Metamath Proof Explorer


Theorem stoweidlem26

Description: This lemma is used to prove that there is a function g as in the proof of BrosowskiDeutsh p. 92: this lemma proves that g(t) > ( j - 4 / 3 ) * ε. Here L is used to represnt j in the paper, D is used to represent A in the paper, S is used to represent t, and E is used to represent ε. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses stoweidlem26.1 _tF
stoweidlem26.2 jφ
stoweidlem26.3 tφ
stoweidlem26.4 D=j0NtT|Ftj13E
stoweidlem26.5 B=j0NtT|j+13EFt
stoweidlem26.6 φN
stoweidlem26.7 φTV
stoweidlem26.8 φL1N
stoweidlem26.9 φSDLDL1
stoweidlem26.10 φF:T
stoweidlem26.11 φE+
stoweidlem26.12 φE<13
stoweidlem26.13 φi0NXi:T
stoweidlem26.14 φi0NtT0Xit
stoweidlem26.15 φi0NtBi1EN<Xit
Assertion stoweidlem26 φL43E<tTi=0NEXitS

Proof

Step Hyp Ref Expression
1 stoweidlem26.1 _tF
2 stoweidlem26.2 jφ
3 stoweidlem26.3 tφ
4 stoweidlem26.4 D=j0NtT|Ftj13E
5 stoweidlem26.5 B=j0NtT|j+13EFt
6 stoweidlem26.6 φN
7 stoweidlem26.7 φTV
8 stoweidlem26.8 φL1N
9 stoweidlem26.9 φSDLDL1
10 stoweidlem26.10 φF:T
11 stoweidlem26.11 φE+
12 stoweidlem26.12 φE<13
13 stoweidlem26.13 φi0NXi:T
14 stoweidlem26.14 φi0NtT0Xit
15 stoweidlem26.15 φi0NtBi1EN<Xit
16 1re 1
17 eleq1 L=1L1
18 16 17 mpbiri L=1L
19 18 adantl φL=1L
20 4re 4
21 20 a1i φL=14
22 3re 3
23 22 a1i φL=13
24 3ne0 30
25 24 a1i φL=130
26 21 23 25 redivcld φL=143
27 19 26 resubcld φL=1L43
28 11 rpred φE
29 28 adantr φL=1E
30 27 29 remulcld φL=1L43E
31 0red φL=10
32 fzfid φ0NFin
33 28 adantr φi0NE
34 eldif SDLDL1SDL¬SDL1
35 9 34 sylib φSDL¬SDL1
36 35 simpld φSDL
37 oveq1 j=Lj13=L13
38 37 oveq1d j=Lj13E=L13E
39 38 breq2d j=LFtj13EFtL13E
40 39 rabbidv j=LtT|Ftj13E=tT|FtL13E
41 fz1ssfz0 1N0N
42 41 8 sselid φL0N
43 rabexg TVtT|FtL13EV
44 7 43 syl φtT|FtL13EV
45 4 40 42 44 fvmptd3 φDL=tT|FtL13E
46 36 45 eleqtrd φStT|FtL13E
47 nfcv _tS
48 nfcv _tT
49 1 47 nffv _tFS
50 nfcv _t
51 nfcv _tL13E
52 49 50 51 nfbr tFSL13E
53 fveq2 t=SFt=FS
54 53 breq1d t=SFtL13EFSL13E
55 47 48 52 54 elrabf StT|FtL13ESTFSL13E
56 46 55 sylib φSTFSL13E
57 56 simpld φST
58 57 adantr φi0NST
59 13 58 ffvelcdmd φi0NXiS
60 33 59 remulcld φi0NEXiS
61 32 60 fsumrecl φi=0NEXiS
62 61 adantr φL=1i=0NEXiS
63 20 22 24 redivcli 43
64 63 a1i φL=143
65 19 64 resubcld φL=1L43
66 19 recnd φL=1L
67 66 subid1d φL=1L0=L
68 3cn 3
69 68 24 dividi 33=1
70 3lt4 3<4
71 3pos 0<3
72 22 20 22 71 ltdiv1ii 3<433<43
73 70 72 mpbi 33<43
74 69 73 eqbrtrri 1<43
75 breq1 L=1L<431<43
76 75 adantl φL=1L<431<43
77 74 76 mpbiri φL=1L<43
78 67 77 eqbrtrd φL=1L0<43
79 19 31 64 78 ltsub23d φL=1L43<0
80 11 rpgt0d φ0<E
81 80 adantr φL=10<E
82 mulltgt0 L43L43<0E0<EL43E<0
83 65 79 29 81 82 syl22anc φL=1L43E<0
84 0cn 0
85 fsumconst 0NFin0i=0N0=0N0
86 32 84 85 sylancl φi=0N0=0N0
87 hashcl 0NFin0N0
88 nn0cn 0N00N
89 32 87 88 3syl φ0N
90 89 mul01d φ0N0=0
91 86 90 eqtrd φi=0N0=0
92 91 adantr φL=1i=0N0=0
93 0red φi0N0
94 11 rpge0d φ0E
95 94 adantr φi0N0E
96 nfv ti0N
97 3 96 nfan tφi0N
98 nfv t0XiS
99 97 98 nfim tφi0N0XiS
100 fveq2 t=SXit=XiS
101 100 breq2d t=S0Xit0XiS
102 101 imbi2d t=Sφi0N0Xitφi0N0XiS
103 14 3expia φi0NtT0Xit
104 103 com12 tTφi0N0Xit
105 47 99 102 104 vtoclgaf STφi0N0XiS
106 58 105 mpcom φi0N0XiS
107 33 59 95 106 mulge0d φi0N0EXiS
108 32 93 60 107 fsumle φi=0N0i=0NEXiS
109 108 adantr φL=1i=0N0i=0NEXiS
110 92 109 eqbrtrrd φL=10i=0NEXiS
111 30 31 62 83 110 ltletrd φL=1L43E<i=0NEXiS
112 elfzelz L1NL
113 zre LL
114 8 112 113 3syl φL
115 20 a1i φ4
116 22 a1i φ3
117 24 a1i φ30
118 115 116 117 redivcld φ43
119 114 118 resubcld φL43
120 119 28 remulcld φL43E
121 120 adantr φ¬L=1L43E
122 16 a1i φ1
123 28 6 nndivred φEN
124 122 123 resubcld φ1EN
125 114 122 resubcld φL1
126 124 125 remulcld φ1ENL1
127 28 126 remulcld φE1ENL1
128 127 adantr φ¬L=1E1ENL1
129 fzfid φ0L2Fin
130 8 elfzelzd φL
131 2z 2
132 131 a1i φ2
133 130 132 zsubcld φL2
134 6 nnzd φN
135 130 zred φL
136 2re 2
137 136 a1i φ2
138 135 137 resubcld φL2
139 6 nnred φN
140 0le2 02
141 0red φ0
142 141 137 135 lesub2d φ02L2L0
143 140 142 mpbii φL2L0
144 130 zcnd φL
145 144 subid1d φL0=L
146 143 145 breqtrd φL2L
147 elfzle2 L1NLN
148 8 147 syl φLN
149 138 135 139 146 148 letrd φL2N
150 133 134 149 3jca φL2NL2N
151 eluz2 NL2L2NL2N
152 150 151 sylibr φNL2
153 fzss2 NL20L20N
154 152 153 syl φ0L20N
155 154 sselda φi0L2i0N
156 155 59 syldan φi0L2XiS
157 129 156 fsumrecl φi=0L2XiS
158 28 157 remulcld φEi=0L2XiS
159 158 adantr φ¬L=1Ei=0L2XiS
160 28 125 remulcld φEL1
161 28 28 remulcld φEE
162 160 161 resubcld φEL1EE
163 125 6 nndivred φL1N
164 161 163 remulcld φEEL1N
165 160 164 resubcld φEL1EEL1N
166 125 28 resubcld φL-1-E
167 122 28 readdcld φ1+E
168 16 22 24 redivcli 13
169 168 a1i φ13
170 28 169 122 12 ltadd2dd φ1+E<1+13
171 ax-1cn 1
172 68 171 68 24 divdiri 3+13=33+13
173 3p1e4 3+1=4
174 173 oveq1i 3+13=43
175 69 oveq1i 33+13=1+13
176 172 174 175 3eqtr3ri 1+13=43
177 170 176 breqtrdi φ1+E<43
178 167 118 114 177 ltsub2dd φL43<L1+E
179 171 a1i φ1
180 11 rpcnd φE
181 144 179 180 subsub4d φL-1-E=L1+E
182 178 181 breqtrrd φL43<L-1-E
183 119 166 11 182 ltmul1dd φL43E<L-1-EE
184 144 179 subcld φL1
185 184 180 subcld φL-1-E
186 180 185 mulcomd φEL-1-E=L-1-EE
187 180 184 180 subdid φEL-1-E=EL1EE
188 186 187 eqtr3d φL-1-EE=EL1EE
189 183 188 breqtrd φL43E<EL1EE
190 1zzd φ1
191 elfz L1NL1N1LLN
192 130 190 134 191 syl3anc φL1N1LLN
193 8 192 mpbid φ1LLN
194 193 simprd φLN
195 zlem1lt LNLNL1<N
196 130 134 195 syl2anc φLNL1<N
197 194 196 mpbid φL1<N
198 6 nngt0d φ0<N
199 ltdiv1 L1NN0<NL1<NL1N<NN
200 125 139 139 198 199 syl112anc φL1<NL1N<NN
201 197 200 mpbid φL1N<NN
202 6 nncnd φN
203 6 nnne0d φN0
204 202 203 dividd φNN=1
205 201 204 breqtrd φL1N<1
206 28 28 80 80 mulgt0d φ0<EE
207 ltmul2 L1N1EE0<EEL1N<1EEL1N<EE1
208 163 122 161 206 207 syl112anc φL1N<1EEL1N<EE1
209 205 208 mpbid φEEL1N<EE1
210 180 180 mulcld φEE
211 210 mulridd φEE1=EE
212 209 211 breqtrd φEEL1N<EE
213 164 161 160 212 ltsub2dd φEL1EE<EL1EEL1N
214 120 162 165 189 213 lttrd φL43E<EL1EEL1N
215 180 202 203 divcld φEN
216 179 215 184 subdird φ1ENL1=1L1ENL1
217 184 mullidd φ1L1=L1
218 217 oveq1d φ1L1ENL1=L-1-ENL1
219 216 218 eqtrd φ1ENL1=L-1-ENL1
220 219 oveq2d φE1ENL1=EL-1-ENL1
221 215 184 mulcld φENL1
222 180 184 221 subdid φEL-1-ENL1=EL1EENL1
223 180 202 184 203 div32d φENL1=EL1N
224 223 oveq2d φEENL1=EEL1N
225 184 202 203 divcld φL1N
226 180 180 225 mulassd φEEL1N=EEL1N
227 224 226 eqtr4d φEENL1=EEL1N
228 227 oveq2d φEL1EENL1=EL1EEL1N
229 220 222 228 3eqtrd φE1ENL1=EL1EEL1N
230 214 229 breqtrrd φL43E<E1ENL1
231 230 adantr φ¬L=1L43E<E1ENL1
232 179 215 subcld φ1EN
233 fsumconst 0L2Fin1ENi=0L21EN=0L21EN
234 129 232 233 syl2anc φi=0L21EN=0L21EN
235 234 adantr φ¬L=1i=0L21EN=0L21EN
236 0zd φ¬L=10
237 8 adantr φ¬L=1L1N
238 237 elfzelzd φ¬L=1L
239 131 a1i φ¬L=12
240 238 239 zsubcld φ¬L=1L2
241 elnnuz NN1
242 6 241 sylib φN1
243 elfzp12 N1L1NL=1L1+1N
244 242 243 syl φL1NL=1L1+1N
245 8 244 mpbid φL=1L1+1N
246 245 orcanai φ¬L=1L1+1N
247 1p1e2 1+1=2
248 247 a1i φ¬L=11+1=2
249 248 oveq1d φ¬L=11+1N=2N
250 246 249 eleqtrd φ¬L=1L2N
251 elfzle1 L2N2L
252 250 251 syl φ¬L=12L
253 114 adantr φ¬L=1L
254 136 a1i φ¬L=12
255 253 254 subge0d φ¬L=10L22L
256 252 255 mpbird φ¬L=10L2
257 236 240 256 3jca φ¬L=10L20L2
258 eluz2 L200L20L2
259 257 258 sylibr φ¬L=1L20
260 hashfz L200L2=L2-0+1
261 259 260 syl φ¬L=10L2=L2-0+1
262 2cn 2
263 262 a1i φ2
264 144 263 subcld φL2
265 264 subid1d φL-2-0=L2
266 265 oveq1d φL2-0+1=L-2+1
267 144 263 179 subadd23d φL-2+1=L+1-2
268 262 171 negsubdi2i 21=12
269 2m1e1 21=1
270 269 negeqi 21=1
271 268 270 eqtr3i 12=1
272 271 a1i φ12=1
273 272 oveq2d φL+1-2=L+-1
274 144 179 negsubd φL+-1=L1
275 273 274 eqtrd φL+1-2=L1
276 266 267 275 3eqtrd φL2-0+1=L1
277 276 adantr φ¬L=1L2-0+1=L1
278 261 277 eqtrd φ¬L=10L2=L1
279 278 oveq1d φ¬L=10L21EN=L11EN
280 184 232 mulcomd φL11EN=1ENL1
281 280 adantr φ¬L=1L11EN=1ENL1
282 235 279 281 3eqtrd φ¬L=1i=0L21EN=1ENL1
283 fzfid φ¬L=10L2Fin
284 fzn0 0L2L20
285 259 284 sylibr φ¬L=10L2
286 124 ad2antrr φ¬L=1i0L21EN
287 simpll φ¬L=1i0L2φ
288 155 adantlr φ¬L=1i0L2i0N
289 287 288 59 syl2anc φ¬L=1i0L2XiS
290 57 adantr φi0L2ST
291 elfzelz i0L2i
292 291 zred i0L2i
293 292 adantl φi0L2i
294 168 a1i φi0L213
295 293 294 readdcld φi0L2i+13
296 28 adantr φi0L2E
297 295 296 remulcld φi0L2i+13E
298 114 adantr φi0L2L
299 136 a1i φi0L22
300 298 299 resubcld φi0L2L2
301 300 294 readdcld φi0L2L-2+13
302 301 296 remulcld φi0L2L-2+13E
303 10 57 jca φF:TST
304 303 adantr φi0L2F:TST
305 ffvelcdm F:TSTFS
306 304 305 syl φi0L2FS
307 elfzle2 i0L2iL2
308 307 adantl φi0L2iL2
309 293 300 294 308 leadd1dd φi0L2i+13L-2+13
310 28 80 jca φE0<E
311 310 adantr φi0L2E0<E
312 lemul1 i+13L-2+13E0<Ei+13L-2+13i+13EL-2+13E
313 295 301 311 312 syl3anc φi0L2i+13L-2+13i+13EL-2+13E
314 309 313 mpbid φi0L2i+13EL-2+13E
315 114 137 resubcld φL2
316 315 169 readdcld φL-2+13
317 316 28 remulcld φL-2+13E
318 10 57 ffvelcdmd φFS
319 125 169 resubcld φL-1-13
320 319 28 remulcld φL-1-13E
321 addrid 11+0=1
322 321 eqcomd 11=1+0
323 171 322 mp1i φ1=1+0
324 179 subidd φ11=0
325 324 eqcomd φ0=11
326 325 oveq2d φ1+0=1+1-1
327 addsubass 1111+1-1=1+1-1
328 327 eqcomd 1111+1-1=1+1-1
329 179 179 179 328 syl3anc φ1+1-1=1+1-1
330 323 326 329 3eqtrd φ1=1+1-1
331 330 oveq2d φL1=L1+1-1
332 247 a1i φ1+1=2
333 332 oveq1d φ1+1-1=21
334 333 oveq2d φL1+1-1=L21
335 144 263 179 subsubd φL21=L-2+1
336 331 334 335 3eqtrd φL1=L-2+1
337 336 oveq1d φL-1-23=L2+1-23
338 262 68 24 divcli 23
339 338 a1i φ23
340 264 179 339 addsubassd φL2+1-23=L2+1-23
341 171 68 24 divcli 13
342 df-3 3=2+1
343 342 oveq1i 33=2+13
344 262 171 68 24 divdiri 2+13=23+13
345 343 69 344 3eqtr3ri 23+13=1
346 171 338 341 345 subaddrii 123=13
347 346 a1i φ123=13
348 347 oveq2d φL2+1-23=L-2+13
349 337 340 348 3eqtrd φL-1-23=L-2+13
350 136 22 24 redivcli 23
351 350 a1i φ23
352 1lt2 1<2
353 22 71 pm3.2i 30<3
354 16 136 353 3pm3.2i 1230<3
355 ltdiv1 1230<31<213<23
356 354 355 mp1i φ1<213<23
357 352 356 mpbii φ13<23
358 169 351 125 357 ltsub2dd φL-1-23<L-1-13
359 349 358 eqbrtrrd φL-2+13<L-1-13
360 316 319 11 359 ltmul1dd φL-2+13E<L-1-13E
361 35 simprd φ¬SDL1
362 oveq1 j=L1j13=L-1-13
363 362 oveq1d j=L1j13E=L-1-13E
364 363 breq2d j=L1Ftj13EFtL-1-13E
365 364 rabbidv j=L1tT|Ftj13E=tT|FtL-1-13E
366 134 peano2zd φN+1
367 193 simpld φ1L
368 139 122 readdcld φN+1
369 139 lep1d φNN+1
370 114 139 368 194 369 letrd φLN+1
371 190 366 130 367 370 elfzd φL1N+1
372 144 179 npcand φL-1+1=L
373 0p1e1 0+1=1
374 373 a1i φ0+1=1
375 374 oveq1d φ0+1N+1=1N+1
376 371 372 375 3eltr4d φL-1+10+1N+1
377 0zd φ0
378 130 190 zsubcld φL1
379 fzaddel 0NL11L10NL-1+10+1N+1
380 377 134 378 190 379 syl22anc φL10NL-1+10+1N+1
381 376 380 mpbird φL10N
382 rabexg TVtT|FtL-1-13EV
383 7 382 syl φtT|FtL-1-13EV
384 4 365 381 383 fvmptd3 φDL1=tT|FtL-1-13E
385 361 384 neleqtrd φ¬StT|FtL-1-13E
386 nfcv _tL-1-13E
387 49 50 386 nfbr tFSL-1-13E
388 53 breq1d t=SFtL-1-13EFSL-1-13E
389 47 48 387 388 elrabf StT|FtL-1-13ESTFSL-1-13E
390 385 389 sylnib φ¬STFSL-1-13E
391 ianor ¬STFSL-1-13E¬ST¬FSL-1-13E
392 390 391 sylib φ¬ST¬FSL-1-13E
393 olc ST¬FSL-1-13EST
394 393 anim1i ST¬ST¬FSL-1-13E¬FSL-1-13EST¬ST¬FSL-1-13E
395 57 392 394 syl2anc φ¬FSL-1-13EST¬ST¬FSL-1-13E
396 orcom ¬ST¬FSL-1-13E¬FSL-1-13E¬ST
397 396 anbi2i ¬FSL-1-13EST¬ST¬FSL-1-13E¬FSL-1-13EST¬FSL-1-13E¬ST
398 395 397 sylib φ¬FSL-1-13EST¬FSL-1-13E¬ST
399 pm4.43 ¬FSL-1-13E¬FSL-1-13EST¬FSL-1-13E¬ST
400 398 399 sylibr φ¬FSL-1-13E
401 320 318 ltnled φL-1-13E<FS¬FSL-1-13E
402 400 401 mpbird φL-1-13E<FS
403 317 320 318 360 402 lttrd φL-2+13E<FS
404 317 318 403 ltled φL-2+13EFS
405 404 adantr φi0L2L-2+13EFS
406 297 302 306 314 405 letrd φi0L2i+13EFS
407 nfcv _ti+13E
408 407 50 49 nfbr ti+13EFS
409 53 breq2d t=Si+13EFti+13EFS
410 47 48 408 409 elrabf StT|i+13EFtSTi+13EFS
411 290 406 410 sylanbrc φi0L2StT|i+13EFt
412 oveq1 j=ij+13=i+13
413 412 oveq1d j=ij+13E=i+13E
414 413 breq1d j=ij+13EFti+13EFt
415 414 rabbidv j=itT|j+13EFt=tT|i+13EFt
416 rabexg TVtT|i+13EFtV
417 7 416 syl φtT|i+13EFtV
418 417 adantr φi0L2tT|i+13EFtV
419 5 415 155 418 fvmptd3 φi0L2Bi=tT|i+13EFt
420 411 419 eleqtrrd φi0L2SBi
421 150 3ad2ant1 φi0L2SBiL2NL2N
422 421 151 sylibr φi0L2SBiNL2
423 422 153 syl φi0L2SBi0L20N
424 simp2 φi0L2SBii0L2
425 423 424 sseldd φi0L2SBii0N
426 elex SBiSV
427 426 3ad2ant3 φi0NSBiSV
428 nfcv _t0N
429 nfrab1 _ttT|j+13EFt
430 428 429 nfmpt _tj0NtT|j+13EFt
431 5 430 nfcxfr _tB
432 nfcv _ti
433 431 432 nffv _tBi
434 433 nfel2 tSBi
435 3 96 434 nf3an tφi0NSBi
436 nfv t1EN<XiS
437 435 436 nfim tφi0NSBi1EN<XiS
438 eleq1 t=StBiSBi
439 438 3anbi3d t=Sφi0NtBiφi0NSBi
440 100 breq2d t=S1EN<Xit1EN<XiS
441 439 440 imbi12d t=Sφi0NtBi1EN<Xitφi0NSBi1EN<XiS
442 437 441 15 vtoclg1f SVφi0NSBi1EN<XiS
443 427 442 mpcom φi0NSBi1EN<XiS
444 425 443 syld3an2 φi0L2SBi1EN<XiS
445 420 444 mpd3an3 φi0L21EN<XiS
446 445 adantlr φ¬L=1i0L21EN<XiS
447 283 285 286 289 446 fsumlt φ¬L=1i=0L21EN<i=0L2XiS
448 282 447 eqbrtrrd φ¬L=11ENL1<i=0L2XiS
449 126 adantr φ¬L=11ENL1
450 157 adantr φ¬L=1i=0L2XiS
451 310 adantr φ¬L=1E0<E
452 ltmul2 1ENL1i=0L2XiSE0<E1ENL1<i=0L2XiSE1ENL1<Ei=0L2XiS
453 449 450 451 452 syl3anc φ¬L=11ENL1<i=0L2XiSE1ENL1<Ei=0L2XiS
454 448 453 mpbid φ¬L=1E1ENL1<Ei=0L2XiS
455 121 128 159 231 454 lttrd φ¬L=1L43E<Ei=0L2XiS
456 155 60 syldan φi0L2EXiS
457 456 adantlr φ¬L=1i0L2EXiS
458 457 recnd φ¬L=1i0L2EXiS
459 283 458 fsumcl φ¬L=1i=0L2EXiS
460 459 addridd φ¬L=1i=0L2EXiS+0=i=0L2EXiS
461 0red φ¬L=10
462 fzfid φ¬L=1L1NFin
463 28 adantr φiL1NE
464 0zd φiL1N0
465 134 adantr φiL1NN
466 elfzelz iL1Ni
467 466 adantl φiL1Ni
468 0red φiL1N0
469 125 adantr φiL1NL1
470 466 zred iL1Ni
471 470 adantl φiL1Ni
472 1m1e0 11=0
473 122 114 122 367 lesub1dd φ11L1
474 472 473 eqbrtrrid φ0L1
475 474 adantr φiL1N0L1
476 simpr φiL1NiL1N
477 378 adantr φiL1NL1
478 elfz iL1NiL1NL1iiN
479 467 477 465 478 syl3anc φiL1NiL1NL1iiN
480 476 479 mpbid φiL1NL1iiN
481 480 simpld φiL1NL1i
482 468 469 471 475 481 letrd φiL1N0i
483 elfzle2 iL1NiN
484 483 adantl φiL1NiN
485 464 465 467 482 484 elfzd φiL1Ni0N
486 485 59 syldan φiL1NXiS
487 463 486 remulcld φiL1NEXiS
488 487 adantlr φ¬L=1iL1NEXiS
489 462 488 fsumrecl φ¬L=1i=L1NEXiS
490 283 457 fsumrecl φ¬L=1i=0L2EXiS
491 fzfid φL1NFin
492 180 adantr φiL1NE
493 492 mul01d φiL1NE0=0
494 485 106 syldan φiL1N0XiS
495 310 adantr φiL1NE0<E
496 lemul2 0XiSE0<E0XiSE0EXiS
497 468 486 495 496 syl3anc φiL1N0XiSE0EXiS
498 494 497 mpbid φiL1NE0EXiS
499 493 498 eqbrtrrd φiL1N0EXiS
500 491 487 499 fsumge0 φ0i=L1NEXiS
501 500 adantr φ¬L=10i=L1NEXiS
502 461 489 490 501 leadd2dd φ¬L=1i=0L2EXiS+0i=0L2EXiS+i=L1NEXiS
503 460 502 eqbrtrrd φ¬L=1i=0L2EXiSi=0L2EXiS+i=L1NEXiS
504 156 recnd φi0L2XiS
505 129 180 504 fsummulc2 φEi=0L2XiS=i=0L2EXiS
506 505 adantr φ¬L=1Ei=0L2XiS=i=0L2EXiS
507 elfzelz j0L2j
508 507 adantl φj0L2j
509 508 zred φj0L2j
510 315 adantr φj0L2L2
511 125 adantr φj0L2L1
512 simpr φj0L2j0L2
513 0zd φj0L20
514 133 adantr φj0L2L2
515 elfz j0L2j0L20jjL2
516 508 513 514 515 syl3anc φj0L2j0L20jjL2
517 512 516 mpbid φj0L20jjL2
518 517 simprd φj0L2jL2
519 122 137 114 ltsub2d φ1<2L2<L1
520 352 519 mpbii φL2<L1
521 520 adantr φj0L2L2<L1
522 509 510 511 518 521 lelttrd φj0L2j<L1
523 509 511 ltnled φj0L2j<L1¬L1j
524 522 523 mpbid φj0L2¬L1j
525 524 intnanrd φj0L2¬L1jjN
526 378 adantr φj0L2L1
527 134 adantr φj0L2N
528 elfz jL1NjL1NL1jjN
529 508 526 527 528 syl3anc φj0L2jL1NL1jjN
530 525 529 mtbird φj0L2¬jL1N
531 530 ex φj0L2¬jL1N
532 2 531 ralrimi φj0L2¬jL1N
533 disj 0L2L1N=j0L2¬jL1N
534 532 533 sylibr φ0L2L1N=
535 534 adantr φ¬L=10L2L1N=
536 149 adantr φ¬L=1L2N
537 133 377 134 3jca φL20N
538 537 adantr φ¬L=1L20N
539 elfz L20NL20N0L2L2N
540 538 539 syl φ¬L=1L20N0L2L2N
541 256 536 540 mpbir2and φ¬L=1L20N
542 fzsplit L20N0N=0L2L-2+1N
543 541 542 syl φ¬L=10N=0L2L-2+1N
544 267 273 274 3eqtrd φL-2+1=L1
545 544 oveq1d φL-2+1N=L1N
546 545 uneq2d φ0L2L-2+1N=0L2L1N
547 546 adantr φ¬L=10L2L-2+1N=0L2L1N
548 543 547 eqtrd φ¬L=10N=0L2L1N
549 fzfid φ¬L=10NFin
550 180 adantr φi0NE
551 59 recnd φi0NXiS
552 550 551 mulcld φi0NEXiS
553 552 adantlr φ¬L=1i0NEXiS
554 535 548 549 553 fsumsplit φ¬L=1i=0NEXiS=i=0L2EXiS+i=L1NEXiS
555 503 506 554 3brtr4d φ¬L=1Ei=0L2XiSi=0NEXiS
556 120 158 61 3jca φL43EEi=0L2XiSi=0NEXiS
557 556 adantr φ¬L=1L43EEi=0L2XiSi=0NEXiS
558 ltletr L43EEi=0L2XiSi=0NEXiSL43E<Ei=0L2XiSEi=0L2XiSi=0NEXiSL43E<i=0NEXiS
559 557 558 syl φ¬L=1L43E<Ei=0L2XiSEi=0L2XiSi=0NEXiSL43E<i=0NEXiS
560 455 555 559 mp2and φ¬L=1L43E<i=0NEXiS
561 111 560 pm2.61dan φL43E<i=0NEXiS
562 sumex i=0NEXiSV
563 100 oveq2d t=SEXit=EXiS
564 563 sumeq2sdv t=Si=0NEXit=i=0NEXiS
565 eqid tTi=0NEXit=tTi=0NEXit
566 564 565 fvmptg STi=0NEXiSVtTi=0NEXitS=i=0NEXiS
567 57 562 566 sylancl φtTi=0NEXitS=i=0NEXiS
568 561 567 breqtrrd φL43E<tTi=0NEXitS