q j = E X
47 46 eqcomd Q j = E X E X = Q j
48 47 ad2antlr φ Q j = E X j = 0 E X = Q j
49 fveq2 j = 0 Q j = Q 0
50 49 adantl φ Q j = E X j = 0 Q j = Q 0
51 28 simprld φ Q 0 = A Q M = B
52 51 simpld φ Q 0 = A
53 52 ad2antrr φ Q j = E X j = 0 Q 0 = A
54 48 50 53 3eqtrd φ Q j = E X j = 0 E X = A
55 54 adantllr φ E X A B Q j = E X j = 0 E X = A
56 55 adantllr φ E X A B j 0 M Q j = E X j = 0 E X = A
57 1 adantr φ E X A B A
58 1 rexrd φ A *
59 58 adantr φ E X A B A *
60 2 rexrd φ B *
61 60 adantr φ E X A B B *
62 simpr φ E X A B E X A B
63 iocgtlb A * B * E X A B A < E X
64 59 61 62 63 syl3anc φ E X A B A < E X
65 57 64 gtned φ E X A B E X A
66 65 neneqd φ E X A B ¬ E X = A
67 66 ad3antrrr φ E X A B j 0 M Q j = E X j = 0 ¬ E X = A
68 56 67 pm2.65da φ E X A B j 0 M Q j = E X ¬ j = 0
69 68 neqned φ E X A B j 0 M Q j = E X j 0
70 43 45 69 ne0gt0d φ E X A B j 0 M Q j = E X 0 < j
71 0zd φ E X A B j 0 M Q j = E X 0
72 zltp1le 0 j 0 < j 0 + 1 j
73 71 40 72 syl2anc φ E X A B j 0 M Q j = E X 0 < j 0 + 1 j
74 70 73 mpbid φ E X A B j 0 M Q j = E X 0 + 1 j
75 42 74 eqbrtrd φ E X A B j 0 M Q j = E X 1 j
76 eluz2 j 1 1 j 1 j
77 38 40 75 76 syl3anbrc φ E X A B j 0 M Q j = E X j 1
78 nnuz = 1
79 77 78 eleqtrrdi φ E X A B j 0 M Q j = E X j
80 nnm1nn0 j j 1 0
81 79 80 syl φ E X A B j 0 M Q j = E X j 1 0
82 nn0uz 0 = 0
83 82 a1i φ E X A B j 0 M Q j = E X 0 = 0
84 81 83 eleqtrd φ E X A B j 0 M Q j = E X j 1 0
85 6 nnzd φ M
86 85 ad3antrrr φ E X A B j 0 M Q j = E X M
87 peano2zm j j 1
88 39 87 syl j 0 M j 1
89 88 zred j 0 M j 1
90 39 zred j 0 M j
91 elfzel2 j 0 M M
92 91 zred j 0 M M
93 90 ltm1d j 0 M j 1 < j
94 elfzle2 j 0 M j M
95 89 90 92 93 94 ltletrd j 0 M j 1 < M
96 95 ad2antlr φ E X A B j 0 M Q j = E X j 1 < M
97 elfzo2 j 1 0 ..^ M j 1 0 M j 1 < M
98 84 86 96 97 syl3anbrc φ E X A B j 0 M Q j = E X j 1 0 ..^ M
99 31 ad3antrrr φ E X A B j 0 M Q j = E X Q : 0 M
100 40 87 syl φ E X A B j 0 M Q j = E X j 1
101 71 86 100 3jca φ E X A B j 0 M Q j = E X 0 M j 1
102 81 nn0ge0d φ E X A B j 0 M Q j = E X 0 j 1
103 89 92 95 ltled j 0 M j 1 M
104 103 ad2antlr φ E X A B j 0 M Q j = E X j 1 M
105 101 102 104 jca32 φ E X A B j 0 M Q j = E X 0 M j 1 0 j 1 j 1 M
106 elfz2 j 1 0 M 0 M j 1 0 j 1 j 1 M
107 105 106 sylibr φ E X A B j 0 M Q j = E X j 1 0 M
108 99 107 ffvelrnd φ E X A B j 0 M Q j = E X Q j 1
109 108 rexrd φ E X A B j 0 M Q j = E X Q j 1 *
110 31 ffvelrnda φ j 0 M Q j
111 110 rexrd φ j 0 M Q j *
112 111 adantlr φ E X A B j 0 M Q j *
113 112 adantr φ E X A B j 0 M Q j = E X Q j *
114 iocssre A * B A B
115 58 2 114 syl2anc φ A B
116 115 sselda φ E X A B E X
117 116 rexrd φ E X A B E X *
118 117 ad2antrr φ E X A B j 0 M Q j = E X E X *
119 simplll φ E X A B j 0 M Q j = E X φ
120 ovex j 1 V
121 eleq1 i = j 1 i 0 ..^ M j 1 0 ..^ M
122 121 anbi2d i = j 1 φ i 0 ..^ M φ j 1 0 ..^ M
123 fveq2 i = j 1 Q i = Q j 1
124 oveq1 i = j 1 i + 1 = j - 1 + 1
125 124 fveq2d i = j 1 Q i + 1 = Q j - 1 + 1
126 123 125 breq12d i = j 1 Q i < Q i + 1 Q j 1 < Q j - 1 + 1
127 122 126 imbi12d i = j 1 φ i 0 ..^ M Q i < Q i + 1 φ j 1 0 ..^ M Q j 1 < Q j - 1 + 1
128 28 simprrd φ i 0 ..^ M Q i < Q i + 1
129 128 r19.21bi φ i 0 ..^ M Q i < Q i + 1
130 120 127 129 vtocl φ j 1 0 ..^ M Q j 1 < Q j - 1 + 1
131 119 98 130 syl2anc φ E X A B j 0 M Q j = E X Q j 1 < Q j - 1 + 1
132 39 zcnd j 0 M j
133 1cnd j 0 M 1
134 132 133 npcand j 0 M j - 1 + 1 = j
135 134 eqcomd j 0 M j = j - 1 + 1
136 135 fveq2d j 0 M Q j = Q j - 1 + 1
137 136 eqcomd j 0 M Q j - 1 + 1 = Q j
138 137 ad2antlr φ E X A B j 0 M Q j = E X Q j - 1 + 1 = Q j
139 131 138 breqtrd φ E X A B j 0 M Q j = E X Q j 1 < Q j
140 simpr φ E X A B j 0 M Q j = E X Q j = E X
141 139 140 breqtrd φ E X A B j 0 M Q j = E X Q j 1 < E X
142 115 24 sseldd φ E X
143 142 leidd φ E X E X
144 143 ad2antrr φ j 0 M Q j = E X E X E X
145 47 adantl φ j 0 M Q j = E X E X = Q j
146 144 145 breqtrd φ j 0 M Q j = E X E X Q j
147 146 adantllr φ E X A B j 0 M Q j = E X E X Q j
148 109 113 118 141 147 eliocd φ E X A B j 0 M Q j = E X E X Q j 1 Q j
149 136 oveq2d j 0 M Q j 1 Q j = Q j 1 Q j - 1 + 1
150 149 ad2antlr φ E X A B j 0 M Q j = E X Q j 1 Q j = Q j 1 Q j - 1 + 1
151 148 150 eleqtrd φ E X A B j 0 M Q j = E X E X Q j 1 Q j - 1 + 1
152 123 125 oveq12d i = j 1 Q i Q i + 1 = Q j 1 Q j - 1 + 1
153 152 eleq2d i = j 1 E X Q i Q i + 1 E X Q j 1 Q j - 1 + 1
154 153 rspcev j 1 0 ..^ M E X Q j 1 Q j - 1 + 1 i 0 ..^ M E X Q i Q i + 1
155 98 151 154 syl2anc φ E X A B j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
156 155 ex φ E X A B j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
157 156 adantlr φ E X A B E X ran Q j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
158 157 rexlimdva φ E X A B E X ran Q j 0 M Q j = E X i 0 ..^ M E X Q i Q i + 1
159 37 158 mpd φ E X A B E X ran Q i 0 ..^ M E X Q i Q i + 1
160 6 ad2antrr φ E X A B ¬ E X ran Q M
161 31 ad2antrr φ E X A B ¬ E X ran Q Q : 0 M
162 iocssicc A B A B
163 52 eqcomd φ A = Q 0
164 51 simprd φ Q M = B
165 164 eqcomd φ B = Q M
166 163 165 oveq12d φ A B = Q 0 Q M
167 162 166 sseqtrid φ A B Q 0 Q M
168 167 sselda φ E X A B E X Q 0 Q M
169 168 adantr φ E X A B ¬ E X ran Q E X Q 0 Q M
170 simpr φ E X A B ¬ E X ran Q ¬ E X ran Q
171 fveq2 k = j Q k = Q j
172 171 breq1d k = j Q k < E X Q j < E X
173 172 cbvrabv k 0 ..^ M | Q k < E X = j 0 ..^ M | Q j < E X
174 173 supeq1i sup k 0 ..^ M | Q k < E X < = sup j 0 ..^ M | Q j < E X <
175 160 161 169 170 174 fourierdlem25 φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1
176 ioossioc Q i Q i + 1 Q i Q i + 1
177 176 sseli E X Q i Q i + 1 E X Q i Q i + 1
178 177 a1i φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1 E X Q i Q i + 1
179 178 reximdva φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1 i 0 ..^ M E X Q i Q i + 1
180 175 179 mpd φ E X A B ¬ E X ran Q i 0 ..^ M E X Q i Q i + 1
181 159 180 pm2.61dan φ E X A B i 0 ..^ M E X Q i Q i + 1
182 24 181 mpdan φ i 0 ..^ M E X Q i Q i + 1
183 frel F : D Rel F
184 9 183 syl φ Rel F
185 resindm Rel F F −∞ E X dom F = F −∞ E X
186 185 eqcomd Rel F F −∞ E X = F −∞ E X dom F
187 184 186 syl φ F −∞ E X = F −∞ E X dom F
188 fdm F : D dom F = D
189 9 188 syl φ dom F = D
190 189 ineq2d φ −∞ E X dom F = −∞ E X D
191 190 reseq2d φ F −∞ E X dom F = F −∞ E X D
192 187 191 eqtrd φ F −∞ E X = F −∞ E X D
193 192 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X = F −∞ E X D
194 193 oveq1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X lim E X = F −∞ E X D lim E X
195 ax-resscn
196 195 a1i φ
197 9 196 fssd φ F : D
198 197 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 F : D
199 inss2 −∞ E X D D
200 199 a1i φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D D
201 198 200 fssresd φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X D : −∞ E X D
202 mnfxr −∞ *
203 202 a1i φ i 0 ..^ M −∞ *
204 31 adantr φ i 0 ..^ M Q : 0 M
205 elfzofz i 0 ..^ M i 0 M
206 205 adantl φ i 0 ..^ M i 0 M
207 204 206 ffvelrnd φ i 0 ..^ M Q i
208 207 rexrd φ i 0 ..^ M Q i *
209 207 mnfltd φ i 0 ..^ M −∞ < Q i
210 203 208 209 xrltled φ i 0 ..^ M −∞ Q i
211 iooss1 −∞ * −∞ Q i Q i E X −∞ E X
212 202 210 211 sylancr φ i 0 ..^ M Q i E X −∞ E X
213 212 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i E X −∞ E X
214 fzofzp1 i 0 ..^ M i + 1 0 M
215 214 adantl φ i 0 ..^ M i + 1 0 M
216 204 215 ffvelrnd φ i 0 ..^ M Q i + 1
217 216 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i + 1
218 217 rexrd φ i 0 ..^ M E X Q i Q i + 1 Q i + 1 *
219 207 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i
220 219 rexrd φ i 0 ..^ M E X Q i Q i + 1 Q i *
221 simp3 φ i 0 ..^ M E X Q i Q i + 1 E X Q i Q i + 1
222 iocleub Q i * Q i + 1 * E X Q i Q i + 1 E X Q i + 1
223 220 218 221 222 syl3anc φ i 0 ..^ M E X Q i Q i + 1 E X Q i + 1
224 iooss2 Q i + 1 * E X Q i + 1 Q i E X Q i Q i + 1
225 218 223 224 syl2anc φ i 0 ..^ M E X Q i Q i + 1 Q i E X Q i Q i + 1
226 cncff F Q i Q i + 1 : Q i Q i + 1 cn F Q i Q i + 1 : Q i Q i + 1
227 fdm F Q i Q i + 1 : Q i Q i + 1 dom F Q i Q i + 1 = Q i Q i + 1
228 12 226 227 3syl φ i 0 ..^ M dom F Q i Q i + 1 = Q i Q i + 1
229 ssdmres Q i Q i + 1 dom F dom F Q i Q i + 1 = Q i Q i + 1
230 228 229 sylibr φ i 0 ..^ M Q i Q i + 1 dom F
231 189 adantr φ i 0 ..^ M dom F = D
232 230 231 sseqtrd φ i 0 ..^ M Q i Q i + 1 D
233 232 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i Q i + 1 D
234 225 233 sstrd φ i 0 ..^ M E X Q i Q i + 1 Q i E X D
235 213 234 ssind φ i 0 ..^ M E X Q i Q i + 1 Q i E X −∞ E X D
236 8 196 sstrd φ D
237 236 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 D
238 199 237 sstrid φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D
239 eqid TopOpen fld = TopOpen fld
240 eqid TopOpen fld 𝑡 −∞ E X D E X = TopOpen fld 𝑡 −∞ E X D E X
241 142 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 E X
242 241 rexrd φ i 0 ..^ M E X Q i Q i + 1 E X *
243 iocgtlb Q i * Q i + 1 * E X Q i Q i + 1 Q i < E X
244 220 218 221 243 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i < E X
245 241 leidd φ i 0 ..^ M E X Q i Q i + 1 E X E X
246 220 242 242 244 245 eliocd φ i 0 ..^ M E X Q i Q i + 1 E X Q i E X
247 ioounsn Q i * E X * Q i < E X Q i E X E X = Q i E X
248 220 242 244 247 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i E X E X = Q i E X
249 248 fveq2d φ i 0 ..^ M E X Q i Q i + 1 int TopOpen fld 𝑡 −∞ E X D E X Q i E X E X = int TopOpen fld 𝑡 −∞ E X D E X Q i E X
250 239 cnfldtop TopOpen fld Top
251 ovex −∞ E X V
252 251 inex1 −∞ E X D V
253 snex E X V
254 252 253 unex −∞ E X D E X V
255 resttop TopOpen fld Top −∞ E X D E X V TopOpen fld 𝑡 −∞ E X D E X Top
256 250 254 255 mp2an TopOpen fld 𝑡 −∞ E X D E X Top
257 retop topGen ran . Top
258 257 a1i φ i 0 ..^ M E X Q i Q i + 1 topGen ran . Top
259 254 a1i φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D E X V
260 iooretop Q i +∞ topGen ran .
261 260 a1i φ i 0 ..^ M E X Q i Q i + 1 Q i +∞ topGen ran .
262 elrestr topGen ran . Top −∞ E X D E X V Q i +∞ topGen ran . Q i +∞ −∞ E X D E X topGen ran . 𝑡 −∞ E X D E X
263 258 259 261 262 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i +∞ −∞ E X D E X topGen ran . 𝑡 −∞ E X D E X
264 simpr φ i 0 ..^ M E X Q i Q i + 1 x = E X x = E X
265 pnfxr +∞ *
266 265 a1i φ i 0 ..^ M E X Q i Q i + 1 +∞ *
267 241 ltpnfd φ i 0 ..^ M E X Q i Q i + 1 E X < +∞
268 220 266 241 244 267 eliood φ i 0 ..^ M E X Q i Q i + 1 E X Q i +∞
269 snidg E X E X E X
270 elun2 E X E X E X −∞ E X D E X
271 269 270 syl E X E X −∞ E X D E X
272 142 271 syl φ E X −∞ E X D E X
273 272 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 E X −∞ E X D E X
274 268 273 elind φ i 0 ..^ M E X Q i Q i + 1 E X Q i +∞ −∞ E X D E X
275 274 adantr φ i 0 ..^ M E X Q i Q i + 1 x = E X E X Q i +∞ −∞ E X D E X
276 264 275 eqeltrd φ i 0 ..^ M E X Q i Q i + 1 x = E X x Q i +∞ −∞ E X D E X
277 276 adantlr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x = E X x Q i +∞ −∞ E X D E X
278 220 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X Q i *
279 265 a1i φ i 0 ..^ M E X Q i Q i + 1 x Q i E X +∞ *
280 208 adantr φ i 0 ..^ M x Q i E X Q i *
281 142 adantr φ i 0 ..^ M E X
282 281 adantr φ i 0 ..^ M x Q i E X E X
283 iocssre Q i * E X Q i E X
284 280 282 283 syl2anc φ i 0 ..^ M x Q i E X Q i E X
285 simpr φ i 0 ..^ M x Q i E X x Q i E X
286 284 285 sseldd φ i 0 ..^ M x Q i E X x
287 286 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x
288 282 rexrd φ i 0 ..^ M x Q i E X E X *
289 iocgtlb Q i * E X * x Q i E X Q i < x
290 280 288 285 289 syl3anc φ i 0 ..^ M x Q i E X Q i < x
291 290 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X Q i < x
292 287 ltpnfd φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x < +∞
293 278 279 287 291 292 eliood φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x Q i +∞
294 293 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x Q i +∞
295 202 a1i φ i 0 ..^ M x Q i E X ¬ x = E X −∞ *
296 288 adantr φ i 0 ..^ M x Q i E X ¬ x = E X E X *
297 286 adantr φ i 0 ..^ M x Q i E X ¬ x = E X x
298 297 mnfltd φ i 0 ..^ M x Q i E X ¬ x = E X −∞ < x
299 142 ad3antrrr φ i 0 ..^ M x Q i E X ¬ x = E X E X
300 iocleub Q i * E X * x Q i E X x E X
301 280 288 285 300 syl3anc φ i 0 ..^ M x Q i E X x E X
302 301 adantr φ i 0 ..^ M x Q i E X ¬ x = E X x E X
303 neqne ¬ x = E X x E X
304 303 necomd ¬ x = E X E X x
305 304 adantl φ i 0 ..^ M x Q i E X ¬ x = E X E X x
306 297 299 302 305 leneltd φ i 0 ..^ M x Q i E X ¬ x = E X x < E X
307 295 296 297 298 306 eliood φ i 0 ..^ M x Q i E X ¬ x = E X x −∞ E X
308 307 3adantll3 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x −∞ E X
309 233 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i Q i + 1 D
310 278 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i *
311 218 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i + 1 *
312 287 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x
313 291 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i < x
314 241 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X E X
315 217 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X Q i + 1
316 306 3adantll3 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x < E X
317 223 ad2antrr φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X E X Q i + 1
318 312 314 315 316 317 ltletrd φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x < Q i + 1
319 310 311 312 313 318 eliood φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x Q i Q i + 1
320 309 319 sseldd φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x D
321 308 320 elind φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x −∞ E X D
322 elun1 x −∞ E X D x −∞ E X D E X
323 321 322 syl φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x −∞ E X D E X
324 294 323 elind φ i 0 ..^ M E X Q i Q i + 1 x Q i E X ¬ x = E X x Q i +∞ −∞ E X D E X
325 277 324 pm2.61dan φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x Q i +∞ −∞ E X D E X
326 220 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X Q i *
327 242 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X E X *
328 elinel1 x Q i +∞ −∞ E X D E X x Q i +∞
329 elioore x Q i +∞ x
330 329 rexrd x Q i +∞ x *
331 328 330 syl x Q i +∞ −∞ E X D E X x *
332 331 adantl φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X x *
333 208 adantr φ i 0 ..^ M x Q i +∞ −∞ E X D E X Q i *
334 265 a1i φ i 0 ..^ M x Q i +∞ −∞ E X D E X +∞ *
335 328 adantl φ i 0 ..^ M x Q i +∞ −∞ E X D E X x Q i +∞
336 ioogtlb Q i * +∞ * x Q i +∞ Q i < x
337 333 334 335 336 syl3anc φ i 0 ..^ M x Q i +∞ −∞ E X D E X Q i < x
338 337 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X Q i < x
339 elinel2 x Q i +∞ −∞ E X D E X x −∞ E X D E X
340 elsni x E X x = E X
341 340 adantl φ x E X x = E X
342 143 adantr φ x E X E X E X
343 341 342 eqbrtrd φ x E X x E X
344 343 adantlr φ x −∞ E X D E X x E X x E X
345 simpll φ x −∞ E X D E X ¬ x E X φ
346 elunnel2 x −∞ E X D E X ¬ x E X x −∞ E X D
347 346 adantll φ x −∞ E X D E X ¬ x E X x −∞ E X D
348 elinel1 x −∞ E X D x −∞ E X
349 elioore x −∞ E X x
350 349 adantl φ x −∞ E X x
351 142 adantr φ x −∞ E X E X
352 202 a1i φ x −∞ E X −∞ *
353 351 rexrd φ x −∞ E X E X *
354 simpr φ x −∞ E X x −∞ E X
355 iooltub −∞ * E X * x −∞ E X x < E X
356 352 353 354 355 syl3anc φ x −∞ E X x < E X
357 350 351 356 ltled φ x −∞ E X x E X
358 348 357 sylan2 φ x −∞ E X D x E X
359 345 347 358 syl2anc φ x −∞ E X D E X ¬ x E X x E X
360 344 359 pm2.61dan φ x −∞ E X D E X x E X
361 360 adantlr φ i 0 ..^ M x −∞ E X D E X x E X
362 339 361 sylan2 φ i 0 ..^ M x Q i +∞ −∞ E X D E X x E X
363 362 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X x E X
364 326 327 332 338 363 eliocd φ i 0 ..^ M E X Q i Q i + 1 x Q i +∞ −∞ E X D E X x Q i E X
365 325 364 impbida φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x Q i +∞ −∞ E X D E X
366 365 eqrdv φ i 0 ..^ M E X Q i Q i + 1 Q i E X = Q i +∞ −∞ E X D E X
367 ioossre −∞ E X
368 ssinss1 −∞ E X −∞ E X D
369 367 368 mp1i φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D
370 241 snssd φ i 0 ..^ M E X Q i Q i + 1 E X
371 369 370 unssd φ i 0 ..^ M E X Q i Q i + 1 −∞ E X D E X
372 eqid topGen ran . = topGen ran .
373 239 372 rerest −∞ E X D E X TopOpen fld 𝑡 −∞ E X D E X = topGen ran . 𝑡 −∞ E X D E X
374 371 373 syl φ i 0 ..^ M E X Q i Q i + 1 TopOpen fld 𝑡 −∞ E X D E X = topGen ran . 𝑡 −∞ E X D E X
375 263 366 374 3eltr4d φ i 0 ..^ M E X Q i Q i + 1 Q i E X TopOpen fld 𝑡 −∞ E X D E X
376 isopn3i TopOpen fld 𝑡 −∞ E X D E X Top Q i E X TopOpen fld 𝑡 −∞ E X D E X int TopOpen fld 𝑡 −∞ E X D E X Q i E X = Q i E X
377 256 375 376 sylancr φ i 0 ..^ M E X Q i Q i + 1 int TopOpen fld 𝑡 −∞ E X D E X Q i E X = Q i E X
378 249 377 eqtr2d φ i 0 ..^ M E X Q i Q i + 1 Q i E X = int TopOpen fld 𝑡 −∞ E X D E X Q i E X E X
379 246 378 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 E X int TopOpen fld 𝑡 −∞ E X D E X Q i E X E X
380 201 235 238 239 240 379 limcres φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X D Q i E X lim E X = F −∞ E X D lim E X
381 235 resabs1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X D Q i E X = F Q i E X
382 381 oveq1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X D Q i E X lim E X = F Q i E X lim E X
383 194 380 382 3eqtr2d φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X lim E X = F Q i E X lim E X
384 189 feq2d φ F : dom F F : D
385 197 384 mpbird φ F : dom F
386 385 adantr φ y F Q i E X lim E X F : dom F
387 386 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X F : dom F
388 ioosscn Q i E X
389 388 a1i φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X Q i E X
390 189 eqcomd φ D = dom F
391 390 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 D = dom F
392 234 391 sseqtrd φ i 0 ..^ M E X Q i Q i + 1 Q i E X dom F
393 392 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X Q i E X dom F
394 15 a1i φ Z = x B x T T
395 oveq2 x = X B x = B X
396 395 oveq1d x = X B x T = B X T
397 396 fveq2d x = X B x T = B X T
398 397 oveq1d x = X B x T T = B X T T
399 398 adantl φ x = X B x T T = B X T T
400 2 14 resubcld φ B X
401 2 1 resubcld φ B A
402 5 401 eqeltrid φ T
403 1 2 posdifd φ A < B 0 < B A
404 3 403 mpbid φ 0 < B A
405 5 eqcomi B A = T
406 405 a1i φ B A = T
407 404 406 breqtrd φ 0 < T
408 407 gt0ne0d φ T 0
409 400 402 408 redivcld φ B X T
410 409 flcld φ B X T
411 410 zred φ B X T
412 411 402 remulcld φ B X T T
413 394 399 14 412 fvmptd φ Z X = B X T T
414 413 412 eqeltrd φ Z X
415 414 recnd φ Z X
416 415 adantr φ y F Q i E X lim E X Z X
417 416 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X Z X
418 417 negcld φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X Z X
419 eqid z | x Q i E X z = x + Z X = z | x Q i E X z = x + Z X
420 ioosscn Q i Z X X
421 420 sseli y Q i Z X X y
422 421 adantl φ y Q i Z X X y
423 415 adantr φ y Q i Z X X Z X
424 422 423 pncand φ y Q i Z X X y + Z X - Z X = y
425 424 eqcomd φ y Q i Z X X y = y + Z X - Z X
426 425 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y = y + Z X - Z X
427 413 oveq2d φ y + Z X - Z X = y + Z X - B X T T
428 427 adantr φ y Q i Z X X y + Z X - Z X = y + Z X - B X T T
429 422 423 addcld φ y Q i Z X X y + Z X
430 412 recnd φ B X T T
431 430 adantr φ y Q i Z X X B X T T
432 429 431 negsubd φ y Q i Z X X y + Z X + B X T T = y + Z X - B X T T
433 410 zcnd φ B X T
434 402 recnd φ T
435 433 434 mulneg1d φ B X T T = B X T T
436 435 eqcomd φ B X T T = B X T T
437 436 oveq2d φ y + Z X + B X T T = y + Z X + B X T T
438 437 adantr φ y Q i Z X X y + Z X + B X T T = y + Z X + B X T T
439 428 432 438 3eqtr2d φ y Q i Z X X y + Z X - Z X = y + Z X + B X T T
440 439 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X - Z X = y + Z X + B X T T
441 410 znegcld φ B X T
442 441 adantr φ y Q i Z X X B X T
443 442 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X B X T
444 simpl1 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X φ
445 234 adantr φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X Q i E X D
446 208 adantr φ i 0 ..^ M y Q i Z X X Q i *
447 142 rexrd φ E X *
448 447 ad2antrr φ i 0 ..^ M y Q i Z X X E X *
449 elioore y Q i Z X X y
450 449 adantl φ y Q i Z X X y
451 414 adantr φ y Q i Z X X Z X
452 450 451 readdcld φ y Q i Z X X y + Z X
453 452 adantlr φ i 0 ..^ M y Q i Z X X y + Z X
454 414 adantr φ i 0 ..^ M Z X
455 207 454 resubcld φ i 0 ..^ M Q i Z X
456 455 rexrd φ i 0 ..^ M Q i Z X *
457 456 adantr φ i 0 ..^ M y Q i Z X X Q i Z X *
458 14 rexrd φ X *
459 458 ad2antrr φ i 0 ..^ M y Q i Z X X X *
460 simpr φ i 0 ..^ M y Q i Z X X y Q i Z X X
461 ioogtlb Q i Z X * X * y Q i Z X X Q i Z X < y
462 457 459 460 461 syl3anc φ i 0 ..^ M y Q i Z X X Q i Z X < y
463 207 adantr φ i 0 ..^ M y Q i Z X X Q i
464 454 adantr φ i 0 ..^ M y Q i Z X X Z X
465 449 adantl φ i 0 ..^ M y Q i Z X X y
466 463 464 465 ltsubaddd φ i 0 ..^ M y Q i Z X X Q i Z X < y Q i < y + Z X
467 462 466 mpbid φ i 0 ..^ M y Q i Z X X Q i < y + Z X
468 14 ad2antrr φ i 0 ..^ M y Q i Z X X X
469 iooltub Q i Z X * X * y Q i Z X X y < X
470 457 459 460 469 syl3anc φ i 0 ..^ M y Q i Z X X y < X
471 465 468 464 470 ltadd1dd φ i 0 ..^ M y Q i Z X X y + Z X < X + Z X
472 16 a1i φ E = x x + Z x
473 id x = X x = X
474 fveq2 x = X Z x = Z X
475 473 474 oveq12d x = X x + Z x = X + Z X
476 475 adantl φ x = X x + Z x = X + Z X
477 14 414 readdcld φ X + Z X
478 472 476 14 477 fvmptd φ E X = X + Z X
479 478 eqcomd φ X + Z X = E X
480 479 ad2antrr φ i 0 ..^ M y Q i Z X X X + Z X = E X
481 471 480 breqtrd φ i 0 ..^ M y Q i Z X X y + Z X < E X
482 446 448 453 467 481 eliood φ i 0 ..^ M y Q i Z X X y + Z X Q i E X
483 482 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X Q i E X
484 445 483 sseldd φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X D
485 444 484 443 3jca φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X φ y + Z X D B X T
486 eleq1 k = B X T k B X T
487 486 3anbi3d k = B X T φ y + Z X D k φ y + Z X D B X T
488 oveq1 k = B X T k T = B X T T
489 488 oveq2d k = B X T y + Z X + k T = y + Z X + B X T T
490 489 eleq1d k = B X T y + Z X + k T D y + Z X + B X T T D
491 487 490 imbi12d k = B X T φ y + Z X D k y + Z X + k T D φ y + Z X D B X T y + Z X + B X T T D
492 ovex y + Z X V
493 eleq1 x = y + Z X x D y + Z X D
494 493 3anbi2d x = y + Z X φ x D k φ y + Z X D k
495 oveq1 x = y + Z X x + k T = y + Z X + k T
496 495 eleq1d x = y + Z X x + k T D y + Z X + k T D
497 494 496 imbi12d x = y + Z X φ x D k x + k T D φ y + Z X D k y + Z X + k T D
498 492 497 10 vtocl φ y + Z X D k y + Z X + k T D
499 491 498 vtoclg B X T φ y + Z X D B X T y + Z X + B X T T D
500 443 485 499 sylc φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X + B X T T D
501 440 500 eqeltrd φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y + Z X - Z X D
502 426 501 eqeltrd φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y D
503 502 ralrimiva φ i 0 ..^ M E X Q i Q i + 1 y Q i Z X X y D
504 dfss3 Q i Z X X D y Q i Z X X y D
505 503 504 sylibr φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X D
506 207 recnd φ i 0 ..^ M Q i
507 415 adantr φ i 0 ..^ M Z X
508 506 507 negsubd φ i 0 ..^ M Q i + Z X = Q i Z X
509 508 eqcomd φ i 0 ..^ M Q i Z X = Q i + Z X
510 478 oveq1d φ E X + Z X = X + Z X + Z X
511 477 recnd φ X + Z X
512 511 415 negsubd φ X + Z X + Z X = X + Z X - Z X
513 14 recnd φ X
514 513 415 pncand φ X + Z X - Z X = X
515 510 512 514 3eqtrrd φ X = E X + Z X
516 515 adantr φ i 0 ..^ M X = E X + Z X
517 509 516 oveq12d φ i 0 ..^ M Q i Z X X = Q i + Z X E X + Z X
518 454 renegcld φ i 0 ..^ M Z X
519 207 281 518 iooshift φ i 0 ..^ M Q i + Z X E X + Z X = z | x Q i E X z = x + Z X
520 517 519 eqtr2d φ i 0 ..^ M z | x Q i E X z = x + Z X = Q i Z X X
521 520 3adant3 φ i 0 ..^ M E X Q i Q i + 1 z | x Q i E X z = x + Z X = Q i Z X X
522 189 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 dom F = D
523 505 521 522 3sstr4d φ i 0 ..^ M E X Q i Q i + 1 z | x Q i E X z = x + Z X dom F
524 523 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X z | x Q i E X z = x + Z X dom F
525 413 negeqd φ Z X = B X T T
526 525 436 eqtrd φ Z X = B X T T
527 526 oveq2d φ x + Z X = x + B X T T
528 527 fveq2d φ F x + Z X = F x + B X T T
529 528 adantr φ x Q i E X F x + Z X = F x + B X T T
530 529 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X F x + Z X = F x + B X T T
531 441 adantr φ x Q i E X B X T
532 531 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X B X T
533 simpl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i E X φ
534 234 sselda φ i 0 ..^ M E X Q i Q i + 1 x Q i E X x D
535 533 534 532 3jca φ i 0 ..^ M E X Q i Q i + 1 x Q i E X φ x D B X T
536 486 3anbi3d k = B X T φ x D k φ x D B X T
537 488 oveq2d k = B X T x + k T = x + B X T T
538 537 fveq2d k = B X T F x + k T = F x + B X T T
539 538 eqeq1d k = B X T F x + k T = F x F x + B X T T = F x
540 536 539 imbi12d k = B X T φ x D k F x + k T = F x φ x D B X T F x + B X T T = F x
541 540 11 vtoclg B X T φ x D B X T F x + B X T T = F x
542 532 535 541 sylc φ i 0 ..^ M E X Q i Q i + 1 x Q i E X F x + B X T T = F x
543 530 542 eqtrd φ i 0 ..^ M E X Q i Q i + 1 x Q i E X F x + Z X = F x
544 543 adantlr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X x Q i E X F x + Z X = F x
545 simpr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X y F Q i E X lim E X
546 387 389 393 418 419 524 544 545 limcperiod φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X y F z | x Q i E X z = x + Z X lim E X + Z X
547 520 reseq2d φ i 0 ..^ M F z | x Q i E X z = x + Z X = F Q i Z X X
548 516 eqcomd φ i 0 ..^ M E X + Z X = X
549 547 548 oveq12d φ i 0 ..^ M F z | x Q i E X z = x + Z X lim E X + Z X = F Q i Z X X lim X
550 549 3adant3 φ i 0 ..^ M E X Q i Q i + 1 F z | x Q i E X z = x + Z X lim E X + Z X = F Q i Z X X lim X
551 550 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X F z | x Q i E X z = x + Z X lim E X + Z X = F Q i Z X X lim X
552 546 551 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X y F Q i Z X X lim X
553 385 adantr φ y F Q i Z X X lim X F : dom F
554 553 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X F : dom F
555 420 a1i φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X Q i Z X X
556 505 522 sseqtrrd φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X dom F
557 556 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X Q i Z X X dom F
558 415 adantr φ y F Q i Z X X lim X Z X
559 558 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X Z X
560 eqid z | x Q i Z X X z = x + Z X = z | x Q i Z X X z = x + Z X
561 506 507 npcand φ i 0 ..^ M Q i - Z X + Z X = Q i
562 561 eqcomd φ i 0 ..^ M Q i = Q i - Z X + Z X
563 478 adantr φ i 0 ..^ M E X = X + Z X
564 562 563 oveq12d φ i 0 ..^ M Q i E X = Q i - Z X + Z X X + Z X
565 14 adantr φ i 0 ..^ M X
566 455 565 454 iooshift φ i 0 ..^ M Q i - Z X + Z X X + Z X = z | x Q i Z X X z = x + Z X
567 564 566 eqtr2d φ i 0 ..^ M z | x Q i Z X X z = x + Z X = Q i E X
568 567 3adant3 φ i 0 ..^ M E X Q i Q i + 1 z | x Q i Z X X z = x + Z X = Q i E X
569 234 568 522 3sstr4d φ i 0 ..^ M E X Q i Q i + 1 z | x Q i Z X X z = x + Z X dom F
570 569 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X z | x Q i Z X X z = x + Z X dom F
571 413 oveq2d φ x + Z X = x + B X T T
572 571 fveq2d φ F x + Z X = F x + B X T T
573 572 adantr φ x Q i Z X X F x + Z X = F x + B X T T
574 573 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X F x + Z X = F x + B X T T
575 410 adantr φ x Q i Z X X B X T
576 575 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X B X T
577 simpl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X φ
578 505 sselda φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x D
579 577 578 576 3jca φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X φ x D B X T
580 eleq1 k = B X T k B X T
581 580 3anbi3d k = B X T φ x D k φ x D B X T
582 oveq1 k = B X T k T = B X T T
583 582 oveq2d k = B X T x + k T = x + B X T T
584 583 fveq2d k = B X T F x + k T = F x + B X T T
585 584 eqeq1d k = B X T F x + k T = F x F x + B X T T = F x
586 581 585 imbi12d k = B X T φ x D k F x + k T = F x φ x D B X T F x + B X T T = F x
587 586 11 vtoclg B X T φ x D B X T F x + B X T T = F x
588 576 579 587 sylc φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X F x + B X T T = F x
589 574 588 eqtrd φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X F x + Z X = F x
590 589 adantlr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X x Q i Z X X F x + Z X = F x
591 simpr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X y F Q i Z X X lim X
592 554 555 557 559 560 570 590 591 limcperiod φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X y F z | x Q i Z X X z = x + Z X lim X + Z X
593 567 reseq2d φ i 0 ..^ M F z | x Q i Z X X z = x + Z X = F Q i E X
594 479 adantr φ i 0 ..^ M X + Z X = E X
595 593 594 oveq12d φ i 0 ..^ M F z | x Q i Z X X z = x + Z X lim X + Z X = F Q i E X lim E X
596 595 3adant3 φ i 0 ..^ M E X Q i Q i + 1 F z | x Q i Z X X z = x + Z X lim X + Z X = F Q i E X lim E X
597 596 adantr φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X F z | x Q i Z X X z = x + Z X lim X + Z X = F Q i E X lim E X
598 592 597 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 y F Q i Z X X lim X y F Q i E X lim E X
599 552 598 impbida φ i 0 ..^ M E X Q i Q i + 1 y F Q i E X lim E X y F Q i Z X X lim X
600 599 eqrdv φ i 0 ..^ M E X Q i Q i + 1 F Q i E X lim E X = F Q i Z X X lim X
601 resindm Rel F F −∞ X dom F = F −∞ X
602 601 eqcomd Rel F F −∞ X = F −∞ X dom F
603 184 602 syl φ F −∞ X = F −∞ X dom F
604 189 ineq2d φ −∞ X dom F = −∞ X D
605 604 reseq2d φ F −∞ X dom F = F −∞ X D
606 603 605 eqtrd φ F −∞ X = F −∞ X D
607 606 oveq1d φ F −∞ X lim X = F −∞ X D lim X
608 607 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 F −∞ X lim X = F −∞ X D lim X
609 inss2 −∞ X D D
610 609 a1i φ i 0 ..^ M E X Q i Q i + 1 −∞ X D D
611 198 610 fssresd φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D : −∞ X D
612 455 mnfltd φ i 0 ..^ M −∞ < Q i Z X
613 203 456 612 xrltled φ i 0 ..^ M −∞ Q i Z X
614 iooss1 −∞ * −∞ Q i Z X Q i Z X X −∞ X
615 202 613 614 sylancr φ i 0 ..^ M Q i Z X X −∞ X
616 615 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X −∞ X
617 616 505 ssind φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X −∞ X D
618 609 237 sstrid φ i 0 ..^ M E X Q i Q i + 1 −∞ X D
619 eqid TopOpen fld 𝑡 −∞ X D X = TopOpen fld 𝑡 −∞ X D X
620 456 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i Z X *
621 458 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 X *
622 478 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 E X = X + Z X
623 244 622 breqtrd φ i 0 ..^ M E X Q i Q i + 1 Q i < X + Z X
624 414 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 Z X
625 14 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 X
626 219 624 625 ltsubaddd φ i 0 ..^ M E X Q i Q i + 1 Q i Z X < X Q i < X + Z X
627 623 626 mpbird φ i 0 ..^ M E X Q i Q i + 1 Q i Z X < X
628 14 leidd φ X X
629 628 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 X X
630 620 621 621 627 629 eliocd φ i 0 ..^ M E X Q i Q i + 1 X Q i Z X X
631 ioounsn Q i Z X * X * Q i Z X < X Q i Z X X X = Q i Z X X
632 620 621 627 631 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X X = Q i Z X X
633 632 fveq2d φ i 0 ..^ M E X Q i Q i + 1 int TopOpen fld 𝑡 −∞ X D X Q i Z X X X = int TopOpen fld 𝑡 −∞ X D X Q i Z X X
634 ovex −∞ X V
635 634 inex1 −∞ X D V
636 snex X V
637 635 636 unex −∞ X D X V
638 resttop TopOpen fld Top −∞ X D X V TopOpen fld 𝑡 −∞ X D X Top
639 250 637 638 mp2an TopOpen fld 𝑡 −∞ X D X Top
640 637 a1i φ i 0 ..^ M E X Q i Q i + 1 −∞ X D X V
641 iooretop Q i Z X +∞ topGen ran .
642 641 a1i φ i 0 ..^ M E X Q i Q i + 1 Q i Z X +∞ topGen ran .
643 elrestr topGen ran . Top −∞ X D X V Q i Z X +∞ topGen ran . Q i Z X +∞ −∞ X D X topGen ran . 𝑡 −∞ X D X
644 258 640 642 643 syl3anc φ i 0 ..^ M E X Q i Q i + 1 Q i Z X +∞ −∞ X D X topGen ran . 𝑡 −∞ X D X
645 456 adantr φ i 0 ..^ M x Q i Z X X Q i Z X *
646 265 a1i φ i 0 ..^ M x Q i Z X X +∞ *
647 14 ad2antrr φ i 0 ..^ M x Q i Z X X X
648 iocssre Q i Z X * X Q i Z X X
649 645 647 648 syl2anc φ i 0 ..^ M x Q i Z X X Q i Z X X
650 simpr φ i 0 ..^ M x Q i Z X X x Q i Z X X
651 649 650 sseldd φ i 0 ..^ M x Q i Z X X x
652 458 ad2antrr φ i 0 ..^ M x Q i Z X X X *
653 iocgtlb Q i Z X * X * x Q i Z X X Q i Z X < x
654 645 652 650 653 syl3anc φ i 0 ..^ M x Q i Z X X Q i Z X < x
655 651 ltpnfd φ i 0 ..^ M x Q i Z X X x < +∞
656 645 646 651 654 655 eliood φ i 0 ..^ M x Q i Z X X x Q i Z X +∞
657 656 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x Q i Z X +∞
658 eqvisset x = X X V
659 snidg X V X X
660 658 659 syl x = X X X
661 473 660 eqeltrd x = X x X
662 elun2 x X x −∞ X D X
663 661 662 syl x = X x −∞ X D X
664 663 adantl φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x = X x −∞ X D X
665 simpll φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X ¬ x = X φ i 0 ..^ M E X Q i Q i + 1
666 645 adantr φ i 0 ..^ M x Q i Z X X ¬ x = X Q i Z X *
667 458 ad3antrrr φ i 0 ..^ M x Q i Z X X ¬ x = X X *
668 651 adantr φ i 0 ..^ M x Q i Z X X ¬ x = X x
669 654 adantr φ i 0 ..^ M x Q i Z X X ¬ x = X Q i Z X < x
670 14 ad3antrrr φ i 0 ..^ M x Q i Z X X ¬ x = X X
671 iocleub Q i Z X * X * x Q i Z X X x X
672 645 652 650 671 syl3anc φ i 0 ..^ M x Q i Z X X x X
673 672 adantr φ i 0 ..^ M x Q i Z X X ¬ x = X x X
674 473 eqcoms X = x x = X
675 674 necon3bi ¬ x = X X x
676 675 adantl φ i 0 ..^ M x Q i Z X X ¬ x = X X x
677 668 670 673 676 leneltd φ i 0 ..^ M x Q i Z X X ¬ x = X x < X
678 666 667 668 669 677 eliood φ i 0 ..^ M x Q i Z X X ¬ x = X x Q i Z X X
679 678 3adantll3 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X ¬ x = X x Q i Z X X
680 617 sselda φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x −∞ X D
681 elun1 x −∞ X D x −∞ X D X
682 680 681 syl φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x −∞ X D X
683 665 679 682 syl2anc φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X ¬ x = X x −∞ X D X
684 664 683 pm2.61dan φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x −∞ X D X
685 657 684 elind φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x Q i Z X +∞ −∞ X D X
686 620 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X Q i Z X *
687 621 adantr φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X X *
688 elinel1 x Q i Z X +∞ −∞ X D X x Q i Z X +∞
689 elioore x Q i Z X +∞ x
690 688 689 syl x Q i Z X +∞ −∞ X D X x
691 690 rexrd x Q i Z X +∞ −∞ X D X x *
692 691 adantl φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X x *
693 456 adantr φ i 0 ..^ M x Q i Z X +∞ −∞ X D X Q i Z X *
694 265 a1i φ i 0 ..^ M x Q i Z X +∞ −∞ X D X +∞ *
695 688 adantl φ i 0 ..^ M x Q i Z X +∞ −∞ X D X x Q i Z X +∞
696 ioogtlb Q i Z X * +∞ * x Q i Z X +∞ Q i Z X < x
697 693 694 695 696 syl3anc φ i 0 ..^ M x Q i Z X +∞ −∞ X D X Q i Z X < x
698 697 3adantl3 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X Q i Z X < x
699 elinel2 x Q i Z X +∞ −∞ X D X x −∞ X D X
700 elsni x X x = X
701 700 adantl φ x X x = X
702 628 adantr φ x X X X
703 701 702 eqbrtrd φ x X x X
704 703 adantlr φ x −∞ X D X x X x X
705 simpll φ x −∞ X D X ¬ x X φ
706 elunnel2 x −∞ X D X ¬ x X x −∞ X D
707 706 adantll φ x −∞ X D X ¬ x X x −∞ X D
708 elinel1 x −∞ X D x −∞ X
709 707 708 syl φ x −∞ X D X ¬ x X x −∞ X
710 elioore x −∞ X x
711 710 adantl φ x −∞ X x
712 14 adantr φ x −∞ X X
713 202 a1i φ x −∞ X −∞ *
714 458 adantr φ x −∞ X X *
715 simpr φ x −∞ X x −∞ X
716 iooltub −∞ * X * x −∞ X x < X
717 713 714 715 716 syl3anc φ x −∞ X x < X
718 711 712 717 ltled φ x −∞ X x X
719 705 709 718 syl2anc φ x −∞ X D X ¬ x X x X
720 704 719 pm2.61dan φ x −∞ X D X x X
721 699 720 sylan2 φ x Q i Z X +∞ −∞ X D X x X
722 721 3ad2antl1 φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X x X
723 686 687 692 698 722 eliocd φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X +∞ −∞ X D X x Q i Z X X
724 685 723 impbida φ i 0 ..^ M E X Q i Q i + 1 x Q i Z X X x Q i Z X +∞ −∞ X D X
725 724 eqrdv φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X = Q i Z X +∞ −∞ X D X
726 609 8 sstrid φ −∞ X D
727 14 snssd φ X
728 726 727 unssd φ −∞ X D X
729 728 3ad2ant1 φ i 0 ..^ M E X Q i Q i + 1 −∞ X D X
730 239 372 rerest −∞ X D X TopOpen fld 𝑡 −∞ X D X = topGen ran . 𝑡 −∞ X D X
731 729 730 syl φ i 0 ..^ M E X Q i Q i + 1 TopOpen fld 𝑡 −∞ X D X = topGen ran . 𝑡 −∞ X D X
732 644 725 731 3eltr4d φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X TopOpen fld 𝑡 −∞ X D X
733 isopn3i TopOpen fld 𝑡 −∞ X D X Top Q i Z X X TopOpen fld 𝑡 −∞ X D X int TopOpen fld 𝑡 −∞ X D X Q i Z X X = Q i Z X X
734 639 732 733 sylancr φ i 0 ..^ M E X Q i Q i + 1 int TopOpen fld 𝑡 −∞ X D X Q i Z X X = Q i Z X X
735 633 734 eqtr2d φ i 0 ..^ M E X Q i Q i + 1 Q i Z X X = int TopOpen fld 𝑡 −∞ X D X Q i Z X X X
736 630 735 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 X int TopOpen fld 𝑡 −∞ X D X Q i Z X X X
737 611 617 618 239 619 736 limcres φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D Q i Z X X lim X = F −∞ X D lim X
738 737 eqcomd φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D lim X = F −∞ X D Q i Z X X lim X
739 617 resabs1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D Q i Z X X = F Q i Z X X
740 739 oveq1d φ i 0 ..^ M E X Q i Q i + 1 F −∞ X D Q i Z X X lim X = F Q i Z X X lim X
741 608 738 740 3eqtrrd φ i 0 ..^ M E X Q i Q i + 1 F Q i Z X X lim X = F −∞ X lim X
742 383 600 741 3eqtrrd φ i 0 ..^ M E X Q i Q i + 1 F −∞ X lim X = F −∞ E X lim E X
743 742 rexlimdv3a φ i 0 ..^ M E X Q i Q i + 1 F −∞ X lim X = F −∞ E X lim E X
744 182 743 mpd φ F −∞ X lim X = F −∞ E X lim E X
745 129 3adant3 φ i 0 ..^ M E X Q i Q i + 1 Q i < Q i + 1
746 12 3adant3 φ i 0 ..^ M E X Q i Q i + 1 F Q i Q i + 1 : Q i Q i + 1 cn
747 13 3adant3 φ i 0 ..^ M E X Q i Q i + 1 L F Q i Q i + 1 lim Q i + 1
748 eqid if E X = Q i + 1 L F Q i Q i + 1 E X = if E X = Q i + 1 L F Q i Q i + 1 E X
749 eqid TopOpen fld 𝑡 Q i Q i + 1 Q i + 1 = TopOpen fld 𝑡 Q i Q i + 1 Q i + 1
750 219 217 745 746 747 219 241 244 225 748 749 fourierdlem33 φ i 0 ..^ M E X Q i Q i + 1 if E X = Q i + 1 L F Q i Q i + 1 E X F Q i Q i + 1 Q i E X lim E X
751 225 resabs1d φ i 0 ..^ M E X Q i Q i + 1 F Q i Q i + 1 Q i E X = F Q i E X
752 751 oveq1d φ i 0 ..^ M E X Q i Q i + 1 F Q i Q i + 1 Q i E X lim E X = F Q i E X lim E X
753 750 752 eleqtrd φ i 0 ..^ M E X Q i Q i + 1 if E X = Q i + 1 L F Q i Q i + 1 E X F Q i E X lim E X
754 ne0i if E X = Q i + 1 L F Q i Q i + 1 E X F Q i E X lim E X F Q i E X lim E X
755 753 754 syl φ i 0 ..^ M E X Q i Q i + 1 F Q i E X lim E X
756 383 755 eqnetrd φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X lim E X
757 756 rexlimdv3a φ i 0 ..^ M E X Q i Q i + 1 F −∞ E X lim E X
758 182 757 mpd φ F −∞ E X lim E X
759 744 758 eqnetrd φ F −∞ X lim X