Metamath Proof Explorer


Theorem fourierdlem49

Description: The given periodic function F has a left limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem49.a φA
fourierdlem49.b φB
fourierdlem49.altb φA<B
fourierdlem49.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem49.t T=BA
fourierdlem49.m φM
fourierdlem49.q φQPM
fourierdlem49.d φD
fourierdlem49.f φF:D
fourierdlem49.dper φxDkx+kTD
fourierdlem49.per φxDkFx+kT=Fx
fourierdlem49.cn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem49.l φi0..^MLFQiQi+1limQi+1
fourierdlem49.x φX
fourierdlem49.z Z=xBxTT
fourierdlem49.e E=xx+Zx
Assertion fourierdlem49 φF−∞XlimX

Proof

Step Hyp Ref Expression
1 fourierdlem49.a φA
2 fourierdlem49.b φB
3 fourierdlem49.altb φA<B
4 fourierdlem49.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
5 fourierdlem49.t T=BA
6 fourierdlem49.m φM
7 fourierdlem49.q φQPM
8 fourierdlem49.d φD
9 fourierdlem49.f φF:D
10 fourierdlem49.dper φxDkx+kTD
11 fourierdlem49.per φxDkFx+kT=Fx
12 fourierdlem49.cn φi0..^MFQiQi+1:QiQi+1cn
13 fourierdlem49.l φi0..^MLFQiQi+1limQi+1
14 fourierdlem49.x φX
15 fourierdlem49.z Z=xBxTT
16 fourierdlem49.e E=xx+Zx
17 ovex BxTTV
18 15 fvmpt2 xBxTTVZx=BxTT
19 17 18 mpan2 xZx=BxTT
20 19 oveq2d xx+Zx=x+BxTT
21 20 mpteq2ia xx+Zx=xx+BxTT
22 16 21 eqtri E=xx+BxTT
23 1 2 3 5 22 fourierdlem4 φE:AB
24 23 14 ffvelcdmd φEXAB
25 simpr φEXABEXranQEXranQ
26 4 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
27 6 26 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
28 7 27 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
29 28 simpld φQ0M
30 elmapi Q0MQ:0M
31 29 30 syl φQ:0M
32 ffn Q:0MQFn0M
33 31 32 syl φQFn0M
34 33 ad2antrr φEXABEXranQQFn0M
35 fvelrnb QFn0MEXranQj0MQj=EX
36 34 35 syl φEXABEXranQEXranQj0MQj=EX
37 25 36 mpbid φEXABEXranQj0MQj=EX
38 1zzd φEXABj0MQj=EX1
39 elfzelz j0Mj
40 39 ad2antlr φEXABj0MQj=EXj
41 1e0p1 1=0+1
42 41 a1i φEXABj0MQj=EX1=0+1
43 40 zred φEXABj0MQj=EXj
44 elfzle1 j0M0j
45 44 ad2antlr φEXABj0MQj=EX0j
46 id Qj=EXQj=EX
47 46 eqcomd Qj=EXEX=Qj
48 47 ad2antlr φQj=EXj=0EX=Qj
49 fveq2 j=0Qj=Q0
50 49 adantl φQj=EXj=0Qj=Q0
51 28 simprld φQ0=AQM=B
52 51 simpld φQ0=A
53 52 ad2antrr φQj=EXj=0Q0=A
54 48 50 53 3eqtrd φQj=EXj=0EX=A
55 54 adantllr φEXABQj=EXj=0EX=A
56 55 adantllr φEXABj0MQj=EXj=0EX=A
57 1 adantr φEXABA
58 1 rexrd φA*
59 58 adantr φEXABA*
60 2 rexrd φB*
61 60 adantr φEXABB*
62 simpr φEXABEXAB
63 iocgtlb A*B*EXABA<EX
64 59 61 62 63 syl3anc φEXABA<EX
65 57 64 gtned φEXABEXA
66 65 neneqd φEXAB¬EX=A
67 66 ad3antrrr φEXABj0MQj=EXj=0¬EX=A
68 56 67 pm2.65da φEXABj0MQj=EX¬j=0
69 68 neqned φEXABj0MQj=EXj0
70 43 45 69 ne0gt0d φEXABj0MQj=EX0<j
71 0zd φEXABj0MQj=EX0
72 zltp1le 0j0<j0+1j
73 71 40 72 syl2anc φEXABj0MQj=EX0<j0+1j
74 70 73 mpbid φEXABj0MQj=EX0+1j
75 42 74 eqbrtrd φEXABj0MQj=EX1j
76 eluz2 j11j1j
77 38 40 75 76 syl3anbrc φEXABj0MQj=EXj1
78 nnuz =1
79 77 78 eleqtrrdi φEXABj0MQj=EXj
80 nnm1nn0 jj10
81 79 80 syl φEXABj0MQj=EXj10
82 nn0uz 0=0
83 82 a1i φEXABj0MQj=EX0=0
84 81 83 eleqtrd φEXABj0MQj=EXj10
85 6 nnzd φM
86 85 ad3antrrr φEXABj0MQj=EXM
87 peano2zm jj1
88 39 87 syl j0Mj1
89 88 zred j0Mj1
90 39 zred j0Mj
91 elfzel2 j0MM
92 91 zred j0MM
93 90 ltm1d j0Mj1<j
94 elfzle2 j0MjM
95 89 90 92 93 94 ltletrd j0Mj1<M
96 95 ad2antlr φEXABj0MQj=EXj1<M
97 elfzo2 j10..^Mj10Mj1<M
98 84 86 96 97 syl3anbrc φEXABj0MQj=EXj10..^M
99 31 ad3antrrr φEXABj0MQj=EXQ:0M
100 40 87 syl φEXABj0MQj=EXj1
101 81 nn0ge0d φEXABj0MQj=EX0j1
102 89 92 95 ltled j0Mj1M
103 102 ad2antlr φEXABj0MQj=EXj1M
104 71 86 100 101 103 elfzd φEXABj0MQj=EXj10M
105 99 104 ffvelcdmd φEXABj0MQj=EXQj1
106 105 rexrd φEXABj0MQj=EXQj1*
107 31 ffvelcdmda φj0MQj
108 107 rexrd φj0MQj*
109 108 adantlr φEXABj0MQj*
110 109 adantr φEXABj0MQj=EXQj*
111 iocssre A*BAB
112 58 2 111 syl2anc φAB
113 112 sselda φEXABEX
114 113 rexrd φEXABEX*
115 114 ad2antrr φEXABj0MQj=EXEX*
116 simplll φEXABj0MQj=EXφ
117 ovex j1V
118 eleq1 i=j1i0..^Mj10..^M
119 118 anbi2d i=j1φi0..^Mφj10..^M
120 fveq2 i=j1Qi=Qj1
121 oveq1 i=j1i+1=j-1+1
122 121 fveq2d i=j1Qi+1=Qj-1+1
123 120 122 breq12d i=j1Qi<Qi+1Qj1<Qj-1+1
124 119 123 imbi12d i=j1φi0..^MQi<Qi+1φj10..^MQj1<Qj-1+1
125 28 simprrd φi0..^MQi<Qi+1
126 125 r19.21bi φi0..^MQi<Qi+1
127 117 124 126 vtocl φj10..^MQj1<Qj-1+1
128 116 98 127 syl2anc φEXABj0MQj=EXQj1<Qj-1+1
129 39 zcnd j0Mj
130 1cnd j0M1
131 129 130 npcand j0Mj-1+1=j
132 131 eqcomd j0Mj=j-1+1
133 132 fveq2d j0MQj=Qj-1+1
134 133 eqcomd j0MQj-1+1=Qj
135 134 ad2antlr φEXABj0MQj=EXQj-1+1=Qj
136 128 135 breqtrd φEXABj0MQj=EXQj1<Qj
137 simpr φEXABj0MQj=EXQj=EX
138 136 137 breqtrd φEXABj0MQj=EXQj1<EX
139 112 24 sseldd φEX
140 139 leidd φEXEX
141 140 ad2antrr φj0MQj=EXEXEX
142 47 adantl φj0MQj=EXEX=Qj
143 141 142 breqtrd φj0MQj=EXEXQj
144 143 adantllr φEXABj0MQj=EXEXQj
145 106 110 115 138 144 eliocd φEXABj0MQj=EXEXQj1Qj
146 133 oveq2d j0MQj1Qj=Qj1Qj-1+1
147 146 ad2antlr φEXABj0MQj=EXQj1Qj=Qj1Qj-1+1
148 145 147 eleqtrd φEXABj0MQj=EXEXQj1Qj-1+1
149 120 122 oveq12d i=j1QiQi+1=Qj1Qj-1+1
150 149 eleq2d i=j1EXQiQi+1EXQj1Qj-1+1
151 150 rspcev j10..^MEXQj1Qj-1+1i0..^MEXQiQi+1
152 98 148 151 syl2anc φEXABj0MQj=EXi0..^MEXQiQi+1
153 152 ex φEXABj0MQj=EXi0..^MEXQiQi+1
154 153 adantlr φEXABEXranQj0MQj=EXi0..^MEXQiQi+1
155 154 rexlimdva φEXABEXranQj0MQj=EXi0..^MEXQiQi+1
156 37 155 mpd φEXABEXranQi0..^MEXQiQi+1
157 6 ad2antrr φEXAB¬EXranQM
158 31 ad2antrr φEXAB¬EXranQQ:0M
159 iocssicc ABAB
160 52 eqcomd φA=Q0
161 51 simprd φQM=B
162 161 eqcomd φB=QM
163 160 162 oveq12d φAB=Q0QM
164 159 163 sseqtrid φABQ0QM
165 164 sselda φEXABEXQ0QM
166 165 adantr φEXAB¬EXranQEXQ0QM
167 simpr φEXAB¬EXranQ¬EXranQ
168 fveq2 k=jQk=Qj
169 168 breq1d k=jQk<EXQj<EX
170 169 cbvrabv k0..^M|Qk<EX=j0..^M|Qj<EX
171 170 supeq1i supk0..^M|Qk<EX<=supj0..^M|Qj<EX<
172 157 158 166 167 171 fourierdlem25 φEXAB¬EXranQi0..^MEXQiQi+1
173 ioossioc QiQi+1QiQi+1
174 173 sseli EXQiQi+1EXQiQi+1
175 174 a1i φEXAB¬EXranQi0..^MEXQiQi+1EXQiQi+1
176 175 reximdva φEXAB¬EXranQi0..^MEXQiQi+1i0..^MEXQiQi+1
177 172 176 mpd φEXAB¬EXranQi0..^MEXQiQi+1
178 156 177 pm2.61dan φEXABi0..^MEXQiQi+1
179 24 178 mpdan φi0..^MEXQiQi+1
180 frel F:DRelF
181 9 180 syl φRelF
182 resindm RelFF−∞EXdomF=F−∞EX
183 182 eqcomd RelFF−∞EX=F−∞EXdomF
184 181 183 syl φF−∞EX=F−∞EXdomF
185 fdm F:DdomF=D
186 9 185 syl φdomF=D
187 186 ineq2d φ−∞EXdomF=−∞EXD
188 187 reseq2d φF−∞EXdomF=F−∞EXD
189 184 188 eqtrd φF−∞EX=F−∞EXD
190 189 3ad2ant1 φi0..^MEXQiQi+1F−∞EX=F−∞EXD
191 190 oveq1d φi0..^MEXQiQi+1F−∞EXlimEX=F−∞EXDlimEX
192 ax-resscn
193 192 a1i φ
194 9 193 fssd φF:D
195 194 3ad2ant1 φi0..^MEXQiQi+1F:D
196 inss2 −∞EXDD
197 196 a1i φi0..^MEXQiQi+1−∞EXDD
198 195 197 fssresd φi0..^MEXQiQi+1F−∞EXD:−∞EXD
199 mnfxr −∞*
200 199 a1i φi0..^M−∞*
201 31 adantr φi0..^MQ:0M
202 elfzofz i0..^Mi0M
203 202 adantl φi0..^Mi0M
204 201 203 ffvelcdmd φi0..^MQi
205 204 rexrd φi0..^MQi*
206 204 mnfltd φi0..^M−∞<Qi
207 200 205 206 xrltled φi0..^M−∞Qi
208 iooss1 −∞*−∞QiQiEX−∞EX
209 199 207 208 sylancr φi0..^MQiEX−∞EX
210 209 3adant3 φi0..^MEXQiQi+1QiEX−∞EX
211 fzofzp1 i0..^Mi+10M
212 211 adantl φi0..^Mi+10M
213 201 212 ffvelcdmd φi0..^MQi+1
214 213 3adant3 φi0..^MEXQiQi+1Qi+1
215 214 rexrd φi0..^MEXQiQi+1Qi+1*
216 204 3adant3 φi0..^MEXQiQi+1Qi
217 216 rexrd φi0..^MEXQiQi+1Qi*
218 simp3 φi0..^MEXQiQi+1EXQiQi+1
219 iocleub Qi*Qi+1*EXQiQi+1EXQi+1
220 217 215 218 219 syl3anc φi0..^MEXQiQi+1EXQi+1
221 iooss2 Qi+1*EXQi+1QiEXQiQi+1
222 215 220 221 syl2anc φi0..^MEXQiQi+1QiEXQiQi+1
223 cncff FQiQi+1:QiQi+1cnFQiQi+1:QiQi+1
224 fdm FQiQi+1:QiQi+1domFQiQi+1=QiQi+1
225 12 223 224 3syl φi0..^MdomFQiQi+1=QiQi+1
226 ssdmres QiQi+1domFdomFQiQi+1=QiQi+1
227 225 226 sylibr φi0..^MQiQi+1domF
228 186 adantr φi0..^MdomF=D
229 227 228 sseqtrd φi0..^MQiQi+1D
230 229 3adant3 φi0..^MEXQiQi+1QiQi+1D
231 222 230 sstrd φi0..^MEXQiQi+1QiEXD
232 210 231 ssind φi0..^MEXQiQi+1QiEX−∞EXD
233 8 193 sstrd φD
234 233 3ad2ant1 φi0..^MEXQiQi+1D
235 196 234 sstrid φi0..^MEXQiQi+1−∞EXD
236 eqid TopOpenfld=TopOpenfld
237 eqid TopOpenfld𝑡−∞EXDEX=TopOpenfld𝑡−∞EXDEX
238 139 3ad2ant1 φi0..^MEXQiQi+1EX
239 238 rexrd φi0..^MEXQiQi+1EX*
240 iocgtlb Qi*Qi+1*EXQiQi+1Qi<EX
241 217 215 218 240 syl3anc φi0..^MEXQiQi+1Qi<EX
242 238 leidd φi0..^MEXQiQi+1EXEX
243 217 239 239 241 242 eliocd φi0..^MEXQiQi+1EXQiEX
244 ioounsn Qi*EX*Qi<EXQiEXEX=QiEX
245 217 239 241 244 syl3anc φi0..^MEXQiQi+1QiEXEX=QiEX
246 245 fveq2d φi0..^MEXQiQi+1intTopOpenfld𝑡−∞EXDEXQiEXEX=intTopOpenfld𝑡−∞EXDEXQiEX
247 236 cnfldtop TopOpenfldTop
248 ovex −∞EXV
249 248 inex1 −∞EXDV
250 snex EXV
251 249 250 unex −∞EXDEXV
252 resttop TopOpenfldTop−∞EXDEXVTopOpenfld𝑡−∞EXDEXTop
253 247 251 252 mp2an TopOpenfld𝑡−∞EXDEXTop
254 retop topGenran.Top
255 254 a1i φi0..^MEXQiQi+1topGenran.Top
256 251 a1i φi0..^MEXQiQi+1−∞EXDEXV
257 iooretop Qi+∞topGenran.
258 257 a1i φi0..^MEXQiQi+1Qi+∞topGenran.
259 elrestr topGenran.Top−∞EXDEXVQi+∞topGenran.Qi+∞−∞EXDEXtopGenran.𝑡−∞EXDEX
260 255 256 258 259 syl3anc φi0..^MEXQiQi+1Qi+∞−∞EXDEXtopGenran.𝑡−∞EXDEX
261 simpr φi0..^MEXQiQi+1x=EXx=EX
262 pnfxr +∞*
263 262 a1i φi0..^MEXQiQi+1+∞*
264 238 ltpnfd φi0..^MEXQiQi+1EX<+∞
265 217 263 238 241 264 eliood φi0..^MEXQiQi+1EXQi+∞
266 snidg EXEXEX
267 elun2 EXEXEX−∞EXDEX
268 266 267 syl EXEX−∞EXDEX
269 139 268 syl φEX−∞EXDEX
270 269 3ad2ant1 φi0..^MEXQiQi+1EX−∞EXDEX
271 265 270 elind φi0..^MEXQiQi+1EXQi+∞−∞EXDEX
272 271 adantr φi0..^MEXQiQi+1x=EXEXQi+∞−∞EXDEX
273 261 272 eqeltrd φi0..^MEXQiQi+1x=EXxQi+∞−∞EXDEX
274 273 adantlr φi0..^MEXQiQi+1xQiEXx=EXxQi+∞−∞EXDEX
275 217 adantr φi0..^MEXQiQi+1xQiEXQi*
276 262 a1i φi0..^MEXQiQi+1xQiEX+∞*
277 205 adantr φi0..^MxQiEXQi*
278 139 adantr φi0..^MEX
279 278 adantr φi0..^MxQiEXEX
280 iocssre Qi*EXQiEX
281 277 279 280 syl2anc φi0..^MxQiEXQiEX
282 simpr φi0..^MxQiEXxQiEX
283 281 282 sseldd φi0..^MxQiEXx
284 283 3adantl3 φi0..^MEXQiQi+1xQiEXx
285 279 rexrd φi0..^MxQiEXEX*
286 iocgtlb Qi*EX*xQiEXQi<x
287 277 285 282 286 syl3anc φi0..^MxQiEXQi<x
288 287 3adantl3 φi0..^MEXQiQi+1xQiEXQi<x
289 284 ltpnfd φi0..^MEXQiQi+1xQiEXx<+∞
290 275 276 284 288 289 eliood φi0..^MEXQiQi+1xQiEXxQi+∞
291 290 adantr φi0..^MEXQiQi+1xQiEX¬x=EXxQi+∞
292 199 a1i φi0..^MxQiEX¬x=EX−∞*
293 285 adantr φi0..^MxQiEX¬x=EXEX*
294 283 adantr φi0..^MxQiEX¬x=EXx
295 294 mnfltd φi0..^MxQiEX¬x=EX−∞<x
296 139 ad3antrrr φi0..^MxQiEX¬x=EXEX
297 iocleub Qi*EX*xQiEXxEX
298 277 285 282 297 syl3anc φi0..^MxQiEXxEX
299 298 adantr φi0..^MxQiEX¬x=EXxEX
300 neqne ¬x=EXxEX
301 300 necomd ¬x=EXEXx
302 301 adantl φi0..^MxQiEX¬x=EXEXx
303 294 296 299 302 leneltd φi0..^MxQiEX¬x=EXx<EX
304 292 293 294 295 303 eliood φi0..^MxQiEX¬x=EXx−∞EX
305 304 3adantll3 φi0..^MEXQiQi+1xQiEX¬x=EXx−∞EX
306 230 ad2antrr φi0..^MEXQiQi+1xQiEX¬x=EXQiQi+1D
307 275 adantr φi0..^MEXQiQi+1xQiEX¬x=EXQi*
308 215 ad2antrr φi0..^MEXQiQi+1xQiEX¬x=EXQi+1*
309 284 adantr φi0..^MEXQiQi+1xQiEX¬x=EXx
310 288 adantr φi0..^MEXQiQi+1xQiEX¬x=EXQi<x
311 238 ad2antrr φi0..^MEXQiQi+1xQiEX¬x=EXEX
312 214 ad2antrr φi0..^MEXQiQi+1xQiEX¬x=EXQi+1
313 303 3adantll3 φi0..^MEXQiQi+1xQiEX¬x=EXx<EX
314 220 ad2antrr φi0..^MEXQiQi+1xQiEX¬x=EXEXQi+1
315 309 311 312 313 314 ltletrd φi0..^MEXQiQi+1xQiEX¬x=EXx<Qi+1
316 307 308 309 310 315 eliood φi0..^MEXQiQi+1xQiEX¬x=EXxQiQi+1
317 306 316 sseldd φi0..^MEXQiQi+1xQiEX¬x=EXxD
318 305 317 elind φi0..^MEXQiQi+1xQiEX¬x=EXx−∞EXD
319 elun1 x−∞EXDx−∞EXDEX
320 318 319 syl φi0..^MEXQiQi+1xQiEX¬x=EXx−∞EXDEX
321 291 320 elind φi0..^MEXQiQi+1xQiEX¬x=EXxQi+∞−∞EXDEX
322 274 321 pm2.61dan φi0..^MEXQiQi+1xQiEXxQi+∞−∞EXDEX
323 217 adantr φi0..^MEXQiQi+1xQi+∞−∞EXDEXQi*
324 239 adantr φi0..^MEXQiQi+1xQi+∞−∞EXDEXEX*
325 elinel1 xQi+∞−∞EXDEXxQi+∞
326 elioore xQi+∞x
327 326 rexrd xQi+∞x*
328 325 327 syl xQi+∞−∞EXDEXx*
329 328 adantl φi0..^MEXQiQi+1xQi+∞−∞EXDEXx*
330 205 adantr φi0..^MxQi+∞−∞EXDEXQi*
331 262 a1i φi0..^MxQi+∞−∞EXDEX+∞*
332 325 adantl φi0..^MxQi+∞−∞EXDEXxQi+∞
333 ioogtlb Qi*+∞*xQi+∞Qi<x
334 330 331 332 333 syl3anc φi0..^MxQi+∞−∞EXDEXQi<x
335 334 3adantl3 φi0..^MEXQiQi+1xQi+∞−∞EXDEXQi<x
336 elinel2 xQi+∞−∞EXDEXx−∞EXDEX
337 elsni xEXx=EX
338 337 adantl φxEXx=EX
339 140 adantr φxEXEXEX
340 338 339 eqbrtrd φxEXxEX
341 340 adantlr φx−∞EXDEXxEXxEX
342 simpll φx−∞EXDEX¬xEXφ
343 elunnel2 x−∞EXDEX¬xEXx−∞EXD
344 343 adantll φx−∞EXDEX¬xEXx−∞EXD
345 elinel1 x−∞EXDx−∞EX
346 elioore x−∞EXx
347 346 adantl φx−∞EXx
348 139 adantr φx−∞EXEX
349 199 a1i φx−∞EX−∞*
350 348 rexrd φx−∞EXEX*
351 simpr φx−∞EXx−∞EX
352 iooltub −∞*EX*x−∞EXx<EX
353 349 350 351 352 syl3anc φx−∞EXx<EX
354 347 348 353 ltled φx−∞EXxEX
355 345 354 sylan2 φx−∞EXDxEX
356 342 344 355 syl2anc φx−∞EXDEX¬xEXxEX
357 341 356 pm2.61dan φx−∞EXDEXxEX
358 357 adantlr φi0..^Mx−∞EXDEXxEX
359 336 358 sylan2 φi0..^MxQi+∞−∞EXDEXxEX
360 359 3adantl3 φi0..^MEXQiQi+1xQi+∞−∞EXDEXxEX
361 323 324 329 335 360 eliocd φi0..^MEXQiQi+1xQi+∞−∞EXDEXxQiEX
362 322 361 impbida φi0..^MEXQiQi+1xQiEXxQi+∞−∞EXDEX
363 362 eqrdv φi0..^MEXQiQi+1QiEX=Qi+∞−∞EXDEX
364 ioossre −∞EX
365 ssinss1 −∞EX−∞EXD
366 364 365 mp1i φi0..^MEXQiQi+1−∞EXD
367 238 snssd φi0..^MEXQiQi+1EX
368 366 367 unssd φi0..^MEXQiQi+1−∞EXDEX
369 eqid topGenran.=topGenran.
370 236 369 rerest −∞EXDEXTopOpenfld𝑡−∞EXDEX=topGenran.𝑡−∞EXDEX
371 368 370 syl φi0..^MEXQiQi+1TopOpenfld𝑡−∞EXDEX=topGenran.𝑡−∞EXDEX
372 260 363 371 3eltr4d φi0..^MEXQiQi+1QiEXTopOpenfld𝑡−∞EXDEX
373 isopn3i TopOpenfld𝑡−∞EXDEXTopQiEXTopOpenfld𝑡−∞EXDEXintTopOpenfld𝑡−∞EXDEXQiEX=QiEX
374 253 372 373 sylancr φi0..^MEXQiQi+1intTopOpenfld𝑡−∞EXDEXQiEX=QiEX
375 246 374 eqtr2d φi0..^MEXQiQi+1QiEX=intTopOpenfld𝑡−∞EXDEXQiEXEX
376 243 375 eleqtrd φi0..^MEXQiQi+1EXintTopOpenfld𝑡−∞EXDEXQiEXEX
377 198 232 235 236 237 376 limcres φi0..^MEXQiQi+1F−∞EXDQiEXlimEX=F−∞EXDlimEX
378 232 resabs1d φi0..^MEXQiQi+1F−∞EXDQiEX=FQiEX
379 378 oveq1d φi0..^MEXQiQi+1F−∞EXDQiEXlimEX=FQiEXlimEX
380 191 377 379 3eqtr2d φi0..^MEXQiQi+1F−∞EXlimEX=FQiEXlimEX
381 186 feq2d φF:domFF:D
382 194 381 mpbird φF:domF
383 382 adantr φyFQiEXlimEXF:domF
384 383 3ad2antl1 φi0..^MEXQiQi+1yFQiEXlimEXF:domF
385 ioosscn QiEX
386 385 a1i φi0..^MEXQiQi+1yFQiEXlimEXQiEX
387 186 eqcomd φD=domF
388 387 3ad2ant1 φi0..^MEXQiQi+1D=domF
389 231 388 sseqtrd φi0..^MEXQiQi+1QiEXdomF
390 389 adantr φi0..^MEXQiQi+1yFQiEXlimEXQiEXdomF
391 15 a1i φZ=xBxTT
392 oveq2 x=XBx=BX
393 392 oveq1d x=XBxT=BXT
394 393 fveq2d x=XBxT=BXT
395 394 oveq1d x=XBxTT=BXTT
396 395 adantl φx=XBxTT=BXTT
397 2 14 resubcld φBX
398 2 1 resubcld φBA
399 5 398 eqeltrid φT
400 1 2 posdifd φA<B0<BA
401 3 400 mpbid φ0<BA
402 5 eqcomi BA=T
403 402 a1i φBA=T
404 401 403 breqtrd φ0<T
405 404 gt0ne0d φT0
406 397 399 405 redivcld φBXT
407 406 flcld φBXT
408 407 zred φBXT
409 408 399 remulcld φBXTT
410 391 396 14 409 fvmptd φZX=BXTT
411 410 409 eqeltrd φZX
412 411 recnd φZX
413 412 adantr φyFQiEXlimEXZX
414 413 3ad2antl1 φi0..^MEXQiQi+1yFQiEXlimEXZX
415 414 negcld φi0..^MEXQiQi+1yFQiEXlimEXZX
416 eqid z|xQiEXz=x+ZX=z|xQiEXz=x+ZX
417 ioosscn QiZXX
418 417 sseli yQiZXXy
419 418 adantl φyQiZXXy
420 412 adantr φyQiZXXZX
421 419 420 pncand φyQiZXXy+ZX-ZX=y
422 421 eqcomd φyQiZXXy=y+ZX-ZX
423 422 3ad2antl1 φi0..^MEXQiQi+1yQiZXXy=y+ZX-ZX
424 410 oveq2d φy+ZX-ZX=y+ZX-BXTT
425 424 adantr φyQiZXXy+ZX-ZX=y+ZX-BXTT
426 419 420 addcld φyQiZXXy+ZX
427 409 recnd φBXTT
428 427 adantr φyQiZXXBXTT
429 426 428 negsubd φyQiZXXy+ZX+BXTT=y+ZX-BXTT
430 407 zcnd φBXT
431 399 recnd φT
432 430 431 mulneg1d φBXTT=BXTT
433 432 eqcomd φBXTT=BXTT
434 433 oveq2d φy+ZX+BXTT=y+ZX+BXTT
435 434 adantr φyQiZXXy+ZX+BXTT=y+ZX+BXTT
436 425 429 435 3eqtr2d φyQiZXXy+ZX-ZX=y+ZX+BXTT
437 436 3ad2antl1 φi0..^MEXQiQi+1yQiZXXy+ZX-ZX=y+ZX+BXTT
438 407 znegcld φBXT
439 438 adantr φyQiZXXBXT
440 439 3ad2antl1 φi0..^MEXQiQi+1yQiZXXBXT
441 simpl1 φi0..^MEXQiQi+1yQiZXXφ
442 231 adantr φi0..^MEXQiQi+1yQiZXXQiEXD
443 205 adantr φi0..^MyQiZXXQi*
444 139 rexrd φEX*
445 444 ad2antrr φi0..^MyQiZXXEX*
446 elioore yQiZXXy
447 446 adantl φyQiZXXy
448 411 adantr φyQiZXXZX
449 447 448 readdcld φyQiZXXy+ZX
450 449 adantlr φi0..^MyQiZXXy+ZX
451 411 adantr φi0..^MZX
452 204 451 resubcld φi0..^MQiZX
453 452 rexrd φi0..^MQiZX*
454 453 adantr φi0..^MyQiZXXQiZX*
455 14 rexrd φX*
456 455 ad2antrr φi0..^MyQiZXXX*
457 simpr φi0..^MyQiZXXyQiZXX
458 ioogtlb QiZX*X*yQiZXXQiZX<y
459 454 456 457 458 syl3anc φi0..^MyQiZXXQiZX<y
460 204 adantr φi0..^MyQiZXXQi
461 451 adantr φi0..^MyQiZXXZX
462 446 adantl φi0..^MyQiZXXy
463 460 461 462 ltsubaddd φi0..^MyQiZXXQiZX<yQi<y+ZX
464 459 463 mpbid φi0..^MyQiZXXQi<y+ZX
465 14 ad2antrr φi0..^MyQiZXXX
466 iooltub QiZX*X*yQiZXXy<X
467 454 456 457 466 syl3anc φi0..^MyQiZXXy<X
468 462 465 461 467 ltadd1dd φi0..^MyQiZXXy+ZX<X+ZX
469 16 a1i φE=xx+Zx
470 id x=Xx=X
471 fveq2 x=XZx=ZX
472 470 471 oveq12d x=Xx+Zx=X+ZX
473 472 adantl φx=Xx+Zx=X+ZX
474 14 411 readdcld φX+ZX
475 469 473 14 474 fvmptd φEX=X+ZX
476 475 eqcomd φX+ZX=EX
477 476 ad2antrr φi0..^MyQiZXXX+ZX=EX
478 468 477 breqtrd φi0..^MyQiZXXy+ZX<EX
479 443 445 450 464 478 eliood φi0..^MyQiZXXy+ZXQiEX
480 479 3adantl3 φi0..^MEXQiQi+1yQiZXXy+ZXQiEX
481 442 480 sseldd φi0..^MEXQiQi+1yQiZXXy+ZXD
482 441 481 440 3jca φi0..^MEXQiQi+1yQiZXXφy+ZXDBXT
483 eleq1 k=BXTkBXT
484 483 3anbi3d k=BXTφy+ZXDkφy+ZXDBXT
485 oveq1 k=BXTkT=BXTT
486 485 oveq2d k=BXTy+ZX+kT=y+ZX+BXTT
487 486 eleq1d k=BXTy+ZX+kTDy+ZX+BXTTD
488 484 487 imbi12d k=BXTφy+ZXDky+ZX+kTDφy+ZXDBXTy+ZX+BXTTD
489 ovex y+ZXV
490 eleq1 x=y+ZXxDy+ZXD
491 490 3anbi2d x=y+ZXφxDkφy+ZXDk
492 oveq1 x=y+ZXx+kT=y+ZX+kT
493 492 eleq1d x=y+ZXx+kTDy+ZX+kTD
494 491 493 imbi12d x=y+ZXφxDkx+kTDφy+ZXDky+ZX+kTD
495 489 494 10 vtocl φy+ZXDky+ZX+kTD
496 488 495 vtoclg BXTφy+ZXDBXTy+ZX+BXTTD
497 440 482 496 sylc φi0..^MEXQiQi+1yQiZXXy+ZX+BXTTD
498 437 497 eqeltrd φi0..^MEXQiQi+1yQiZXXy+ZX-ZXD
499 423 498 eqeltrd φi0..^MEXQiQi+1yQiZXXyD
500 499 ralrimiva φi0..^MEXQiQi+1yQiZXXyD
501 dfss3 QiZXXDyQiZXXyD
502 500 501 sylibr φi0..^MEXQiQi+1QiZXXD
503 204 recnd φi0..^MQi
504 412 adantr φi0..^MZX
505 503 504 negsubd φi0..^MQi+ZX=QiZX
506 505 eqcomd φi0..^MQiZX=Qi+ZX
507 475 oveq1d φEX+ZX=X+ZX+ZX
508 474 recnd φX+ZX
509 508 412 negsubd φX+ZX+ZX=X+ZX-ZX
510 14 recnd φX
511 510 412 pncand φX+ZX-ZX=X
512 507 509 511 3eqtrrd φX=EX+ZX
513 512 adantr φi0..^MX=EX+ZX
514 506 513 oveq12d φi0..^MQiZXX=Qi+ZXEX+ZX
515 451 renegcld φi0..^MZX
516 204 278 515 iooshift φi0..^MQi+ZXEX+ZX=z|xQiEXz=x+ZX
517 514 516 eqtr2d φi0..^Mz|xQiEXz=x+ZX=QiZXX
518 517 3adant3 φi0..^MEXQiQi+1z|xQiEXz=x+ZX=QiZXX
519 186 3ad2ant1 φi0..^MEXQiQi+1domF=D
520 502 518 519 3sstr4d φi0..^MEXQiQi+1z|xQiEXz=x+ZXdomF
521 520 adantr φi0..^MEXQiQi+1yFQiEXlimEXz|xQiEXz=x+ZXdomF
522 410 negeqd φZX=BXTT
523 522 433 eqtrd φZX=BXTT
524 523 oveq2d φx+ZX=x+BXTT
525 524 fveq2d φFx+ZX=Fx+BXTT
526 525 adantr φxQiEXFx+ZX=Fx+BXTT
527 526 3ad2antl1 φi0..^MEXQiQi+1xQiEXFx+ZX=Fx+BXTT
528 438 adantr φxQiEXBXT
529 528 3ad2antl1 φi0..^MEXQiQi+1xQiEXBXT
530 simpl1 φi0..^MEXQiQi+1xQiEXφ
531 231 sselda φi0..^MEXQiQi+1xQiEXxD
532 530 531 529 3jca φi0..^MEXQiQi+1xQiEXφxDBXT
533 483 3anbi3d k=BXTφxDkφxDBXT
534 485 oveq2d k=BXTx+kT=x+BXTT
535 534 fveq2d k=BXTFx+kT=Fx+BXTT
536 535 eqeq1d k=BXTFx+kT=FxFx+BXTT=Fx
537 533 536 imbi12d k=BXTφxDkFx+kT=FxφxDBXTFx+BXTT=Fx
538 537 11 vtoclg BXTφxDBXTFx+BXTT=Fx
539 529 532 538 sylc φi0..^MEXQiQi+1xQiEXFx+BXTT=Fx
540 527 539 eqtrd φi0..^MEXQiQi+1xQiEXFx+ZX=Fx
541 540 adantlr φi0..^MEXQiQi+1yFQiEXlimEXxQiEXFx+ZX=Fx
542 simpr φi0..^MEXQiQi+1yFQiEXlimEXyFQiEXlimEX
543 384 386 390 415 416 521 541 542 limcperiod φi0..^MEXQiQi+1yFQiEXlimEXyFz|xQiEXz=x+ZXlimEX+ZX
544 517 reseq2d φi0..^MFz|xQiEXz=x+ZX=FQiZXX
545 513 eqcomd φi0..^MEX+ZX=X
546 544 545 oveq12d φi0..^MFz|xQiEXz=x+ZXlimEX+ZX=FQiZXXlimX
547 546 3adant3 φi0..^MEXQiQi+1Fz|xQiEXz=x+ZXlimEX+ZX=FQiZXXlimX
548 547 adantr φi0..^MEXQiQi+1yFQiEXlimEXFz|xQiEXz=x+ZXlimEX+ZX=FQiZXXlimX
549 543 548 eleqtrd φi0..^MEXQiQi+1yFQiEXlimEXyFQiZXXlimX
550 382 adantr φyFQiZXXlimXF:domF
551 550 3ad2antl1 φi0..^MEXQiQi+1yFQiZXXlimXF:domF
552 417 a1i φi0..^MEXQiQi+1yFQiZXXlimXQiZXX
553 502 519 sseqtrrd φi0..^MEXQiQi+1QiZXXdomF
554 553 adantr φi0..^MEXQiQi+1yFQiZXXlimXQiZXXdomF
555 412 adantr φyFQiZXXlimXZX
556 555 3ad2antl1 φi0..^MEXQiQi+1yFQiZXXlimXZX
557 eqid z|xQiZXXz=x+ZX=z|xQiZXXz=x+ZX
558 503 504 npcand φi0..^MQi-ZX+ZX=Qi
559 558 eqcomd φi0..^MQi=Qi-ZX+ZX
560 475 adantr φi0..^MEX=X+ZX
561 559 560 oveq12d φi0..^MQiEX=Qi-ZX+ZXX+ZX
562 14 adantr φi0..^MX
563 452 562 451 iooshift φi0..^MQi-ZX+ZXX+ZX=z|xQiZXXz=x+ZX
564 561 563 eqtr2d φi0..^Mz|xQiZXXz=x+ZX=QiEX
565 564 3adant3 φi0..^MEXQiQi+1z|xQiZXXz=x+ZX=QiEX
566 231 565 519 3sstr4d φi0..^MEXQiQi+1z|xQiZXXz=x+ZXdomF
567 566 adantr φi0..^MEXQiQi+1yFQiZXXlimXz|xQiZXXz=x+ZXdomF
568 410 oveq2d φx+ZX=x+BXTT
569 568 fveq2d φFx+ZX=Fx+BXTT
570 569 adantr φxQiZXXFx+ZX=Fx+BXTT
571 570 3ad2antl1 φi0..^MEXQiQi+1xQiZXXFx+ZX=Fx+BXTT
572 407 adantr φxQiZXXBXT
573 572 3ad2antl1 φi0..^MEXQiQi+1xQiZXXBXT
574 simpl1 φi0..^MEXQiQi+1xQiZXXφ
575 502 sselda φi0..^MEXQiQi+1xQiZXXxD
576 574 575 573 3jca φi0..^MEXQiQi+1xQiZXXφxDBXT
577 eleq1 k=BXTkBXT
578 577 3anbi3d k=BXTφxDkφxDBXT
579 oveq1 k=BXTkT=BXTT
580 579 oveq2d k=BXTx+kT=x+BXTT
581 580 fveq2d k=BXTFx+kT=Fx+BXTT
582 581 eqeq1d k=BXTFx+kT=FxFx+BXTT=Fx
583 578 582 imbi12d k=BXTφxDkFx+kT=FxφxDBXTFx+BXTT=Fx
584 583 11 vtoclg BXTφxDBXTFx+BXTT=Fx
585 573 576 584 sylc φi0..^MEXQiQi+1xQiZXXFx+BXTT=Fx
586 571 585 eqtrd φi0..^MEXQiQi+1xQiZXXFx+ZX=Fx
587 586 adantlr φi0..^MEXQiQi+1yFQiZXXlimXxQiZXXFx+ZX=Fx
588 simpr φi0..^MEXQiQi+1yFQiZXXlimXyFQiZXXlimX
589 551 552 554 556 557 567 587 588 limcperiod φi0..^MEXQiQi+1yFQiZXXlimXyFz|xQiZXXz=x+ZXlimX+ZX
590 564 reseq2d φi0..^MFz|xQiZXXz=x+ZX=FQiEX
591 476 adantr φi0..^MX+ZX=EX
592 590 591 oveq12d φi0..^MFz|xQiZXXz=x+ZXlimX+ZX=FQiEXlimEX
593 592 3adant3 φi0..^MEXQiQi+1Fz|xQiZXXz=x+ZXlimX+ZX=FQiEXlimEX
594 593 adantr φi0..^MEXQiQi+1yFQiZXXlimXFz|xQiZXXz=x+ZXlimX+ZX=FQiEXlimEX
595 589 594 eleqtrd φi0..^MEXQiQi+1yFQiZXXlimXyFQiEXlimEX
596 549 595 impbida φi0..^MEXQiQi+1yFQiEXlimEXyFQiZXXlimX
597 596 eqrdv φi0..^MEXQiQi+1FQiEXlimEX=FQiZXXlimX
598 resindm RelFF−∞XdomF=F−∞X
599 598 eqcomd RelFF−∞X=F−∞XdomF
600 181 599 syl φF−∞X=F−∞XdomF
601 186 ineq2d φ−∞XdomF=−∞XD
602 601 reseq2d φF−∞XdomF=F−∞XD
603 600 602 eqtrd φF−∞X=F−∞XD
604 603 oveq1d φF−∞XlimX=F−∞XDlimX
605 604 3ad2ant1 φi0..^MEXQiQi+1F−∞XlimX=F−∞XDlimX
606 inss2 −∞XDD
607 606 a1i φi0..^MEXQiQi+1−∞XDD
608 195 607 fssresd φi0..^MEXQiQi+1F−∞XD:−∞XD
609 452 mnfltd φi0..^M−∞<QiZX
610 200 453 609 xrltled φi0..^M−∞QiZX
611 iooss1 −∞*−∞QiZXQiZXX−∞X
612 199 610 611 sylancr φi0..^MQiZXX−∞X
613 612 3adant3 φi0..^MEXQiQi+1QiZXX−∞X
614 613 502 ssind φi0..^MEXQiQi+1QiZXX−∞XD
615 606 234 sstrid φi0..^MEXQiQi+1−∞XD
616 eqid TopOpenfld𝑡−∞XDX=TopOpenfld𝑡−∞XDX
617 453 3adant3 φi0..^MEXQiQi+1QiZX*
618 455 3ad2ant1 φi0..^MEXQiQi+1X*
619 475 3ad2ant1 φi0..^MEXQiQi+1EX=X+ZX
620 241 619 breqtrd φi0..^MEXQiQi+1Qi<X+ZX
621 411 3ad2ant1 φi0..^MEXQiQi+1ZX
622 14 3ad2ant1 φi0..^MEXQiQi+1X
623 216 621 622 ltsubaddd φi0..^MEXQiQi+1QiZX<XQi<X+ZX
624 620 623 mpbird φi0..^MEXQiQi+1QiZX<X
625 14 leidd φXX
626 625 3ad2ant1 φi0..^MEXQiQi+1XX
627 617 618 618 624 626 eliocd φi0..^MEXQiQi+1XQiZXX
628 ioounsn QiZX*X*QiZX<XQiZXXX=QiZXX
629 617 618 624 628 syl3anc φi0..^MEXQiQi+1QiZXXX=QiZXX
630 629 fveq2d φi0..^MEXQiQi+1intTopOpenfld𝑡−∞XDXQiZXXX=intTopOpenfld𝑡−∞XDXQiZXX
631 ovex −∞XV
632 631 inex1 −∞XDV
633 snex XV
634 632 633 unex −∞XDXV
635 resttop TopOpenfldTop−∞XDXVTopOpenfld𝑡−∞XDXTop
636 247 634 635 mp2an TopOpenfld𝑡−∞XDXTop
637 634 a1i φi0..^MEXQiQi+1−∞XDXV
638 iooretop QiZX+∞topGenran.
639 638 a1i φi0..^MEXQiQi+1QiZX+∞topGenran.
640 elrestr topGenran.Top−∞XDXVQiZX+∞topGenran.QiZX+∞−∞XDXtopGenran.𝑡−∞XDX
641 255 637 639 640 syl3anc φi0..^MEXQiQi+1QiZX+∞−∞XDXtopGenran.𝑡−∞XDX
642 453 adantr φi0..^MxQiZXXQiZX*
643 262 a1i φi0..^MxQiZXX+∞*
644 14 ad2antrr φi0..^MxQiZXXX
645 iocssre QiZX*XQiZXX
646 642 644 645 syl2anc φi0..^MxQiZXXQiZXX
647 simpr φi0..^MxQiZXXxQiZXX
648 646 647 sseldd φi0..^MxQiZXXx
649 455 ad2antrr φi0..^MxQiZXXX*
650 iocgtlb QiZX*X*xQiZXXQiZX<x
651 642 649 647 650 syl3anc φi0..^MxQiZXXQiZX<x
652 648 ltpnfd φi0..^MxQiZXXx<+∞
653 642 643 648 651 652 eliood φi0..^MxQiZXXxQiZX+∞
654 653 3adantl3 φi0..^MEXQiQi+1xQiZXXxQiZX+∞
655 eqvisset x=XXV
656 snidg XVXX
657 655 656 syl x=XXX
658 470 657 eqeltrd x=XxX
659 elun2 xXx−∞XDX
660 658 659 syl x=Xx−∞XDX
661 660 adantl φi0..^MEXQiQi+1xQiZXXx=Xx−∞XDX
662 simpll φi0..^MEXQiQi+1xQiZXX¬x=Xφi0..^MEXQiQi+1
663 642 adantr φi0..^MxQiZXX¬x=XQiZX*
664 455 ad3antrrr φi0..^MxQiZXX¬x=XX*
665 648 adantr φi0..^MxQiZXX¬x=Xx
666 651 adantr φi0..^MxQiZXX¬x=XQiZX<x
667 14 ad3antrrr φi0..^MxQiZXX¬x=XX
668 iocleub QiZX*X*xQiZXXxX
669 642 649 647 668 syl3anc φi0..^MxQiZXXxX
670 669 adantr φi0..^MxQiZXX¬x=XxX
671 470 eqcoms X=xx=X
672 671 necon3bi ¬x=XXx
673 672 adantl φi0..^MxQiZXX¬x=XXx
674 665 667 670 673 leneltd φi0..^MxQiZXX¬x=Xx<X
675 663 664 665 666 674 eliood φi0..^MxQiZXX¬x=XxQiZXX
676 675 3adantll3 φi0..^MEXQiQi+1xQiZXX¬x=XxQiZXX
677 614 sselda φi0..^MEXQiQi+1xQiZXXx−∞XD
678 elun1 x−∞XDx−∞XDX
679 677 678 syl φi0..^MEXQiQi+1xQiZXXx−∞XDX
680 662 676 679 syl2anc φi0..^MEXQiQi+1xQiZXX¬x=Xx−∞XDX
681 661 680 pm2.61dan φi0..^MEXQiQi+1xQiZXXx−∞XDX
682 654 681 elind φi0..^MEXQiQi+1xQiZXXxQiZX+∞−∞XDX
683 617 adantr φi0..^MEXQiQi+1xQiZX+∞−∞XDXQiZX*
684 618 adantr φi0..^MEXQiQi+1xQiZX+∞−∞XDXX*
685 elinel1 xQiZX+∞−∞XDXxQiZX+∞
686 elioore xQiZX+∞x
687 685 686 syl xQiZX+∞−∞XDXx
688 687 rexrd xQiZX+∞−∞XDXx*
689 688 adantl φi0..^MEXQiQi+1xQiZX+∞−∞XDXx*
690 453 adantr φi0..^MxQiZX+∞−∞XDXQiZX*
691 262 a1i φi0..^MxQiZX+∞−∞XDX+∞*
692 685 adantl φi0..^MxQiZX+∞−∞XDXxQiZX+∞
693 ioogtlb QiZX*+∞*xQiZX+∞QiZX<x
694 690 691 692 693 syl3anc φi0..^MxQiZX+∞−∞XDXQiZX<x
695 694 3adantl3 φi0..^MEXQiQi+1xQiZX+∞−∞XDXQiZX<x
696 elinel2 xQiZX+∞−∞XDXx−∞XDX
697 elsni xXx=X
698 697 adantl φxXx=X
699 625 adantr φxXXX
700 698 699 eqbrtrd φxXxX
701 700 adantlr φx−∞XDXxXxX
702 simpll φx−∞XDX¬xXφ
703 elunnel2 x−∞XDX¬xXx−∞XD
704 703 adantll φx−∞XDX¬xXx−∞XD
705 elinel1 x−∞XDx−∞X
706 704 705 syl φx−∞XDX¬xXx−∞X
707 elioore x−∞Xx
708 707 adantl φx−∞Xx
709 14 adantr φx−∞XX
710 199 a1i φx−∞X−∞*
711 455 adantr φx−∞XX*
712 simpr φx−∞Xx−∞X
713 iooltub −∞*X*x−∞Xx<X
714 710 711 712 713 syl3anc φx−∞Xx<X
715 708 709 714 ltled φx−∞XxX
716 702 706 715 syl2anc φx−∞XDX¬xXxX
717 701 716 pm2.61dan φx−∞XDXxX
718 696 717 sylan2 φxQiZX+∞−∞XDXxX
719 718 3ad2antl1 φi0..^MEXQiQi+1xQiZX+∞−∞XDXxX
720 683 684 689 695 719 eliocd φi0..^MEXQiQi+1xQiZX+∞−∞XDXxQiZXX
721 682 720 impbida φi0..^MEXQiQi+1xQiZXXxQiZX+∞−∞XDX
722 721 eqrdv φi0..^MEXQiQi+1QiZXX=QiZX+∞−∞XDX
723 606 8 sstrid φ−∞XD
724 14 snssd φX
725 723 724 unssd φ−∞XDX
726 725 3ad2ant1 φi0..^MEXQiQi+1−∞XDX
727 236 369 rerest −∞XDXTopOpenfld𝑡−∞XDX=topGenran.𝑡−∞XDX
728 726 727 syl φi0..^MEXQiQi+1TopOpenfld𝑡−∞XDX=topGenran.𝑡−∞XDX
729 641 722 728 3eltr4d φi0..^MEXQiQi+1QiZXXTopOpenfld𝑡−∞XDX
730 isopn3i TopOpenfld𝑡−∞XDXTopQiZXXTopOpenfld𝑡−∞XDXintTopOpenfld𝑡−∞XDXQiZXX=QiZXX
731 636 729 730 sylancr φi0..^MEXQiQi+1intTopOpenfld𝑡−∞XDXQiZXX=QiZXX
732 630 731 eqtr2d φi0..^MEXQiQi+1QiZXX=intTopOpenfld𝑡−∞XDXQiZXXX
733 627 732 eleqtrd φi0..^MEXQiQi+1XintTopOpenfld𝑡−∞XDXQiZXXX
734 608 614 615 236 616 733 limcres φi0..^MEXQiQi+1F−∞XDQiZXXlimX=F−∞XDlimX
735 734 eqcomd φi0..^MEXQiQi+1F−∞XDlimX=F−∞XDQiZXXlimX
736 614 resabs1d φi0..^MEXQiQi+1F−∞XDQiZXX=FQiZXX
737 736 oveq1d φi0..^MEXQiQi+1F−∞XDQiZXXlimX=FQiZXXlimX
738 605 735 737 3eqtrrd φi0..^MEXQiQi+1FQiZXXlimX=F−∞XlimX
739 380 597 738 3eqtrrd φi0..^MEXQiQi+1F−∞XlimX=F−∞EXlimEX
740 739 rexlimdv3a φi0..^MEXQiQi+1F−∞XlimX=F−∞EXlimEX
741 179 740 mpd φF−∞XlimX=F−∞EXlimEX
742 126 3adant3 φi0..^MEXQiQi+1Qi<Qi+1
743 12 3adant3 φi0..^MEXQiQi+1FQiQi+1:QiQi+1cn
744 13 3adant3 φi0..^MEXQiQi+1LFQiQi+1limQi+1
745 eqid ifEX=Qi+1LFQiQi+1EX=ifEX=Qi+1LFQiQi+1EX
746 eqid TopOpenfld𝑡QiQi+1Qi+1=TopOpenfld𝑡QiQi+1Qi+1
747 216 214 742 743 744 216 238 241 222 745 746 fourierdlem33 φi0..^MEXQiQi+1ifEX=Qi+1LFQiQi+1EXFQiQi+1QiEXlimEX
748 222 resabs1d φi0..^MEXQiQi+1FQiQi+1QiEX=FQiEX
749 748 oveq1d φi0..^MEXQiQi+1FQiQi+1QiEXlimEX=FQiEXlimEX
750 747 749 eleqtrd φi0..^MEXQiQi+1ifEX=Qi+1LFQiQi+1EXFQiEXlimEX
751 ne0i ifEX=Qi+1LFQiQi+1EXFQiEXlimEXFQiEXlimEX
752 750 751 syl φi0..^MEXQiQi+1FQiEXlimEX
753 380 752 eqnetrd φi0..^MEXQiQi+1F−∞EXlimEX
754 753 rexlimdv3a φi0..^MEXQiQi+1F−∞EXlimEX
755 179 754 mpd φF−∞EXlimEX
756 741 755 eqnetrd φF−∞XlimX