Metamath Proof Explorer


Theorem lgsquadlem2

Description: Lemma for lgsquad . Count the members of S with even coordinates, and combine with lgsquadlem1 to get the total count of lattice points in S (up to parity). (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses lgseisen.1 φP2
lgseisen.2 φQ2
lgseisen.3 φPQ
lgsquad.4 M=P12
lgsquad.5 N=Q12
lgsquad.6 S=xy|x1My1NyP<xQ
Assertion lgsquadlem2 φQ/LP=1S

Proof

Step Hyp Ref Expression
1 lgseisen.1 φP2
2 lgseisen.2 φQ2
3 lgseisen.3 φPQ
4 lgsquad.4 M=P12
5 lgsquad.5 N=Q12
6 lgsquad.6 S=xy|x1My1NyP<xQ
7 1 2 3 lgseisen φQ/LP=1u=1P12QP2u
8 4 oveq2i 1M=1P12
9 8 sumeq1i u=1MQP2u=u=1P12QP2u
10 1 4 gausslemma2dlem0b φM
11 10 nnred φM
12 11 rehalfcld φM2
13 12 flcld φM2
14 13 zred φM2
15 14 ltp1d φM2<M2+1
16 fzdisj M2<M2+11M2M2+1M=
17 15 16 syl φ1M2M2+1M=
18 10 nnrpd φM+
19 18 rphalfcld φM2+
20 19 rpge0d φ0M2
21 flge0nn0 M20M2M20
22 12 20 21 syl2anc φM20
23 10 nnnn0d φM0
24 rphalflt M+M2<M
25 18 24 syl φM2<M
26 10 nnzd φM
27 fllt M2MM2<MM2<M
28 12 26 27 syl2anc φM2<MM2<M
29 25 28 mpbid φM2<M
30 14 11 29 ltled φM2M
31 elfz2nn0 M20MM20M0M2M
32 22 23 30 31 syl3anbrc φM20M
33 nn0uz 0=0
34 23 33 eleqtrdi φM0
35 elfzp12 M0M20MM2=0M20+1M
36 34 35 syl φM20MM2=0M20+1M
37 32 36 mpbid φM2=0M20+1M
38 un0 1M=1M
39 uncom 1M=1M
40 38 39 eqtr3i 1M=1M
41 oveq2 M2=01M2=10
42 fz10 10=
43 41 42 eqtrdi M2=01M2=
44 oveq1 M2=0M2+1=0+1
45 0p1e1 0+1=1
46 44 45 eqtrdi M2=0M2+1=1
47 46 oveq1d M2=0M2+1M=1M
48 43 47 uneq12d M2=01M2M2+1M=1M
49 40 48 eqtr4id M2=01M=1M2M2+1M
50 fzsplit M21M1M=1M2M2+1M
51 45 oveq1i 0+1M=1M
52 50 51 eleq2s M20+1M1M=1M2M2+1M
53 49 52 jaoi M2=0M20+1M1M=1M2M2+1M
54 37 53 syl φ1M=1M2M2+1M
55 fzfid φ1MFin
56 2 gausslemma2dlem0a φQ
57 56 nnred φQ
58 1 gausslemma2dlem0a φP
59 57 58 nndivred φQP
60 59 adantr φu1MQP
61 2nn 2
62 elfznn u1Mu
63 62 adantl φu1Mu
64 nnmulcl 2u2u
65 61 63 64 sylancr φu1M2u
66 65 nnred φu1M2u
67 60 66 remulcld φu1MQP2u
68 56 nnrpd φQ+
69 58 nnrpd φP+
70 68 69 rpdivcld φQP+
71 70 adantr φu1MQP+
72 65 nnrpd φu1M2u+
73 71 72 rpmulcld φu1MQP2u+
74 73 rpge0d φu1M0QP2u
75 flge0nn0 QP2u0QP2uQP2u0
76 67 74 75 syl2anc φu1MQP2u0
77 76 nn0cnd φu1MQP2u
78 17 54 55 77 fsumsplit φu=1MQP2u=u=1M2QP2u+u=M2+1MQP2u
79 9 78 eqtr3id φu=1P12QP2u=u=1M2QP2u+u=M2+1MQP2u
80 79 oveq2d φ1u=1P12QP2u=1u=1M2QP2u+u=M2+1MQP2u
81 neg1cn 1
82 81 a1i φ1
83 fzfid φM2+1MFin
84 ssun2 M2+1M1M2M2+1M
85 84 54 sseqtrrid φM2+1M1M
86 85 sselda φuM2+1Mu1M
87 86 76 syldan φuM2+1MQP2u0
88 83 87 fsumnn0cl φu=M2+1MQP2u0
89 fzfid φ1M2Fin
90 ssun1 1M21M2M2+1M
91 90 54 sseqtrrid φ1M21M
92 91 sselda φu1M2u1M
93 92 76 syldan φu1M2QP2u0
94 89 93 fsumnn0cl φu=1M2QP2u0
95 82 88 94 expaddd φ1u=1M2QP2u+u=M2+1MQP2u=1u=1M2QP2u1u=M2+1MQP2u
96 fzfid φ1NFin
97 xpfi 1MFin1NFin1M×1NFin
98 55 96 97 syl2anc φ1M×1NFin
99 opabssxp xy|x1My1NyP<xQ1M×1N
100 6 99 eqsstri S1M×1N
101 ssfi 1M×1NFinS1M×1NSFin
102 98 100 101 sylancl φSFin
103 ssrab2 zS|¬21stzS
104 ssfi SFinzS|¬21stzSzS|¬21stzFin
105 102 103 104 sylancl φzS|¬21stzFin
106 hashcl zS|¬21stzFinzS|¬21stz0
107 105 106 syl φzS|¬21stz0
108 ssrab2 zS|21stzS
109 ssfi SFinzS|21stzSzS|21stzFin
110 102 108 109 sylancl φzS|21stzFin
111 hashcl zS|21stzFinzS|21stz0
112 110 111 syl φzS|21stz0
113 82 107 112 expaddd φ1zS|21stz+zS|¬21stz=1zS|21stz1zS|¬21stz
114 92 65 syldan φu1M22u
115 fzfid φu1M21QP2uFin
116 xpsnen2g 2u1QP2uFin2u×1QP2u1QP2u
117 114 115 116 syl2anc φu1M22u×1QP2u1QP2u
118 hasheni 2u×1QP2u1QP2u2u×1QP2u=1QP2u
119 117 118 syl φu1M22u×1QP2u=1QP2u
120 ssrab2 zS|2u=1stzS
121 6 relopabiv RelS
122 relss zS|2u=1stzSRelSRelzS|2u=1stz
123 120 121 122 mp2 RelzS|2u=1stz
124 relxp Rel2u×1QP2u
125 6 eleq2i xySxyxy|x1My1NyP<xQ
126 opabidw xyxy|x1My1NyP<xQx1My1NyP<xQ
127 125 126 bitri xySx1My1NyP<xQ
128 anass yyNyP<Q2uyyNyP<Q2u
129 114 adantr φu1M2y2u
130 129 nnred φu1M2y2u
131 58 ad2antrr φu1M2yP
132 131 nnred φu1M2yP
133 132 rehalfcld φu1M2yP2
134 11 adantr φu1M2M
135 134 adantr φu1M2yM
136 elfzle2 u1M2uM2
137 136 adantl φu1M2uM2
138 134 rehalfcld φu1M2M2
139 elfzelz u1M2u
140 139 adantl φu1M2u
141 flge M2uuM2uM2
142 138 140 141 syl2anc φu1M2uM2uM2
143 137 142 mpbird φu1M2uM2
144 elfznn u1M2u
145 144 adantl φu1M2u
146 145 nnred φu1M2u
147 2re 2
148 147 a1i φu1M22
149 2pos 0<2
150 149 a1i φu1M20<2
151 lemuldiv2 uM20<22uMuM2
152 146 134 148 150 151 syl112anc φu1M22uMuM2
153 143 152 mpbird φu1M22uM
154 153 adantr φu1M2y2uM
155 132 ltm1d φu1M2yP1<P
156 peano2rem PP1
157 132 156 syl φu1M2yP1
158 147 a1i φu1M2y2
159 149 a1i φu1M2y0<2
160 ltdiv1 P1P20<2P1<PP12<P2
161 157 132 158 159 160 syl112anc φu1M2yP1<PP12<P2
162 155 161 mpbid φu1M2yP12<P2
163 4 162 eqbrtrid φu1M2yM<P2
164 130 135 133 154 163 lelttrd φu1M2y2u<P2
165 131 nnrpd φu1M2yP+
166 rphalflt P+P2<P
167 165 166 syl φu1M2yP2<P
168 130 133 132 164 167 lttrd φu1M2y2u<P
169 130 132 ltnled φu1M2y2u<P¬P2u
170 168 169 mpbid φu1M2y¬P2u
171 1 eldifad φP
172 171 ad2antrr φu1M2yP
173 prmz PP
174 172 173 syl φu1M2yP
175 dvdsle P2uP2uP2u
176 174 129 175 syl2anc φu1M2yP2uP2u
177 170 176 mtod φu1M2y¬P2u
178 2 eldifad φQ
179 prmrp PQPgcdQ=1PQ
180 171 178 179 syl2anc φPgcdQ=1PQ
181 3 180 mpbird φPgcdQ=1
182 181 ad2antrr φu1M2yPgcdQ=1
183 178 ad2antrr φu1M2yQ
184 prmz QQ
185 183 184 syl φu1M2yQ
186 129 nnzd φu1M2y2u
187 coprmdvds PQ2uPQ2uPgcdQ=1P2u
188 174 185 186 187 syl3anc φu1M2yPQ2uPgcdQ=1P2u
189 182 188 mpan2d φu1M2yPQ2uP2u
190 177 189 mtod φu1M2y¬PQ2u
191 nnz yy
192 191 adantl φu1M2yy
193 dvdsmul2 yPPyP
194 192 174 193 syl2anc φu1M2yPyP
195 breq2 Q2u=yPPQ2uPyP
196 194 195 syl5ibrcom φu1M2yQ2u=yPPQ2u
197 196 necon3bd φu1M2y¬PQ2uQ2uyP
198 190 197 mpd φu1M2yQ2uyP
199 simpr φu1M2yy
200 199 131 nnmulcld φu1M2yyP
201 200 nnred φu1M2yyP
202 56 adantr φu1M2Q
203 202 114 nnmulcld φu1M2Q2u
204 203 adantr φu1M2yQ2u
205 204 nnred φu1M2yQ2u
206 201 205 ltlend φu1M2yyP<Q2uyPQ2uQ2uyP
207 198 206 mpbiran2d φu1M2yyP<Q2uyPQ2u
208 nnre yy
209 208 adantl φu1M2yy
210 131 nngt0d φu1M2y0<P
211 lemuldiv yQ2uP0<PyPQ2uyQ2uP
212 209 205 132 210 211 syl112anc φu1M2yyPQ2uyQ2uP
213 202 adantr φu1M2yQ
214 213 nncnd φu1M2yQ
215 129 nncnd φu1M2y2u
216 131 nncnd φu1M2yP
217 131 nnne0d φu1M2yP0
218 214 215 216 217 div23d φu1M2yQ2uP=QP2u
219 218 breq2d φu1M2yyQ2uPyQP2u
220 207 212 219 3bitrd φu1M2yyP<Q2uyQP2u
221 213 nnred φu1M2yQ
222 213 nngt0d φu1M2y0<Q
223 ltmul2 2uP2Q0<Q2u<P2Q2u<QP2
224 130 133 221 222 223 syl112anc φu1M2y2u<P2Q2u<QP2
225 164 224 mpbid φu1M2yQ2u<QP2
226 2cnd φu1M2y2
227 2ne0 20
228 227 a1i φu1M2y20
229 divass QP220QP2=QP2
230 div23 QP220QP2=Q2P
231 229 230 eqtr3d QP220QP2=Q2P
232 214 216 226 228 231 syl112anc φu1M2yQP2=Q2P
233 225 232 breqtrd φu1M2yQ2u<Q2P
234 221 rehalfcld φu1M2yQ2
235 234 132 remulcld φu1M2yQ2P
236 lttr yPQ2uQ2PyP<Q2uQ2u<Q2PyP<Q2P
237 201 205 235 236 syl3anc φu1M2yyP<Q2uQ2u<Q2PyP<Q2P
238 233 237 mpan2d φu1M2yyP<Q2uyP<Q2P
239 ltmul1 yQ2P0<Py<Q2yP<Q2P
240 209 234 132 210 239 syl112anc φu1M2yy<Q2yP<Q2P
241 238 240 sylibrd φu1M2yyP<Q2uy<Q2
242 peano2rem QQ1
243 221 242 syl φu1M2yQ1
244 243 recnd φu1M2yQ1
245 214 244 226 228 divsubdird φu1M2yQQ12=Q2Q12
246 5 oveq2i Q2N=Q2Q12
247 245 246 eqtr4di φu1M2yQQ12=Q2N
248 ax-1cn 1
249 nncan Q1QQ1=1
250 214 248 249 sylancl φu1M2yQQ1=1
251 250 oveq1d φu1M2yQQ12=12
252 halflt1 12<1
253 251 252 eqbrtrdi φu1M2yQQ12<1
254 247 253 eqbrtrrd φu1M2yQ2N<1
255 2 5 gausslemma2dlem0b φN
256 255 ad2antrr φu1M2yN
257 256 nnred φu1M2yN
258 1red φu1M2y1
259 234 257 258 ltsubadd2d φu1M2yQ2N<1Q2<N+1
260 254 259 mpbid φu1M2yQ2<N+1
261 peano2re NN+1
262 257 261 syl φu1M2yN+1
263 lttr yQ2N+1y<Q2Q2<N+1y<N+1
264 209 234 262 263 syl3anc φu1M2yy<Q2Q2<N+1y<N+1
265 260 264 mpan2d φu1M2yy<Q2y<N+1
266 241 265 syld φu1M2yyP<Q2uy<N+1
267 nnleltp1 yNyNy<N+1
268 199 256 267 syl2anc φu1M2yyNy<N+1
269 266 268 sylibrd φu1M2yyP<Q2uyN
270 269 pm4.71rd φu1M2yyP<Q2uyNyP<Q2u
271 92 67 syldan φu1M2QP2u
272 flge QP2uyyQP2uyQP2u
273 271 191 272 syl2an φu1M2yyQP2uyQP2u
274 220 270 273 3bitr3d φu1M2yyNyP<Q2uyQP2u
275 274 pm5.32da φu1M2yyNyP<Q2uyyQP2u
276 128 275 bitrid φu1M2yyNyP<Q2uyyQP2u
277 276 adantr φu1M2x=2uyyNyP<Q2uyyQP2u
278 simpr φu1M2x=2ux=2u
279 nnuz =1
280 114 279 eleqtrdi φu1M22u1
281 26 adantr φu1M2M
282 elfz5 2u1M2u1M2uM
283 280 281 282 syl2anc φu1M22u1M2uM
284 153 283 mpbird φu1M22u1M
285 284 adantr φu1M2x=2u2u1M
286 278 285 eqeltrd φu1M2x=2ux1M
287 286 biantrurd φu1M2x=2uy1Nx1My1N
288 255 nnzd φN
289 288 ad2antrr φu1M2x=2uN
290 fznn Ny1NyyN
291 289 290 syl φu1M2x=2uy1NyyN
292 287 291 bitr3d φu1M2x=2ux1My1NyyN
293 oveq1 x=2uxQ=2uQ
294 114 nncnd φu1M22u
295 202 nncnd φu1M2Q
296 294 295 mulcomd φu1M22uQ=Q2u
297 293 296 sylan9eqr φu1M2x=2uxQ=Q2u
298 297 breq2d φu1M2x=2uyP<xQyP<Q2u
299 292 298 anbi12d φu1M2x=2ux1My1NyP<xQyyNyP<Q2u
300 271 flcld φu1M2QP2u
301 fznn QP2uy1QP2uyyQP2u
302 300 301 syl φu1M2y1QP2uyyQP2u
303 302 adantr φu1M2x=2uy1QP2uyyQP2u
304 277 299 303 3bitr4d φu1M2x=2ux1My1NyP<xQy1QP2u
305 127 304 bitrid φu1M2x=2uxySy1QP2u
306 305 pm5.32da φu1M2x=2uxySx=2uy1QP2u
307 vex xV
308 vex yV
309 307 308 op1std z=xy1stz=x
310 309 eqeq2d z=xy2u=1stz2u=x
311 eqcom 2u=xx=2u
312 310 311 bitrdi z=xy2u=1stzx=2u
313 312 elrab xyzS|2u=1stzxySx=2u
314 313 biancomi xyzS|2u=1stzx=2uxyS
315 opelxp xy2u×1QP2ux2uy1QP2u
316 velsn x2ux=2u
317 316 anbi1i x2uy1QP2ux=2uy1QP2u
318 315 317 bitri xy2u×1QP2ux=2uy1QP2u
319 306 314 318 3bitr4g φu1M2xyzS|2u=1stzxy2u×1QP2u
320 123 124 319 eqrelrdv φu1M2zS|2u=1stz=2u×1QP2u
321 320 eqcomd φu1M22u×1QP2u=zS|2u=1stz
322 321 fveq2d φu1M22u×1QP2u=zS|2u=1stz
323 hashfz1 QP2u01QP2u=QP2u
324 93 323 syl φu1M21QP2u=QP2u
325 119 322 324 3eqtr3rd φu1M2QP2u=zS|2u=1stz
326 325 sumeq2dv φu=1M2QP2u=u=1M2zS|2u=1stz
327 102 adantr φu1M2SFin
328 ssfi SFinzS|2u=1stzSzS|2u=1stzFin
329 327 120 328 sylancl φu1M2zS|2u=1stzFin
330 fveq2 z=v1stz=1stv
331 330 eqeq2d z=v2u=1stz2u=1stv
332 331 elrab vzS|2u=1stzvS2u=1stv
333 332 simprbi vzS|2u=1stz2u=1stv
334 333 ad2antll φu1M2vzS|2u=1stz2u=1stv
335 334 oveq1d φu1M2vzS|2u=1stz2u2=1stv2
336 145 nncnd φu1M2u
337 336 adantrr φu1M2vzS|2u=1stzu
338 2cnd φu1M2vzS|2u=1stz2
339 227 a1i φu1M2vzS|2u=1stz20
340 337 338 339 divcan3d φu1M2vzS|2u=1stz2u2=u
341 335 340 eqtr3d φu1M2vzS|2u=1stz1stv2=u
342 341 ralrimivva φu1M2vzS|2u=1stz1stv2=u
343 invdisj u1M2vzS|2u=1stz1stv2=uDisju=1M2zS|2u=1stz
344 342 343 syl φDisju=1M2zS|2u=1stz
345 89 329 344 hashiun φu=1M2zS|2u=1stz=u=1M2zS|2u=1stz
346 iunrab u=1M2zS|2u=1stz=zS|u1M22u=1stz
347 2cn 2
348 zcn uu
349 348 adantl φzSuu
350 mulcom 2u2u=u2
351 347 349 350 sylancr φzSu2u=u2
352 351 eqeq1d φzSu2u=1stzu2=1stz
353 352 rexbidva φzSu2u=1stzuu2=1stz
354 139 anim1i u1M22u=1stzu2u=1stz
355 354 reximi2 u1M22u=1stzu2u=1stz
356 simprr φzSu2u=1stz2u=1stz
357 simpr φzSzS
358 100 357 sselid φzSz1M×1N
359 xp1st z1M×1N1stz1M
360 358 359 syl φzS1stz1M
361 360 adantr φzSu2u=1stz1stz1M
362 elfzle2 1stz1M1stzM
363 361 362 syl φzSu2u=1stz1stzM
364 356 363 eqbrtrd φzSu2u=1stz2uM
365 zre uu
366 365 ad2antrl φzSu2u=1stzu
367 11 ad2antrr φzSu2u=1stzM
368 147 a1i φzSu2u=1stz2
369 149 a1i φzSu2u=1stz0<2
370 366 367 368 369 151 syl112anc φzSu2u=1stz2uMuM2
371 364 370 mpbid φzSu2u=1stzuM2
372 12 ad2antrr φzSu2u=1stzM2
373 simprl φzSu2u=1stzu
374 372 373 141 syl2anc φzSu2u=1stzuM2uM2
375 371 374 mpbid φzSu2u=1stzuM2
376 2t0e0 20=0
377 elfznn 1stz1M1stz
378 361 377 syl φzSu2u=1stz1stz
379 356 378 eqeltrd φzSu2u=1stz2u
380 379 nngt0d φzSu2u=1stz0<2u
381 376 380 eqbrtrid φzSu2u=1stz20<2u
382 0red φzSu2u=1stz0
383 ltmul2 0u20<20<u20<2u
384 382 366 368 369 383 syl112anc φzSu2u=1stz0<u20<2u
385 381 384 mpbird φzSu2u=1stz0<u
386 elnnz uu0<u
387 373 385 386 sylanbrc φzSu2u=1stzu
388 387 279 eleqtrdi φzSu2u=1stzu1
389 13 ad2antrr φzSu2u=1stzM2
390 elfz5 u1M2u1M2uM2
391 388 389 390 syl2anc φzSu2u=1stzu1M2uM2
392 375 391 mpbird φzSu2u=1stzu1M2
393 392 356 jca φzSu2u=1stzu1M22u=1stz
394 393 ex φzSu2u=1stzu1M22u=1stz
395 394 reximdv2 φzSu2u=1stzu1M22u=1stz
396 355 395 impbid2 φzSu1M22u=1stzu2u=1stz
397 2z 2
398 360 elfzelzd φzS1stz
399 divides 21stz21stzuu2=1stz
400 397 398 399 sylancr φzS21stzuu2=1stz
401 353 396 400 3bitr4d φzSu1M22u=1stz21stz
402 401 rabbidva φzS|u1M22u=1stz=zS|21stz
403 346 402 eqtrid φu=1M2zS|2u=1stz=zS|21stz
404 403 fveq2d φu=1M2zS|2u=1stz=zS|21stz
405 326 345 404 3eqtr2d φu=1M2QP2u=zS|21stz
406 405 oveq2d φ1u=1M2QP2u=1zS|21stz
407 1 2 3 4 5 6 lgsquadlem1 φ1u=M2+1MQP2u=1zS|¬21stz
408 406 407 oveq12d φ1u=1M2QP2u1u=M2+1MQP2u=1zS|21stz1zS|¬21stz
409 113 408 eqtr4d φ1zS|21stz+zS|¬21stz=1u=1M2QP2u1u=M2+1MQP2u
410 inrab zS|21stzzS|¬21stz=zS|21stz¬21stz
411 pm3.24 ¬21stz¬21stz
412 411 a1i φ¬21stz¬21stz
413 412 ralrimivw φzS¬21stz¬21stz
414 rabeq0 zS|21stz¬21stz=zS¬21stz¬21stz
415 413 414 sylibr φzS|21stz¬21stz=
416 410 415 eqtrid φzS|21stzzS|¬21stz=
417 hashun zS|21stzFinzS|¬21stzFinzS|21stzzS|¬21stz=zS|21stzzS|¬21stz=zS|21stz+zS|¬21stz
418 110 105 416 417 syl3anc φzS|21stzzS|¬21stz=zS|21stz+zS|¬21stz
419 unrab zS|21stzzS|¬21stz=zS|21stz¬21stz
420 exmid 21stz¬21stz
421 420 rgenw zS21stz¬21stz
422 rabid2 S=zS|21stz¬21stzzS21stz¬21stz
423 421 422 mpbir S=zS|21stz¬21stz
424 419 423 eqtr4i zS|21stzzS|¬21stz=S
425 424 fveq2i zS|21stzzS|¬21stz=S
426 418 425 eqtr3di φzS|21stz+zS|¬21stz=S
427 426 oveq2d φ1zS|21stz+zS|¬21stz=1S
428 95 409 427 3eqtr2d φ1u=1M2QP2u+u=M2+1MQP2u=1S
429 7 80 428 3eqtrd φQ/LP=1S