Metamath Proof Explorer


Theorem fourierdlem79

Description: E projects every interval of the partition induced by S on H into a corresponding interval of the partition induced by Q on [ A , B ] . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem79.t T=BA
fourierdlem79.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem79.m φM
fourierdlem79.q φQPM
fourierdlem79.c φC
fourierdlem79.d φD
fourierdlem79.cltd φC<D
fourierdlem79.o O=mp0m|p0=Cpm=Di0..^mpi<pi+1
fourierdlem79.h H=CDxCD|kx+kTranQ
fourierdlem79.n N=H1
fourierdlem79.s S=ιf|fIsom<,<0NH
fourierdlem79.e E=xx+BxTT
fourierdlem79.l L=yABify=BAy
fourierdlem79.z Z=Sj+ifSj+1Sj<Q1ASj+1Sj2Q1A2
fourierdlem79.i I=xsupi0..^M|QiLEx<
Assertion fourierdlem79 φj0..^NLESjESj+1QISjQISj+1

Proof

Step Hyp Ref Expression
1 fourierdlem79.t T=BA
2 fourierdlem79.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
3 fourierdlem79.m φM
4 fourierdlem79.q φQPM
5 fourierdlem79.c φC
6 fourierdlem79.d φD
7 fourierdlem79.cltd φC<D
8 fourierdlem79.o O=mp0m|p0=Cpm=Di0..^mpi<pi+1
9 fourierdlem79.h H=CDxCD|kx+kTranQ
10 fourierdlem79.n N=H1
11 fourierdlem79.s S=ιf|fIsom<,<0NH
12 fourierdlem79.e E=xx+BxTT
13 fourierdlem79.l L=yABify=BAy
14 fourierdlem79.z Z=Sj+ifSj+1Sj<Q1ASj+1Sj2Q1A2
15 fourierdlem79.i I=xsupi0..^M|QiLEx<
16 2 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
17 3 16 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
18 4 17 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
19 18 simpld φQ0M
20 elmapi Q0MQ:0M
21 19 20 syl φQ:0M
22 21 adantr φj0..^NQ:0M
23 2 3 4 1 12 13 15 fourierdlem37 φI:0..^Mxsupi0..^M|QiLEx<i0..^M|QiLEx
24 23 simpld φI:0..^M
25 fzossfz 0..^M0M
26 25 a1i φ0..^M0M
27 24 26 fssd φI:0M
28 27 adantr φj0..^NI:0M
29 1 2 3 4 5 6 7 8 9 10 11 fourierdlem54 φNSONSIsom<,<0NH
30 29 simpld φNSON
31 30 simprd φSON
32 31 adantr φj0..^NSON
33 30 simpld φN
34 33 adantr φj0..^NN
35 8 fourierdlem2 NSONS0NS0=CSN=Di0..^NSi<Si+1
36 34 35 syl φj0..^NSONS0NS0=CSN=Di0..^NSi<Si+1
37 32 36 mpbid φj0..^NS0NS0=CSN=Di0..^NSi<Si+1
38 37 simpld φj0..^NS0N
39 elmapi S0NS:0N
40 38 39 syl φj0..^NS:0N
41 elfzofz j0..^Nj0N
42 41 adantl φj0..^Nj0N
43 40 42 ffvelcdmd φj0..^NSj
44 28 43 ffvelcdmd φj0..^NISj0M
45 22 44 ffvelcdmd φj0..^NQISj
46 45 rexrd φj0..^NQISj*
47 24 adantr φj0..^NI:0..^M
48 47 43 ffvelcdmd φj0..^NISj0..^M
49 fzofzp1 ISj0..^MISj+10M
50 48 49 syl φj0..^NISj+10M
51 22 50 ffvelcdmd φj0..^NQISj+1
52 51 rexrd φj0..^NQISj+1*
53 15 a1i φj0..^NI=xsupi0..^M|QiLEx<
54 fveq2 x=SjEx=ESj
55 54 fveq2d x=SjLEx=LESj
56 55 breq2d x=SjQiLExQiLESj
57 56 rabbidv x=Sji0..^M|QiLEx=i0..^M|QiLESj
58 57 supeq1d x=Sjsupi0..^M|QiLEx<=supi0..^M|QiLESj<
59 58 adantl φj0..^Nx=Sjsupi0..^M|QiLEx<=supi0..^M|QiLESj<
60 ltso <Or
61 60 supex supi0..^M|QiLESj<V
62 61 a1i φj0..^Nsupi0..^M|QiLESj<V
63 53 59 43 62 fvmptd φj0..^NISj=supi0..^M|QiLESj<
64 63 fveq2d φj0..^NQISj=Qsupi0..^M|QiLESj<
65 simpl φj0..^Nφ
66 65 43 jca φj0..^NφSj
67 eleq1 x=SjxSj
68 67 anbi2d x=SjφxφSj
69 58 57 eleq12d x=Sjsupi0..^M|QiLEx<i0..^M|QiLExsupi0..^M|QiLESj<i0..^M|QiLESj
70 68 69 imbi12d x=Sjφxsupi0..^M|QiLEx<i0..^M|QiLExφSjsupi0..^M|QiLESj<i0..^M|QiLESj
71 23 simprd φxsupi0..^M|QiLEx<i0..^M|QiLEx
72 71 imp φxsupi0..^M|QiLEx<i0..^M|QiLEx
73 70 72 vtoclg SjφSjsupi0..^M|QiLESj<i0..^M|QiLESj
74 43 66 73 sylc φj0..^Nsupi0..^M|QiLESj<i0..^M|QiLESj
75 nfrab1 _ii0..^M|QiLESj
76 nfcv _i
77 nfcv _i<
78 75 76 77 nfsup _isupi0..^M|QiLESj<
79 nfcv _i0..^M
80 nfcv _iQ
81 80 78 nffv _iQsupi0..^M|QiLESj<
82 nfcv _i
83 nfcv _iLESj
84 81 82 83 nfbr iQsupi0..^M|QiLESj<LESj
85 fveq2 i=supi0..^M|QiLESj<Qi=Qsupi0..^M|QiLESj<
86 85 breq1d i=supi0..^M|QiLESj<QiLESjQsupi0..^M|QiLESj<LESj
87 78 79 84 86 elrabf supi0..^M|QiLESj<i0..^M|QiLESjsupi0..^M|QiLESj<0..^MQsupi0..^M|QiLESj<LESj
88 74 87 sylib φj0..^Nsupi0..^M|QiLESj<0..^MQsupi0..^M|QiLESj<LESj
89 88 simprd φj0..^NQsupi0..^M|QiLESj<LESj
90 64 89 eqbrtrd φj0..^NQISjLESj
91 3 ad2antrr φj0..^NESj=BM
92 4 ad2antrr φj0..^NESj=BQPM
93 5 ad2antrr φj0..^NESj=BC
94 6 ad2antrr φj0..^NESj=BD
95 7 ad2antrr φj0..^NESj=BC<D
96 0zd φ0
97 3 nnzd φM
98 1zzd φ1
99 0le1 01
100 99 a1i φ01
101 3 nnge1d φ1M
102 96 97 98 100 101 elfzd φ10M
103 102 ad2antrr φj0..^NESj=B10M
104 simplr φj0..^NESj=Bj0..^N
105 fzofzp1 j0..^Nj+10N
106 105 adantl φj0..^Nj+10N
107 40 106 ffvelcdmd φj0..^NSj+1
108 107 43 resubcld φj0..^NSj+1Sj
109 108 rehalfcld φj0..^NSj+1Sj2
110 21 102 ffvelcdmd φQ1
111 2 3 4 fourierdlem11 φABA<B
112 111 simp1d φA
113 110 112 resubcld φQ1A
114 113 rehalfcld φQ1A2
115 114 adantr φj0..^NQ1A2
116 109 115 ifcld φj0..^NifSj+1Sj<Q1ASj+1Sj2Q1A2
117 43 116 readdcld φj0..^NSj+ifSj+1Sj<Q1ASj+1Sj2Q1A2
118 14 117 eqeltrid φj0..^NZ
119 2re 2
120 119 a1i φj0..^N2
121 elfzoelz j0..^Nj
122 121 zred j0..^Nj
123 122 ltp1d j0..^Nj<j+1
124 123 adantl φj0..^Nj<j+1
125 29 simprd φSIsom<,<0NH
126 125 adantr φj0..^NSIsom<,<0NH
127 isorel SIsom<,<0NHj0Nj+10Nj<j+1Sj<Sj+1
128 126 42 106 127 syl12anc φj0..^Nj<j+1Sj<Sj+1
129 124 128 mpbid φj0..^NSj<Sj+1
130 43 107 posdifd φj0..^NSj<Sj+10<Sj+1Sj
131 129 130 mpbid φj0..^N0<Sj+1Sj
132 2pos 0<2
133 132 a1i φj0..^N0<2
134 108 120 131 133 divgt0d φj0..^N0<Sj+1Sj2
135 109 134 elrpd φj0..^NSj+1Sj2+
136 119 a1i φ2
137 3 nngt0d φ0<M
138 fzolb 00..^M0M0<M
139 96 97 137 138 syl3anbrc φ00..^M
140 0re 0
141 eleq1 i=0i0..^M00..^M
142 141 anbi2d i=0φi0..^Mφ00..^M
143 fveq2 i=0Qi=Q0
144 oveq1 i=0i+1=0+1
145 144 fveq2d i=0Qi+1=Q0+1
146 143 145 breq12d i=0Qi<Qi+1Q0<Q0+1
147 142 146 imbi12d i=0φi0..^MQi<Qi+1φ00..^MQ0<Q0+1
148 18 simprd φQ0=AQM=Bi0..^MQi<Qi+1
149 148 simprd φi0..^MQi<Qi+1
150 149 r19.21bi φi0..^MQi<Qi+1
151 147 150 vtoclg 0φ00..^MQ0<Q0+1
152 140 151 ax-mp φ00..^MQ0<Q0+1
153 139 152 mpdan φQ0<Q0+1
154 148 simpld φQ0=AQM=B
155 154 simpld φQ0=A
156 0p1e1 0+1=1
157 156 fveq2i Q0+1=Q1
158 157 a1i φQ0+1=Q1
159 153 155 158 3brtr3d φA<Q1
160 112 110 posdifd φA<Q10<Q1A
161 159 160 mpbid φ0<Q1A
162 132 a1i φ0<2
163 113 136 161 162 divgt0d φ0<Q1A2
164 114 163 elrpd φQ1A2+
165 164 adantr φj0..^NQ1A2+
166 135 165 ifcld φj0..^NifSj+1Sj<Q1ASj+1Sj2Q1A2+
167 43 166 ltaddrpd φj0..^NSj<Sj+ifSj+1Sj<Q1ASj+1Sj2Q1A2
168 43 117 167 ltled φj0..^NSjSj+ifSj+1Sj<Q1ASj+1Sj2Q1A2
169 168 14 breqtrrdi φj0..^NSjZ
170 43 109 readdcld φj0..^NSj+Sj+1Sj2
171 iftrue Sj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2=Sj+1Sj2
172 171 adantl φj0..^NSj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2=Sj+1Sj2
173 109 leidd φj0..^NSj+1Sj2Sj+1Sj2
174 173 adantr φj0..^NSj+1Sj<Q1ASj+1Sj2Sj+1Sj2
175 172 174 eqbrtrd φj0..^NSj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2Sj+1Sj2
176 iffalse ¬Sj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2=Q1A2
177 176 adantl φj0..^N¬Sj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2=Q1A2
178 113 ad2antrr φj0..^N¬Sj+1Sj<Q1AQ1A
179 108 adantr φj0..^N¬Sj+1Sj<Q1ASj+1Sj
180 2rp 2+
181 180 a1i φj0..^N¬Sj+1Sj<Q1A2+
182 simpr φj0..^N¬Sj+1Sj<Q1A¬Sj+1Sj<Q1A
183 178 179 182 nltled φj0..^N¬Sj+1Sj<Q1AQ1ASj+1Sj
184 178 179 181 183 lediv1dd φj0..^N¬Sj+1Sj<Q1AQ1A2Sj+1Sj2
185 177 184 eqbrtrd φj0..^N¬Sj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2Sj+1Sj2
186 175 185 pm2.61dan φj0..^NifSj+1Sj<Q1ASj+1Sj2Q1A2Sj+1Sj2
187 116 109 43 186 leadd2dd φj0..^NSj+ifSj+1Sj<Q1ASj+1Sj2Q1A2Sj+Sj+1Sj2
188 43 recnd φj0..^NSj
189 107 recnd φj0..^NSj+1
190 188 189 addcomd φj0..^NSj+Sj+1=Sj+1+Sj
191 190 oveq1d φj0..^NSj+Sj+12=Sj+1+Sj2
192 191 oveq1d φj0..^NSj+Sj+12Sj+1Sj2=Sj+1+Sj2Sj+1Sj2
193 halfaddsub Sj+1SjSj+1+Sj2+Sj+1Sj2=Sj+1Sj+1+Sj2Sj+1Sj2=Sj
194 189 188 193 syl2anc φj0..^NSj+1+Sj2+Sj+1Sj2=Sj+1Sj+1+Sj2Sj+1Sj2=Sj
195 194 simprd φj0..^NSj+1+Sj2Sj+1Sj2=Sj
196 192 195 eqtrd φj0..^NSj+Sj+12Sj+1Sj2=Sj
197 188 189 addcld φj0..^NSj+Sj+1
198 197 halfcld φj0..^NSj+Sj+12
199 109 recnd φj0..^NSj+1Sj2
200 198 199 188 subsub23d φj0..^NSj+Sj+12Sj+1Sj2=SjSj+Sj+12Sj=Sj+1Sj2
201 196 200 mpbid φj0..^NSj+Sj+12Sj=Sj+1Sj2
202 198 188 199 subaddd φj0..^NSj+Sj+12Sj=Sj+1Sj2Sj+Sj+1Sj2=Sj+Sj+12
203 201 202 mpbid φj0..^NSj+Sj+1Sj2=Sj+Sj+12
204 avglt2 SjSj+1Sj<Sj+1Sj+Sj+12<Sj+1
205 43 107 204 syl2anc φj0..^NSj<Sj+1Sj+Sj+12<Sj+1
206 129 205 mpbid φj0..^NSj+Sj+12<Sj+1
207 203 206 eqbrtrd φj0..^NSj+Sj+1Sj2<Sj+1
208 117 170 107 187 207 lelttrd φj0..^NSj+ifSj+1Sj<Q1ASj+1Sj2Q1A2<Sj+1
209 14 208 eqbrtrid φj0..^NZ<Sj+1
210 107 rexrd φj0..^NSj+1*
211 elico2 SjSj+1*ZSjSj+1ZSjZZ<Sj+1
212 43 210 211 syl2anc φj0..^NZSjSj+1ZSjZZ<Sj+1
213 118 169 209 212 mpbir3and φj0..^NZSjSj+1
214 213 adantr φj0..^NESj=BZSjSj+1
215 112 ad2antrr φj0..^NESj=BA
216 111 simp2d φB
217 216 ad2antrr φj0..^NESj=BB
218 111 simp3d φA<B
219 218 ad2antrr φj0..^NESj=BA<B
220 43 adantr φj0..^NESj=BSj
221 simpr φj0..^NESj=BESj=B
222 167 14 breqtrrdi φj0..^NSj<Z
223 216 112 resubcld φBA
224 1 223 eqeltrid φT
225 224 adantr φj0..^NT
226 109 adantr φj0..^NSj+1Sj<Q1ASj+1Sj2
227 114 ad2antrr φj0..^NSj+1Sj<Q1AQ1A2
228 108 adantr φj0..^NSj+1Sj<Q1ASj+1Sj
229 113 ad2antrr φj0..^NSj+1Sj<Q1AQ1A
230 180 a1i φj0..^NSj+1Sj<Q1A2+
231 simpr φj0..^NSj+1Sj<Q1ASj+1Sj<Q1A
232 228 229 230 231 ltdiv1dd φj0..^NSj+1Sj<Q1ASj+1Sj2<Q1A2
233 226 227 232 ltled φj0..^NSj+1Sj<Q1ASj+1Sj2Q1A2
234 172 233 eqbrtrd φj0..^NSj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2Q1A2
235 176 adantl φ¬Sj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2=Q1A2
236 114 leidd φQ1A2Q1A2
237 236 adantr φ¬Sj+1Sj<Q1AQ1A2Q1A2
238 235 237 eqbrtrd φ¬Sj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2Q1A2
239 238 adantlr φj0..^N¬Sj+1Sj<Q1AifSj+1Sj<Q1ASj+1Sj2Q1A2Q1A2
240 234 239 pm2.61dan φj0..^NifSj+1Sj<Q1ASj+1Sj2Q1A2Q1A2
241 223 rehalfcld φBA2
242 180 a1i φ2+
243 112 rexrd φA*
244 216 rexrd φB*
245 2 3 4 fourierdlem15 φQ:0MAB
246 245 102 ffvelcdmd φQ1AB
247 iccleub A*B*Q1ABQ1B
248 243 244 246 247 syl3anc φQ1B
249 110 216 112 248 lesub1dd φQ1ABA
250 113 223 242 249 lediv1dd φQ1A2BA2
251 1 eqcomi BA=T
252 251 oveq1i BA2=T2
253 112 216 posdifd φA<B0<BA
254 218 253 mpbid φ0<BA
255 254 1 breqtrrdi φ0<T
256 224 255 elrpd φT+
257 rphalflt T+T2<T
258 256 257 syl φT2<T
259 252 258 eqbrtrid φBA2<T
260 114 241 224 250 259 lelttrd φQ1A2<T
261 114 224 260 ltled φQ1A2T
262 261 adantr φj0..^NQ1A2T
263 116 115 225 240 262 letrd φj0..^NifSj+1Sj<Q1ASj+1Sj2Q1A2T
264 116 225 43 263 leadd2dd φj0..^NSj+ifSj+1Sj<Q1ASj+1Sj2Q1A2Sj+T
265 14 264 eqbrtrid φj0..^NZSj+T
266 43 rexrd φj0..^NSj*
267 43 225 readdcld φj0..^NSj+T
268 elioc2 Sj*Sj+TZSjSj+TZSj<ZZSj+T
269 266 267 268 syl2anc φj0..^NZSjSj+TZSj<ZZSj+T
270 118 222 265 269 mpbir3and φj0..^NZSjSj+T
271 270 adantr φj0..^NESj=BZSjSj+T
272 215 217 219 1 12 220 221 271 fourierdlem26 φj0..^NESj=BEZ=A+Z-Sj
273 14 a1i φj0..^NZ=Sj+ifSj+1Sj<Q1ASj+1Sj2Q1A2
274 273 oveq1d φj0..^NZSj=Sj+ifSj+1Sj<Q1ASj+1Sj2Q1A2-Sj
275 274 oveq2d φj0..^NA+Z-Sj=A+Sj+ifSj+1Sj<Q1ASj+1Sj2Q1A2-Sj
276 275 adantr φj0..^NESj=BA+Z-Sj=A+Sj+ifSj+1Sj<Q1ASj+1Sj2Q1A2-Sj
277 116 recnd φj0..^NifSj+1Sj<Q1ASj+1Sj2Q1A2
278 188 277 pncan2d φj0..^NSj+ifSj+1Sj<Q1ASj+1Sj2Q1A2-Sj=ifSj+1Sj<Q1ASj+1Sj2Q1A2
279 278 oveq2d φj0..^NA+Sj+ifSj+1Sj<Q1ASj+1Sj2Q1A2-Sj=A+ifSj+1Sj<Q1ASj+1Sj2Q1A2
280 279 adantr φj0..^NESj=BA+Sj+ifSj+1Sj<Q1ASj+1Sj2Q1A2-Sj=A+ifSj+1Sj<Q1ASj+1Sj2Q1A2
281 272 276 280 3eqtrd φj0..^NESj=BEZ=A+ifSj+1Sj<Q1ASj+1Sj2Q1A2
282 171 oveq2d Sj+1Sj<Q1AA+ifSj+1Sj<Q1ASj+1Sj2Q1A2=A+Sj+1Sj2
283 282 adantl φj0..^NSj+1Sj<Q1AA+ifSj+1Sj<Q1ASj+1Sj2Q1A2=A+Sj+1Sj2
284 112 adantr φj0..^NA
285 284 109 readdcld φj0..^NA+Sj+1Sj2
286 285 adantr φj0..^NSj+1Sj<Q1AA+Sj+1Sj2
287 284 115 readdcld φj0..^NA+Q1A2
288 287 adantr φj0..^NSj+1Sj<Q1AA+Q1A2
289 110 ad2antrr φj0..^NSj+1Sj<Q1AQ1
290 112 ad2antrr φj0..^NSj+1Sj<Q1AA
291 226 227 290 232 ltadd2dd φj0..^NSj+1Sj<Q1AA+Sj+1Sj2<A+Q1A2
292 110 recnd φQ1
293 112 recnd φA
294 halfaddsub Q1AQ1+A2+Q1A2=Q1Q1+A2Q1A2=A
295 292 293 294 syl2anc φQ1+A2+Q1A2=Q1Q1+A2Q1A2=A
296 295 simprd φQ1+A2Q1A2=A
297 296 oveq1d φQ1+A2-Q1A2+Q1A2=A+Q1A2
298 110 112 readdcld φQ1+A
299 298 rehalfcld φQ1+A2
300 299 recnd φQ1+A2
301 114 recnd φQ1A2
302 300 301 npcand φQ1+A2-Q1A2+Q1A2=Q1+A2
303 297 302 eqtr3d φA+Q1A2=Q1+A2
304 110 110 readdcld φQ1+Q1
305 112 110 110 159 ltadd2dd φQ1+A<Q1+Q1
306 298 304 242 305 ltdiv1dd φQ1+A2<Q1+Q12
307 292 2timesd φ2Q1=Q1+Q1
308 307 eqcomd φQ1+Q1=2Q1
309 308 oveq1d φQ1+Q12=2Q12
310 2cnd φ2
311 2ne0 20
312 311 a1i φ20
313 292 310 312 divcan3d φ2Q12=Q1
314 309 313 eqtrd φQ1+Q12=Q1
315 306 314 breqtrd φQ1+A2<Q1
316 303 315 eqbrtrd φA+Q1A2<Q1
317 316 ad2antrr φj0..^NSj+1Sj<Q1AA+Q1A2<Q1
318 286 288 289 291 317 lttrd φj0..^NSj+1Sj<Q1AA+Sj+1Sj2<Q1
319 283 318 eqbrtrd φj0..^NSj+1Sj<Q1AA+ifSj+1Sj<Q1ASj+1Sj2Q1A2<Q1
320 176 oveq2d ¬Sj+1Sj<Q1AA+ifSj+1Sj<Q1ASj+1Sj2Q1A2=A+Q1A2
321 320 adantl φj0..^N¬Sj+1Sj<Q1AA+ifSj+1Sj<Q1ASj+1Sj2Q1A2=A+Q1A2
322 316 ad2antrr φj0..^N¬Sj+1Sj<Q1AA+Q1A2<Q1
323 321 322 eqbrtrd φj0..^N¬Sj+1Sj<Q1AA+ifSj+1Sj<Q1ASj+1Sj2Q1A2<Q1
324 319 323 pm2.61dan φj0..^NA+ifSj+1Sj<Q1ASj+1Sj2Q1A2<Q1
325 324 adantr φj0..^NESj=BA+ifSj+1Sj<Q1ASj+1Sj2Q1A2<Q1
326 281 325 eqbrtrd φj0..^NESj=BEZ<Q1
327 eqid Q1EZZ=Q1EZZ
328 1 2 91 92 93 94 95 8 9 10 11 12 103 104 214 326 327 fourierdlem63 φj0..^NESj=BESj+1Q1
329 15 a1i φj0..^NESj=BI=xsupi0..^M|QiLEx<
330 58 adantl φj0..^NESj=Bx=Sjsupi0..^M|QiLEx<=supi0..^M|QiLESj<
331 61 a1i φj0..^NESj=Bsupi0..^M|QiLESj<V
332 329 330 220 331 fvmptd φj0..^NESj=BISj=supi0..^M|QiLESj<
333 fveq2 ESj=BLESj=LB
334 13 a1i φL=yABify=BAy
335 iftrue y=Bify=BAy=A
336 335 adantl φy=Bify=BAy=A
337 ubioc1 A*B*A<BBAB
338 243 244 218 337 syl3anc φBAB
339 334 336 338 112 fvmptd φLB=A
340 333 339 sylan9eqr φESj=BLESj=A
341 340 breq2d φESj=BQiLESjQiA
342 341 rabbidv φESj=Bi0..^M|QiLESj=i0..^M|QiA
343 342 supeq1d φESj=Bsupi0..^M|QiLESj<=supi0..^M|QiA<
344 343 adantlr φj0..^NESj=Bsupi0..^M|QiLESj<=supi0..^M|QiA<
345 simpl φji0..^M|QiAφ
346 elrabi ji0..^M|QiAj0..^M
347 346 adantl φji0..^M|QiAj0..^M
348 fveq2 i=jQi=Qj
349 348 breq1d i=jQiAQjA
350 349 elrab ji0..^M|QiAj0..^MQjA
351 350 simprbi ji0..^M|QiAQjA
352 351 adantl φji0..^M|QiAQjA
353 simp3 φj0..^MQjAQjA
354 112 ad2antrr φj0..^M¬j0A
355 110 ad2antrr φj0..^M¬j0Q1
356 21 adantr φj0..^MQ:0M
357 26 sselda φj0..^Mj0M
358 356 357 ffvelcdmd φj0..^MQj
359 358 adantr φj0..^M¬j0Qj
360 159 ad2antrr φj0..^M¬j0A<Q1
361 1zzd φj0..^M¬j01
362 elfzoelz j0..^Mj
363 362 ad2antlr φj0..^M¬j0j
364 1e0p1 1=0+1
365 simpr φj0..^M¬j0¬j0
366 0red φj0..^M¬j00
367 363 zred φj0..^M¬j0j
368 366 367 ltnled φj0..^M¬j00<j¬j0
369 365 368 mpbird φj0..^M¬j00<j
370 0zd φj0..^M¬j00
371 zltp1le 0j0<j0+1j
372 370 363 371 syl2anc φj0..^M¬j00<j0+1j
373 369 372 mpbid φj0..^M¬j00+1j
374 364 373 eqbrtrid φj0..^M¬j01j
375 eluz2 j11j1j
376 361 363 374 375 syl3anbrc φj0..^M¬j0j1
377 21 ad2antrr φj0..^Ml1jQ:0M
378 0zd φj0..^Ml1j0
379 97 ad2antrr φj0..^Ml1jM
380 elfzelz l1jl
381 380 adantl φj0..^Ml1jl
382 0red l1j0
383 380 zred l1jl
384 1red l1j1
385 0lt1 0<1
386 385 a1i l1j0<1
387 elfzle1 l1j1l
388 382 384 383 386 387 ltletrd l1j0<l
389 382 383 388 ltled l1j0l
390 389 adantl φj0..^Ml1j0l
391 383 adantl φj0..^Ml1jl
392 97 zred φM
393 392 ad2antrr φj0..^Ml1jM
394 362 zred j0..^Mj
395 394 ad2antlr φj0..^Ml1jj
396 elfzle2 l1jlj
397 396 adantl φj0..^Ml1jlj
398 elfzolt2 j0..^Mj<M
399 398 ad2antlr φj0..^Ml1jj<M
400 391 395 393 397 399 lelttrd φj0..^Ml1jl<M
401 391 393 400 ltled φj0..^Ml1jlM
402 378 379 381 390 401 elfzd φj0..^Ml1jl0M
403 377 402 ffvelcdmd φj0..^Ml1jQl
404 403 adantlr φj0..^M¬j0l1jQl
405 21 ad2antrr φj0..^Ml1j1Q:0M
406 0zd φj0..^Ml1j10
407 97 ad2antrr φj0..^Ml1j1M
408 elfzelz l1j1l
409 408 adantl φj0..^Ml1j1l
410 0red l1j10
411 408 zred l1j1l
412 1red l1j11
413 385 a1i l1j10<1
414 elfzle1 l1j11l
415 410 412 411 413 414 ltletrd l1j10<l
416 410 411 415 ltled l1j10l
417 416 adantl φj0..^Ml1j10l
418 409 zred φj0..^Ml1j1l
419 392 ad2antrr φj0..^Ml1j1M
420 394 ad2antlr φj0..^Ml1j1j
421 411 adantl j0..^Ml1j1l
422 peano2rem jj1
423 394 422 syl j0..^Mj1
424 423 adantr j0..^Ml1j1j1
425 394 adantr j0..^Ml1j1j
426 elfzle2 l1j1lj1
427 426 adantl j0..^Ml1j1lj1
428 425 ltm1d j0..^Ml1j1j1<j
429 421 424 425 427 428 lelttrd j0..^Ml1j1l<j
430 429 adantll φj0..^Ml1j1l<j
431 398 ad2antlr φj0..^Ml1j1j<M
432 418 420 419 430 431 lttrd φj0..^Ml1j1l<M
433 418 419 432 ltled φj0..^Ml1j1lM
434 406 407 409 417 433 elfzd φj0..^Ml1j1l0M
435 405 434 ffvelcdmd φj0..^Ml1j1Ql
436 409 peano2zd φj0..^Ml1j1l+1
437 411 412 readdcld l1j1l+1
438 411 412 415 413 addgt0d l1j10<l+1
439 410 437 438 ltled l1j10l+1
440 439 adantl φj0..^Ml1j10l+1
441 437 adantl φj0..^Ml1j1l+1
442 437 recnd l1j1l+1
443 1cnd l1j11
444 442 443 npcand l1j1l+1-1+1=l+1
445 444 eqcomd l1j1l+1=l+1-1+1
446 445 adantl j0..^Ml1j1l+1=l+1-1+1
447 peano2re ll+1
448 peano2rem l+1l+1-1
449 421 447 448 3syl j0..^Ml1j1l+1-1
450 peano2re j1j-1+1
451 peano2rem j-1+1j1+1-1
452 424 450 451 3syl j0..^Ml1j1j1+1-1
453 1red j0..^Ml1j11
454 elfzel2 l1j1j1
455 454 zred l1j1j1
456 455 412 readdcld l1j1j-1+1
457 411 455 412 426 leadd1dd l1j1l+1j-1+1
458 437 456 412 457 lesub1dd l1j1l+1-1j1+1-1
459 458 adantl j0..^Ml1j1l+1-1j1+1-1
460 449 452 453 459 leadd1dd j0..^Ml1j1l+1-1+1j-1+1-1+1
461 peano2zm jj1
462 362 461 syl j0..^Mj1
463 462 peano2zd j0..^Mj-1+1
464 463 zcnd j0..^Mj-1+1
465 1cnd j0..^M1
466 464 465 npcand j0..^Mj-1+1-1+1=j-1+1
467 394 recnd j0..^Mj
468 467 465 npcand j0..^Mj-1+1=j
469 466 468 eqtrd j0..^Mj-1+1-1+1=j
470 469 adantr j0..^Ml1j1j-1+1-1+1=j
471 460 470 breqtrd j0..^Ml1j1l+1-1+1j
472 446 471 eqbrtrd j0..^Ml1j1l+1j
473 472 adantll φj0..^Ml1j1l+1j
474 441 420 419 473 431 lelttrd φj0..^Ml1j1l+1<M
475 441 419 474 ltled φj0..^Ml1j1l+1M
476 406 407 436 440 475 elfzd φj0..^Ml1j1l+10M
477 405 476 ffvelcdmd φj0..^Ml1j1Ql+1
478 simpll φj0..^Ml1j1φ
479 0zd j0..^Ml1j10
480 408 adantl j0..^Ml1j1l
481 416 adantl j0..^Ml1j10l
482 eluz2 l00l0l
483 479 480 481 482 syl3anbrc j0..^Ml1j1l0
484 elfzoel2 j0..^MM
485 484 adantr j0..^Ml1j1M
486 485 zred j0..^Ml1j1M
487 398 adantr j0..^Ml1j1j<M
488 421 425 486 429 487 lttrd j0..^Ml1j1l<M
489 elfzo2 l0..^Ml0Ml<M
490 483 485 488 489 syl3anbrc j0..^Ml1j1l0..^M
491 490 adantll φj0..^Ml1j1l0..^M
492 eleq1 i=li0..^Ml0..^M
493 492 anbi2d i=lφi0..^Mφl0..^M
494 fveq2 i=lQi=Ql
495 oveq1 i=li+1=l+1
496 495 fveq2d i=lQi+1=Ql+1
497 494 496 breq12d i=lQi<Qi+1Ql<Ql+1
498 493 497 imbi12d i=lφi0..^MQi<Qi+1φl0..^MQl<Ql+1
499 498 150 chvarvv φl0..^MQl<Ql+1
500 478 491 499 syl2anc φj0..^Ml1j1Ql<Ql+1
501 435 477 500 ltled φj0..^Ml1j1QlQl+1
502 501 adantlr φj0..^M¬j0l1j1QlQl+1
503 376 404 502 monoord φj0..^M¬j0Q1Qj
504 354 355 359 360 503 ltletrd φj0..^M¬j0A<Qj
505 354 359 ltnled φj0..^M¬j0A<Qj¬QjA
506 504 505 mpbid φj0..^M¬j0¬QjA
507 506 ex φj0..^M¬j0¬QjA
508 507 3adant3 φj0..^MQjA¬j0¬QjA
509 353 508 mt4d φj0..^MQjAj0
510 elfzole1 j0..^M0j
511 510 3ad2ant2 φj0..^MQjA0j
512 394 3ad2ant2 φj0..^MQjAj
513 0red φj0..^MQjA0
514 512 513 letri3d φj0..^MQjAj=0j00j
515 509 511 514 mpbir2and φj0..^MQjAj=0
516 345 347 352 515 syl3anc φji0..^M|QiAj=0
517 velsn j0j=0
518 516 517 sylibr φji0..^M|QiAj0
519 518 ralrimiva φji0..^M|QiAj0
520 dfss3 i0..^M|QiA0ji0..^M|QiAj0
521 519 520 sylibr φi0..^M|QiA0
522 155 112 eqeltrd φQ0
523 522 155 eqled φQ0A
524 143 breq1d i=0QiAQ0A
525 524 elrab 0i0..^M|QiA00..^MQ0A
526 139 523 525 sylanbrc φ0i0..^M|QiA
527 526 snssd φ0i0..^M|QiA
528 521 527 eqssd φi0..^M|QiA=0
529 528 supeq1d φsupi0..^M|QiA<=sup0<
530 supsn <Or0sup0<=0
531 60 140 530 mp2an sup0<=0
532 531 a1i φsup0<=0
533 529 532 eqtrd φsupi0..^M|QiA<=0
534 533 ad2antrr φj0..^NESj=Bsupi0..^M|QiA<=0
535 332 344 534 3eqtrd φj0..^NESj=BISj=0
536 535 oveq1d φj0..^NESj=BISj+1=0+1
537 536 fveq2d φj0..^NESj=BQISj+1=Q0+1
538 537 157 eqtr2di φj0..^NESj=BQ1=QISj+1
539 328 538 breqtrd φj0..^NESj=BESj+1QISj+1
540 66 adantr φj0..^N¬ESj=BφSj
541 simplr φj0..^N¬ESj=Bj0..^N
542 13 a1i φj0..^N¬ESj=BL=yABify=BAy
543 simpr ¬ESj=By=ESjy=ESj
544 neqne ¬ESj=BESjB
545 544 adantr ¬ESj=By=ESjESjB
546 543 545 eqnetrd ¬ESj=By=ESjyB
547 546 neneqd ¬ESj=By=ESj¬y=B
548 547 iffalsed ¬ESj=By=ESjify=BAy=y
549 548 543 eqtrd ¬ESj=By=ESjify=BAy=ESj
550 549 adantll φj0..^N¬ESj=By=ESjify=BAy=ESj
551 112 216 218 1 12 fourierdlem4 φE:AB
552 551 adantr φj0..^NE:AB
553 552 43 ffvelcdmd φj0..^NESjAB
554 553 adantr φj0..^N¬ESj=BESjAB
555 542 550 554 554 fvmptd φj0..^N¬ESj=BLESj=ESj
556 555 eqcomd φj0..^N¬ESj=BESj=LESj
557 112 216 218 13 fourierdlem17 φL:ABAB
558 557 adantr φj0..^NL:ABAB
559 112 216 iccssred φAB
560 559 adantr φj0..^NAB
561 558 560 fssd φj0..^NL:AB
562 561 553 ffvelcdmd φj0..^NLESj
563 562 adantr φj0..^N¬ESj=BLESj
564 556 563 eqeltrd φj0..^N¬ESj=BESj
565 216 ad2antrr φj0..^N¬ESj=BB
566 243 adantr φj0..^NA*
567 216 adantr φj0..^NB
568 elioc2 A*BESjABESjA<ESjESjB
569 566 567 568 syl2anc φj0..^NESjABESjA<ESjESjB
570 553 569 mpbid φj0..^NESjA<ESjESjB
571 570 simp3d φj0..^NESjB
572 571 adantr φj0..^N¬ESj=BESjB
573 544 necomd ¬ESj=BBESj
574 573 adantl φj0..^N¬ESj=BBESj
575 564 565 572 574 leneltd φj0..^N¬ESj=BESj<B
576 575 adantr φj0..^N¬ESj=BISj=M1ESj<B
577 oveq1 ISj=M1ISj+1=M-1+1
578 3 nncnd φM
579 1cnd φ1
580 578 579 npcand φM-1+1=M
581 577 580 sylan9eqr φISj=M1ISj+1=M
582 581 fveq2d φISj=M1QISj+1=QM
583 154 simprd φQM=B
584 583 adantr φISj=M1QM=B
585 582 584 eqtr2d φISj=M1B=QISj+1
586 585 adantlr φj0..^NISj=M1B=QISj+1
587 586 adantlr φj0..^N¬ESj=BISj=M1B=QISj+1
588 576 587 breqtrd φj0..^N¬ESj=BISj=M1ESj<QISj+1
589 556 adantr φj0..^N¬ESj=B¬ISj=M1ESj=LESj
590 ssrab2 i0..^M|QiLESj0..^M
591 fzssz 0M
592 25 591 sstri 0..^M
593 zssre
594 592 593 sstri 0..^M
595 590 594 sstri i0..^M|QiLESj
596 595 a1i φj0..^N¬ISj=M1QISj+1LESji0..^M|QiLESj
597 57 neeq1d x=Sji0..^M|QiLExi0..^M|QiLESj
598 68 597 imbi12d x=Sjφxi0..^M|QiLExφSji0..^M|QiLESj
599 139 adantr φx00..^M
600 523 ad2antrr φxEx=BQ0A
601 iftrue Ex=BifEx=BAEx=A
602 601 eqcomd Ex=BA=ifEx=BAEx
603 602 adantl φxEx=BA=ifEx=BAEx
604 600 603 breqtrd φxEx=BQ0ifEx=BAEx
605 522 adantr φxQ0
606 112 adantr φxA
607 606 rexrd φxA*
608 216 adantr φxB
609 iocssre A*BAB
610 607 608 609 syl2anc φxAB
611 551 ffvelcdmda φxExAB
612 610 611 sseldd φxEx
613 155 adantr φxQ0=A
614 elioc2 A*BExABExA<ExExB
615 607 608 614 syl2anc φxExABExA<ExExB
616 611 615 mpbid φxExA<ExExB
617 616 simp2d φxA<Ex
618 613 617 eqbrtrd φxQ0<Ex
619 605 612 618 ltled φxQ0Ex
620 619 adantr φx¬Ex=BQ0Ex
621 iffalse ¬Ex=BifEx=BAEx=Ex
622 621 eqcomd ¬Ex=BEx=ifEx=BAEx
623 622 adantl φx¬Ex=BEx=ifEx=BAEx
624 620 623 breqtrd φx¬Ex=BQ0ifEx=BAEx
625 604 624 pm2.61dan φxQ0ifEx=BAEx
626 13 a1i φxL=yABify=BAy
627 eqeq1 y=Exy=BEx=B
628 id y=Exy=Ex
629 627 628 ifbieq2d y=Exify=BAy=ifEx=BAEx
630 629 adantl φxy=Exify=BAy=ifEx=BAEx
631 606 612 ifcld φxifEx=BAEx
632 626 630 611 631 fvmptd φxLEx=ifEx=BAEx
633 625 632 breqtrrd φxQ0LEx
634 143 breq1d i=0QiLExQ0LEx
635 634 elrab 0i0..^M|QiLEx00..^MQ0LEx
636 599 633 635 sylanbrc φx0i0..^M|QiLEx
637 ne0i 0i0..^M|QiLExi0..^M|QiLEx
638 636 637 syl φxi0..^M|QiLEx
639 598 638 vtoclg SjφSji0..^M|QiLESj
640 43 66 639 sylc φj0..^Ni0..^M|QiLESj
641 640 ad2antrr φj0..^N¬ISj=M1QISj+1LESji0..^M|QiLESj
642 595 a1i φj0..^Ni0..^M|QiLESj
643 fzofi 0..^MFin
644 ssfi 0..^MFini0..^M|QiLESj0..^Mi0..^M|QiLESjFin
645 643 590 644 mp2an i0..^M|QiLESjFin
646 645 a1i φj0..^Ni0..^M|QiLESjFin
647 fimaxre2 i0..^M|QiLESji0..^M|QiLESjFinxli0..^M|QiLESjlx
648 642 646 647 syl2anc φj0..^Nxli0..^M|QiLESjlx
649 648 ad2antrr φj0..^N¬ISj=M1QISj+1LESjxli0..^M|QiLESjlx
650 0red φj0..^N0
651 594 48 sselid φj0..^NISj
652 1red φj0..^N1
653 651 652 readdcld φj0..^NISj+1
654 elfzouz ISj0..^MISj0
655 eluzle ISj00ISj
656 48 654 655 3syl φj0..^N0ISj
657 385 a1i φj0..^N0<1
658 651 652 656 657 addgegt0d φj0..^N0<ISj+1
659 650 653 658 ltled φj0..^N0ISj+1
660 659 adantr φj0..^N¬ISj=M10ISj+1
661 651 adantr φj0..^N¬ISj=M1ISj
662 1red φ1
663 392 662 resubcld φM1
664 663 ad2antrr φj0..^N¬ISj=M1M1
665 1red φj0..^N¬ISj=M11
666 elfzolt2 ISj0..^MISj<M
667 48 666 syl φj0..^NISj<M
668 44 elfzelzd φj0..^NISj
669 97 adantr φj0..^NM
670 zltlem1 ISjMISj<MISjM1
671 668 669 670 syl2anc φj0..^NISj<MISjM1
672 667 671 mpbid φj0..^NISjM1
673 672 adantr φj0..^N¬ISj=M1ISjM1
674 neqne ¬ISj=M1ISjM1
675 674 necomd ¬ISj=M1M1ISj
676 675 adantl φj0..^N¬ISj=M1M1ISj
677 661 664 673 676 leneltd φj0..^N¬ISj=M1ISj<M1
678 661 664 665 677 ltadd1dd φj0..^N¬ISj=M1ISj+1<M-1+1
679 580 ad2antrr φj0..^N¬ISj=M1M-1+1=M
680 678 679 breqtrd φj0..^N¬ISj=M1ISj+1<M
681 50 elfzelzd φj0..^NISj+1
682 681 adantr φj0..^N¬ISj=M1ISj+1
683 0zd φj0..^N¬ISj=M10
684 97 ad2antrr φj0..^N¬ISj=M1M
685 elfzo ISj+10MISj+10..^M0ISj+1ISj+1<M
686 682 683 684 685 syl3anc φj0..^N¬ISj=M1ISj+10..^M0ISj+1ISj+1<M
687 660 680 686 mpbir2and φj0..^N¬ISj=M1ISj+10..^M
688 687 adantr φj0..^N¬ISj=M1QISj+1LESjISj+10..^M
689 simpr φj0..^N¬ISj=M1QISj+1LESjQISj+1LESj
690 fveq2 i=ISj+1Qi=QISj+1
691 690 breq1d i=ISj+1QiLESjQISj+1LESj
692 691 elrab ISj+1i0..^M|QiLESjISj+10..^MQISj+1LESj
693 688 689 692 sylanbrc φj0..^N¬ISj=M1QISj+1LESjISj+1i0..^M|QiLESj
694 suprub i0..^M|QiLESji0..^M|QiLESjxli0..^M|QiLESjlxISj+1i0..^M|QiLESjISj+1supi0..^M|QiLESj<
695 596 641 649 693 694 syl31anc φj0..^N¬ISj=M1QISj+1LESjISj+1supi0..^M|QiLESj<
696 63 eqcomd φj0..^Nsupi0..^M|QiLESj<=ISj
697 696 ad2antrr φj0..^N¬ISj=M1QISj+1LESjsupi0..^M|QiLESj<=ISj
698 695 697 breqtrd φj0..^N¬ISj=M1QISj+1LESjISj+1ISj
699 651 ltp1d φj0..^NISj<ISj+1
700 651 653 ltnled φj0..^NISj<ISj+1¬ISj+1ISj
701 699 700 mpbid φj0..^N¬ISj+1ISj
702 701 ad2antrr φj0..^N¬ISj=M1QISj+1LESj¬ISj+1ISj
703 698 702 pm2.65da φj0..^N¬ISj=M1¬QISj+1LESj
704 562 adantr φj0..^N¬ISj=M1LESj
705 51 adantr φj0..^N¬ISj=M1QISj+1
706 704 705 ltnled φj0..^N¬ISj=M1LESj<QISj+1¬QISj+1LESj
707 703 706 mpbird φj0..^N¬ISj=M1LESj<QISj+1
708 707 adantlr φj0..^N¬ESj=B¬ISj=M1LESj<QISj+1
709 589 708 eqbrtrd φj0..^N¬ESj=B¬ISj=M1ESj<QISj+1
710 588 709 pm2.61dan φj0..^N¬ESj=BESj<QISj+1
711 3 3ad2ant1 φj0..^NESj<QISj+1M
712 4 3ad2ant1 φj0..^NESj<QISj+1QPM
713 5 3ad2ant1 φj0..^NESj<QISj+1C
714 6 3ad2ant1 φj0..^NESj<QISj+1D
715 7 3ad2ant1 φj0..^NESj<QISj+1C<D
716 50 3adant3 φj0..^NESj<QISj+1ISj+10M
717 simp2 φj0..^NESj<QISj+1j0..^N
718 43 leidd φj0..^NSjSj
719 elico2 SjSj+1*SjSjSj+1SjSjSjSj<Sj+1
720 43 210 719 syl2anc φj0..^NSjSjSj+1SjSjSjSj<Sj+1
721 43 718 129 720 mpbir3and φj0..^NSjSjSj+1
722 721 3adant3 φj0..^NESj<QISj+1SjSjSj+1
723 simp3 φj0..^NESj<QISj+1ESj<QISj+1
724 eqid QISj+1ESjSj=QISj+1ESjSj
725 1 2 711 712 713 714 715 8 9 10 11 12 716 717 722 723 724 fourierdlem63 φj0..^NESj<QISj+1ESj+1QISj+1
726 725 3adant1r φSjj0..^NESj<QISj+1ESj+1QISj+1
727 540 541 710 726 syl3anc φj0..^N¬ESj=BESj+1QISj+1
728 539 727 pm2.61dan φj0..^NESj+1QISj+1
729 ioossioo QISj*QISj+1*QISjLESjESj+1QISj+1LESjESj+1QISjQISj+1
730 46 52 90 728 729 syl22anc φj0..^NLESjESj+1QISjQISj+1