Metamath Proof Explorer


Theorem fourierdlem93

Description: Integral by substitution (the domain is shifted by X ) for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem93.1 P=mp0m|p0=πpm=πi0..^mpi<pi+1
fourierdlem93.2 H=i0MQiX
fourierdlem93.3 φM
fourierdlem93.4 φQPM
fourierdlem93.5 φX
fourierdlem93.6 φF:ππ
fourierdlem93.7 φi0..^MFQiQi+1:QiQi+1cn
fourierdlem93.8 φi0..^MRFQiQi+1limQi
fourierdlem93.9 φi0..^MLFQiQi+1limQi+1
Assertion fourierdlem93 φππFtdt=-π-XπXFX+sds

Proof

Step Hyp Ref Expression
1 fourierdlem93.1 P=mp0m|p0=πpm=πi0..^mpi<pi+1
2 fourierdlem93.2 H=i0MQiX
3 fourierdlem93.3 φM
4 fourierdlem93.4 φQPM
5 fourierdlem93.5 φX
6 fourierdlem93.6 φF:ππ
7 fourierdlem93.7 φi0..^MFQiQi+1:QiQi+1cn
8 fourierdlem93.8 φi0..^MRFQiQi+1limQi
9 fourierdlem93.9 φi0..^MLFQiQi+1limQi+1
10 1 fourierdlem2 MQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
11 3 10 syl φQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
12 4 11 mpbid φQ0MQ0=πQM=πi0..^MQi<Qi+1
13 12 simprd φQ0=πQM=πi0..^MQi<Qi+1
14 13 simplld φQ0=π
15 14 eqcomd φπ=Q0
16 13 simplrd φQM=π
17 16 eqcomd φπ=QM
18 15 17 oveq12d φππ=Q0QM
19 18 itgeq1d φππFtdt=Q0QMFtdt
20 0zd φ0
21 nnuz =1
22 3 21 eleqtrdi φM1
23 1e0p1 1=0+1
24 23 a1i φ1=0+1
25 24 fveq2d φ1=0+1
26 22 25 eleqtrd φM0+1
27 1 3 4 fourierdlem15 φQ:0Mππ
28 pire π
29 28 renegcli π
30 iccssre ππππ
31 29 28 30 mp2an ππ
32 31 a1i φππ
33 27 32 fssd φQ:0M
34 13 simprd φi0..^MQi<Qi+1
35 34 r19.21bi φi0..^MQi<Qi+1
36 6 adantr φtQ0QMF:ππ
37 simpr φtQ0QMtQ0QM
38 18 eqcomd φQ0QM=ππ
39 38 adantr φtQ0QMQ0QM=ππ
40 37 39 eleqtrd φtQ0QMtππ
41 36 40 ffvelcdmd φtQ0QMFt
42 33 adantr φi0..^MQ:0M
43 elfzofz i0..^Mi0M
44 43 adantl φi0..^Mi0M
45 42 44 ffvelcdmd φi0..^MQi
46 fzofzp1 i0..^Mi+10M
47 46 adantl φi0..^Mi+10M
48 42 47 ffvelcdmd φi0..^MQi+1
49 6 feqmptd φF=tππFt
50 49 adantr φi0..^MF=tππFt
51 50 reseq1d φi0..^MFQiQi+1=tππFtQiQi+1
52 ioossicc QiQi+1QiQi+1
53 52 a1i φi0..^MQiQi+1QiQi+1
54 29 rexri π*
55 54 a1i φi0..^MtQiQi+1π*
56 28 rexri π*
57 56 a1i φi0..^MtQiQi+1π*
58 27 ad2antrr φi0..^MtQiQi+1Q:0Mππ
59 simplr φi0..^MtQiQi+1i0..^M
60 simpr φi0..^MtQiQi+1tQiQi+1
61 55 57 58 59 60 fourierdlem1 φi0..^MtQiQi+1tππ
62 61 ralrimiva φi0..^MtQiQi+1tππ
63 dfss3 QiQi+1ππtQiQi+1tππ
64 62 63 sylibr φi0..^MQiQi+1ππ
65 53 64 sstrd φi0..^MQiQi+1ππ
66 65 resmptd φi0..^MtππFtQiQi+1=tQiQi+1Ft
67 51 66 eqtrd φi0..^MFQiQi+1=tQiQi+1Ft
68 67 eqcomd φi0..^MtQiQi+1Ft=FQiQi+1
69 68 7 eqeltrd φi0..^MtQiQi+1Ft:QiQi+1cn
70 67 oveq1d φi0..^MFQiQi+1limQi+1=tQiQi+1FtlimQi+1
71 9 70 eleqtrd φi0..^MLtQiQi+1FtlimQi+1
72 67 oveq1d φi0..^MFQiQi+1limQi=tQiQi+1FtlimQi
73 8 72 eleqtrd φi0..^MRtQiQi+1FtlimQi
74 45 48 69 71 73 iblcncfioo φi0..^MtQiQi+1Ft𝐿1
75 6 ad2antrr φi0..^MtQiQi+1F:ππ
76 75 61 ffvelcdmd φi0..^MtQiQi+1Ft
77 45 48 74 76 ibliooicc φi0..^MtQiQi+1Ft𝐿1
78 20 26 33 35 41 77 itgspltprt φQ0QMFtdt=i0..^MQiQi+1Ftdt
79 fvres tQiQi+1FQiQi+1t=Ft
80 79 eqcomd tQiQi+1Ft=FQiQi+1t
81 80 adantl φi0..^MtQiQi+1Ft=FQiQi+1t
82 81 itgeq2dv φi0..^MQiQi+1Ftdt=QiQi+1FQiQi+1tdt
83 eqid xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1QiQi+1x=xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1QiQi+1x
84 6 adantr φi0..^MF:ππ
85 84 64 fssresd φi0..^MFQiQi+1:QiQi+1
86 53 resabs1d φi0..^MFQiQi+1QiQi+1=FQiQi+1
87 86 7 eqeltrd φi0..^MFQiQi+1QiQi+1:QiQi+1cn
88 86 oveq1d φi0..^MFQiQi+1QiQi+1limQi+1=FQiQi+1limQi+1
89 45 48 35 85 limcicciooub φi0..^MFQiQi+1QiQi+1limQi+1=FQiQi+1limQi+1
90 88 89 eqtr3d φi0..^MFQiQi+1limQi+1=FQiQi+1limQi+1
91 9 90 eleqtrd φi0..^MLFQiQi+1limQi+1
92 86 eqcomd φi0..^MFQiQi+1=FQiQi+1QiQi+1
93 92 oveq1d φi0..^MFQiQi+1limQi=FQiQi+1QiQi+1limQi
94 45 48 35 85 limciccioolb φi0..^MFQiQi+1QiQi+1limQi=FQiQi+1limQi
95 93 94 eqtrd φi0..^MFQiQi+1limQi=FQiQi+1limQi
96 8 95 eleqtrd φi0..^MRFQiQi+1limQi
97 5 adantr φi0..^MX
98 83 45 48 35 85 87 91 96 97 fourierdlem82 φi0..^MQiQi+1FQiQi+1tdt=QiXQi+1XFQiQi+1X+tdt
99 45 adantr φi0..^MtQiXQi+1XQi
100 48 adantr φi0..^MtQiXQi+1XQi+1
101 5 ad2antrr φi0..^MtQiXQi+1XX
102 99 101 resubcld φi0..^MtQiXQi+1XQiX
103 100 101 resubcld φi0..^MtQiXQi+1XQi+1X
104 simpr φi0..^MtQiXQi+1XtQiXQi+1X
105 eliccre QiXQi+1XtQiXQi+1Xt
106 102 103 104 105 syl3anc φi0..^MtQiXQi+1Xt
107 101 106 readdcld φi0..^MtQiXQi+1XX+t
108 elicc2 QiXQi+1XtQiXQi+1XtQiXttQi+1X
109 102 103 108 syl2anc φi0..^MtQiXQi+1XtQiXQi+1XtQiXttQi+1X
110 104 109 mpbid φi0..^MtQiXQi+1XtQiXttQi+1X
111 110 simp2d φi0..^MtQiXQi+1XQiXt
112 99 101 106 lesubadd2d φi0..^MtQiXQi+1XQiXtQiX+t
113 111 112 mpbid φi0..^MtQiXQi+1XQiX+t
114 110 simp3d φi0..^MtQiXQi+1XtQi+1X
115 101 106 100 leaddsub2d φi0..^MtQiXQi+1XX+tQi+1tQi+1X
116 114 115 mpbird φi0..^MtQiXQi+1XX+tQi+1
117 99 100 107 113 116 eliccd φi0..^MtQiXQi+1XX+tQiQi+1
118 fvres X+tQiQi+1FQiQi+1X+t=FX+t
119 117 118 syl φi0..^MtQiXQi+1XFQiQi+1X+t=FX+t
120 119 itgeq2dv φi0..^MQiXQi+1XFQiQi+1X+tdt=QiXQi+1XFX+tdt
121 82 98 120 3eqtrd φi0..^MQiQi+1Ftdt=QiXQi+1XFX+tdt
122 121 sumeq2dv φi0..^MQiQi+1Ftdt=i0..^MQiXQi+1XFX+tdt
123 oveq2 s=tX+s=X+t
124 123 fveq2d s=tFX+s=FX+t
125 124 cbvitgv -π-XπXFX+sds=-π-XπXFX+tdt
126 125 a1i φ-π-XπXFX+sds=-π-XπXFX+tdt
127 2 a1i φH=i0MQiX
128 fveq2 i=0Qi=Q0
129 128 oveq1d i=0QiX=Q0X
130 129 adantl φi=0QiX=Q0X
131 3 nnzd φM
132 0le0 00
133 132 a1i φ00
134 0red φ0
135 3 nnred φM
136 3 nngt0d φ0<M
137 134 135 136 ltled φ0M
138 20 131 20 133 137 elfzd φ00M
139 14 29 eqeltrdi φQ0
140 139 5 resubcld φQ0X
141 127 130 138 140 fvmptd φH0=Q0X
142 14 oveq1d φQ0X=-π-X
143 141 142 eqtr2d φ-π-X=H0
144 fveq2 i=MQi=QM
145 144 oveq1d i=MQiX=QMX
146 145 adantl φi=MQiX=QMX
147 135 leidd φMM
148 20 131 131 137 147 elfzd φM0M
149 16 28 eqeltrdi φQM
150 149 5 resubcld φQMX
151 127 146 148 150 fvmptd φHM=QMX
152 16 oveq1d φQMX=πX
153 151 152 eqtr2d φπX=HM
154 143 153 oveq12d φ-π-XπX=H0HM
155 154 itgeq1d φ-π-XπXFX+tdt=H0HMFX+tdt
156 33 ffvelcdmda φi0MQi
157 5 adantr φi0MX
158 156 157 resubcld φi0MQiX
159 158 2 fmptd φH:0M
160 45 48 97 35 ltsub1dd φi0..^MQiX<Qi+1X
161 44 158 syldan φi0..^MQiX
162 2 fvmpt2 i0MQiXHi=QiX
163 44 161 162 syl2anc φi0..^MHi=QiX
164 fveq2 i=jQi=Qj
165 164 oveq1d i=jQiX=QjX
166 165 cbvmptv i0MQiX=j0MQjX
167 2 166 eqtri H=j0MQjX
168 167 a1i φi0..^MH=j0MQjX
169 fveq2 j=i+1Qj=Qi+1
170 169 oveq1d j=i+1QjX=Qi+1X
171 170 adantl φi0..^Mj=i+1QjX=Qi+1X
172 48 97 resubcld φi0..^MQi+1X
173 168 171 47 172 fvmptd φi0..^MHi+1=Qi+1X
174 160 163 173 3brtr4d φi0..^MHi<Hi+1
175 frn F:ππranF
176 6 175 syl φranF
177 176 adantr φtH0HMranF
178 ffun F:ππFunF
179 6 178 syl φFunF
180 179 adantr φtH0HMFunF
181 29 a1i φtH0HMπ
182 28 a1i φtH0HMπ
183 5 adantr φtH0HMX
184 141 140 eqeltrd φH0
185 184 adantr φtH0HMH0
186 151 150 eqeltrd φHM
187 186 adantr φtH0HMHM
188 simpr φtH0HMtH0HM
189 eliccre H0HMtH0HMt
190 185 187 188 189 syl3anc φtH0HMt
191 183 190 readdcld φtH0HMX+t
192 128 adantl φi=0Qi=Q0
193 192 oveq1d φi=0QiX=Q0X
194 127 193 138 140 fvmptd φH0=Q0X
195 194 oveq2d φX+H0=X+Q0-X
196 5 recnd φX
197 139 recnd φQ0
198 196 197 pncan3d φX+Q0-X=Q0
199 195 198 14 3eqtrrd φπ=X+H0
200 199 adantr φtH0HMπ=X+H0
201 elicc2 H0HMtH0HMtH0ttHM
202 185 187 201 syl2anc φtH0HMtH0HMtH0ttHM
203 188 202 mpbid φtH0HMtH0ttHM
204 203 simp2d φtH0HMH0t
205 185 190 183 204 leadd2dd φtH0HMX+H0X+t
206 200 205 eqbrtrd φtH0HMπX+t
207 203 simp3d φtH0HMtHM
208 190 187 183 207 leadd2dd φtH0HMX+tX+HM
209 151 oveq2d φX+HM=X+QM-X
210 149 recnd φQM
211 196 210 pncan3d φX+QM-X=QM
212 209 211 16 3eqtrrd φπ=X+HM
213 212 adantr φtH0HMπ=X+HM
214 208 213 breqtrrd φtH0HMX+tπ
215 181 182 191 206 214 eliccd φtH0HMX+tππ
216 fdm F:ππdomF=ππ
217 6 216 syl φdomF=ππ
218 217 eqcomd φππ=domF
219 218 adantr φtH0HMππ=domF
220 215 219 eleqtrd φtH0HMX+tdomF
221 fvelrn FunFX+tdomFFX+tranF
222 180 220 221 syl2anc φtH0HMFX+tranF
223 177 222 sseldd φtH0HMFX+t
224 163 161 eqeltrd φi0..^MHi
225 173 172 eqeltrd φi0..^MHi+1
226 84 65 fssresd φi0..^MFQiQi+1:QiQi+1
227 45 rexrd φi0..^MQi*
228 227 adantr φi0..^MtHiHi+1Qi*
229 48 rexrd φi0..^MQi+1*
230 229 adantr φi0..^MtHiHi+1Qi+1*
231 5 ad2antrr φi0..^MtHiHi+1X
232 elioore tHiHi+1t
233 232 adantl φi0..^MtHiHi+1t
234 231 233 readdcld φi0..^MtHiHi+1X+t
235 163 oveq2d φi0..^MX+Hi=X+Qi-X
236 196 adantr φi0..^MX
237 45 recnd φi0..^MQi
238 236 237 pncan3d φi0..^MX+Qi-X=Qi
239 eqidd φi0..^MQi=Qi
240 235 238 239 3eqtrrd φi0..^MQi=X+Hi
241 240 adantr φi0..^MtHiHi+1Qi=X+Hi
242 224 adantr φi0..^MtHiHi+1Hi
243 simpr φi0..^MtHiHi+1tHiHi+1
244 242 rexrd φi0..^MtHiHi+1Hi*
245 225 rexrd φi0..^MHi+1*
246 245 adantr φi0..^MtHiHi+1Hi+1*
247 elioo2 Hi*Hi+1*tHiHi+1tHi<tt<Hi+1
248 244 246 247 syl2anc φi0..^MtHiHi+1tHiHi+1tHi<tt<Hi+1
249 243 248 mpbid φi0..^MtHiHi+1tHi<tt<Hi+1
250 249 simp2d φi0..^MtHiHi+1Hi<t
251 242 233 231 250 ltadd2dd φi0..^MtHiHi+1X+Hi<X+t
252 241 251 eqbrtrd φi0..^MtHiHi+1Qi<X+t
253 225 adantr φi0..^MtHiHi+1Hi+1
254 249 simp3d φi0..^MtHiHi+1t<Hi+1
255 233 253 231 254 ltadd2dd φi0..^MtHiHi+1X+t<X+Hi+1
256 173 oveq2d φi0..^MX+Hi+1=X+Qi+1-X
257 48 recnd φi0..^MQi+1
258 236 257 pncan3d φi0..^MX+Qi+1-X=Qi+1
259 256 258 eqtrd φi0..^MX+Hi+1=Qi+1
260 259 adantr φi0..^MtHiHi+1X+Hi+1=Qi+1
261 255 260 breqtrd φi0..^MtHiHi+1X+t<Qi+1
262 228 230 234 252 261 eliood φi0..^MtHiHi+1X+tQiQi+1
263 eqid tHiHi+1X+t=tHiHi+1X+t
264 262 263 fmptd φi0..^MtHiHi+1X+t:HiHi+1QiQi+1
265 fcompt FQiQi+1:QiQi+1tHiHi+1X+t:HiHi+1QiQi+1FQiQi+1tHiHi+1X+t=sHiHi+1FQiQi+1tHiHi+1X+ts
266 226 264 265 syl2anc φi0..^MFQiQi+1tHiHi+1X+t=sHiHi+1FQiQi+1tHiHi+1X+ts
267 oveq2 t=rX+t=X+r
268 267 cbvmptv tHiHi+1X+t=rHiHi+1X+r
269 268 fveq1i tHiHi+1X+ts=rHiHi+1X+rs
270 269 fveq2i FQiQi+1tHiHi+1X+ts=FQiQi+1rHiHi+1X+rs
271 270 mpteq2i sHiHi+1FQiQi+1tHiHi+1X+ts=sHiHi+1FQiQi+1rHiHi+1X+rs
272 271 a1i φi0..^MsHiHi+1FQiQi+1tHiHi+1X+ts=sHiHi+1FQiQi+1rHiHi+1X+rs
273 fveq2 s=trHiHi+1X+rs=rHiHi+1X+rt
274 273 fveq2d s=tFQiQi+1rHiHi+1X+rs=FQiQi+1rHiHi+1X+rt
275 274 cbvmptv sHiHi+1FQiQi+1rHiHi+1X+rs=tHiHi+1FQiQi+1rHiHi+1X+rt
276 275 a1i φi0..^MsHiHi+1FQiQi+1rHiHi+1X+rs=tHiHi+1FQiQi+1rHiHi+1X+rt
277 eqidd φi0..^MtHiHi+1rHiHi+1X+r=rHiHi+1X+r
278 oveq2 r=tX+r=X+t
279 278 adantl φi0..^MtHiHi+1r=tX+r=X+t
280 277 279 243 234 fvmptd φi0..^MtHiHi+1rHiHi+1X+rt=X+t
281 280 fveq2d φi0..^MtHiHi+1FQiQi+1rHiHi+1X+rt=FQiQi+1X+t
282 fvres X+tQiQi+1FQiQi+1X+t=FX+t
283 262 282 syl φi0..^MtHiHi+1FQiQi+1X+t=FX+t
284 281 283 eqtrd φi0..^MtHiHi+1FQiQi+1rHiHi+1X+rt=FX+t
285 284 mpteq2dva φi0..^MtHiHi+1FQiQi+1rHiHi+1X+rt=tHiHi+1FX+t
286 272 276 285 3eqtrd φi0..^MsHiHi+1FQiQi+1tHiHi+1X+ts=tHiHi+1FX+t
287 266 286 eqtr2d φi0..^MtHiHi+1FX+t=FQiQi+1tHiHi+1X+t
288 eqid tX+t=tX+t
289 ssid
290 289 a1i X
291 id XX
292 290 291 290 constcncfg XtX:cn
293 cncfmptid tt:cn
294 289 289 293 mp2an tt:cn
295 294 a1i Xtt:cn
296 292 295 addcncf XtX+t:cn
297 236 296 syl φi0..^MtX+t:cn
298 ioosscn HiHi+1
299 298 a1i φi0..^MHiHi+1
300 ioosscn QiQi+1
301 300 a1i φi0..^MQiQi+1
302 288 297 299 301 262 cncfmptssg φi0..^MtHiHi+1X+t:HiHi+1cnQiQi+1
303 302 7 cncfco φi0..^MFQiQi+1tHiHi+1X+t:HiHi+1cn
304 287 303 eqeltrd φi0..^MtHiHi+1FX+t:HiHi+1cn
305 227 adantr φi0..^MrrantHiHi+1X+tQi*
306 229 adantr φi0..^MrrantHiHi+1X+tQi+1*
307 simpr φi0..^MrrantHiHi+1X+trrantHiHi+1X+t
308 vex rV
309 263 elrnmpt rVrrantHiHi+1X+ttHiHi+1r=X+t
310 308 309 ax-mp rrantHiHi+1X+ttHiHi+1r=X+t
311 307 310 sylib φi0..^MrrantHiHi+1X+ttHiHi+1r=X+t
312 nfv tφi0..^M
313 nfmpt1 _ttHiHi+1X+t
314 313 nfrn _trantHiHi+1X+t
315 314 nfcri trrantHiHi+1X+t
316 312 315 nfan tφi0..^MrrantHiHi+1X+t
317 nfv tr
318 simp3 φtHiHi+1r=X+tr=X+t
319 5 3ad2ant1 φtHiHi+1r=X+tX
320 232 3ad2ant2 φtHiHi+1r=X+tt
321 319 320 readdcld φtHiHi+1r=X+tX+t
322 318 321 eqeltrd φtHiHi+1r=X+tr
323 322 3exp φtHiHi+1r=X+tr
324 323 ad2antrr φi0..^MrrantHiHi+1X+ttHiHi+1r=X+tr
325 316 317 324 rexlimd φi0..^MrrantHiHi+1X+ttHiHi+1r=X+tr
326 311 325 mpd φi0..^MrrantHiHi+1X+tr
327 nfv tQi<r
328 252 3adant3 φi0..^MtHiHi+1r=X+tQi<X+t
329 simp3 φi0..^MtHiHi+1r=X+tr=X+t
330 328 329 breqtrrd φi0..^MtHiHi+1r=X+tQi<r
331 330 3exp φi0..^MtHiHi+1r=X+tQi<r
332 331 adantr φi0..^MrrantHiHi+1X+ttHiHi+1r=X+tQi<r
333 316 327 332 rexlimd φi0..^MrrantHiHi+1X+ttHiHi+1r=X+tQi<r
334 311 333 mpd φi0..^MrrantHiHi+1X+tQi<r
335 nfv tr<Qi+1
336 261 3adant3 φi0..^MtHiHi+1r=X+tX+t<Qi+1
337 329 336 eqbrtrd φi0..^MtHiHi+1r=X+tr<Qi+1
338 337 3exp φi0..^MtHiHi+1r=X+tr<Qi+1
339 338 adantr φi0..^MrrantHiHi+1X+ttHiHi+1r=X+tr<Qi+1
340 316 335 339 rexlimd φi0..^MrrantHiHi+1X+ttHiHi+1r=X+tr<Qi+1
341 311 340 mpd φi0..^MrrantHiHi+1X+tr<Qi+1
342 305 306 326 334 341 eliood φi0..^MrrantHiHi+1X+trQiQi+1
343 217 ineq2d φQiQi+1domF=QiQi+1ππ
344 343 adantr φi0..^MQiQi+1domF=QiQi+1ππ
345 dmres domFQiQi+1=QiQi+1domF
346 345 a1i φi0..^MdomFQiQi+1=QiQi+1domF
347 dfss QiQi+1ππQiQi+1=QiQi+1ππ
348 65 347 sylib φi0..^MQiQi+1=QiQi+1ππ
349 344 346 348 3eqtr4d φi0..^MdomFQiQi+1=QiQi+1
350 349 adantr φi0..^MrrantHiHi+1X+tdomFQiQi+1=QiQi+1
351 342 350 eleqtrrd φi0..^MrrantHiHi+1X+trdomFQiQi+1
352 326 341 ltned φi0..^MrrantHiHi+1X+trQi+1
353 352 neneqd φi0..^MrrantHiHi+1X+t¬r=Qi+1
354 velsn rQi+1r=Qi+1
355 353 354 sylnibr φi0..^MrrantHiHi+1X+t¬rQi+1
356 351 355 eldifd φi0..^MrrantHiHi+1X+trdomFQiQi+1Qi+1
357 356 ralrimiva φi0..^MrrantHiHi+1X+trdomFQiQi+1Qi+1
358 dfss3 rantHiHi+1X+tdomFQiQi+1Qi+1rrantHiHi+1X+trdomFQiQi+1Qi+1
359 357 358 sylibr φi0..^MrantHiHi+1X+tdomFQiQi+1Qi+1
360 eqid sX+s=sX+s
361 196 adantr φsX
362 simpr φss
363 361 362 addcomd φsX+s=s+X
364 363 mpteq2dva φsX+s=ss+X
365 eqid ss+X=ss+X
366 365 addccncf Xss+X:cn
367 196 366 syl φss+X:cn
368 364 367 eqeltrd φsX+s:cn
369 368 adantr φi0..^MsX+s:cn
370 224 rexrd φi0..^MHi*
371 iocssre Hi*Hi+1HiHi+1
372 370 225 371 syl2anc φi0..^MHiHi+1
373 ax-resscn
374 372 373 sstrdi φi0..^MHiHi+1
375 289 a1i φi0..^M
376 196 ad2antrr φi0..^MsHiHi+1X
377 374 sselda φi0..^MsHiHi+1s
378 376 377 addcld φi0..^MsHiHi+1X+s
379 360 369 374 375 378 cncfmptssg φi0..^MsHiHi+1X+s:HiHi+1cn
380 eqid TopOpenfld=TopOpenfld
381 eqid TopOpenfld𝑡HiHi+1=TopOpenfld𝑡HiHi+1
382 380 cnfldtop TopOpenfldTop
383 unicntop =TopOpenfld
384 383 restid TopOpenfldTopTopOpenfld𝑡=TopOpenfld
385 382 384 ax-mp TopOpenfld𝑡=TopOpenfld
386 385 eqcomi TopOpenfld=TopOpenfld𝑡
387 380 381 386 cncfcn HiHi+1HiHi+1cn=TopOpenfld𝑡HiHi+1CnTopOpenfld
388 374 375 387 syl2anc φi0..^MHiHi+1cn=TopOpenfld𝑡HiHi+1CnTopOpenfld
389 379 388 eleqtrd φi0..^MsHiHi+1X+sTopOpenfld𝑡HiHi+1CnTopOpenfld
390 380 cnfldtopon TopOpenfldTopOn
391 390 a1i φi0..^MTopOpenfldTopOn
392 resttopon TopOpenfldTopOnHiHi+1TopOpenfld𝑡HiHi+1TopOnHiHi+1
393 391 374 392 syl2anc φi0..^MTopOpenfld𝑡HiHi+1TopOnHiHi+1
394 cncnp TopOpenfld𝑡HiHi+1TopOnHiHi+1TopOpenfldTopOnsHiHi+1X+sTopOpenfld𝑡HiHi+1CnTopOpenfldsHiHi+1X+s:HiHi+1tHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldt
395 393 391 394 syl2anc φi0..^MsHiHi+1X+sTopOpenfld𝑡HiHi+1CnTopOpenfldsHiHi+1X+s:HiHi+1tHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldt
396 389 395 mpbid φi0..^MsHiHi+1X+s:HiHi+1tHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldt
397 396 simprd φi0..^MtHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldt
398 ubioc1 Hi*Hi+1*Hi<Hi+1Hi+1HiHi+1
399 370 245 174 398 syl3anc φi0..^MHi+1HiHi+1
400 fveq2 t=Hi+1TopOpenfld𝑡HiHi+1CnPTopOpenfldt=TopOpenfld𝑡HiHi+1CnPTopOpenfldHi+1
401 400 eleq2d t=Hi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldtsHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldHi+1
402 401 rspccva tHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldtHi+1HiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldHi+1
403 397 399 402 syl2anc φi0..^MsHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldHi+1
404 ioounsn Hi*Hi+1*Hi<Hi+1HiHi+1Hi+1=HiHi+1
405 370 245 174 404 syl3anc φi0..^MHiHi+1Hi+1=HiHi+1
406 259 eqcomd φi0..^MQi+1=X+Hi+1
407 406 ad2antrr φi0..^MsHiHi+1Hi+1s=Hi+1Qi+1=X+Hi+1
408 iftrue s=Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts=Qi+1
409 408 adantl φi0..^MsHiHi+1Hi+1s=Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts=Qi+1
410 oveq2 s=Hi+1X+s=X+Hi+1
411 410 adantl φi0..^MsHiHi+1Hi+1s=Hi+1X+s=X+Hi+1
412 407 409 411 3eqtr4d φi0..^MsHiHi+1Hi+1s=Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts=X+s
413 iffalse ¬s=Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts=tHiHi+1X+ts
414 413 adantl φi0..^MsHiHi+1Hi+1¬s=Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts=tHiHi+1X+ts
415 eqidd φi0..^MsHiHi+1Hi+1¬s=Hi+1tHiHi+1X+t=tHiHi+1X+t
416 oveq2 t=sX+t=X+s
417 416 adantl φi0..^MsHiHi+1Hi+1¬s=Hi+1t=sX+t=X+s
418 velsn sHi+1s=Hi+1
419 418 notbii ¬sHi+1¬s=Hi+1
420 elun sHiHi+1Hi+1sHiHi+1sHi+1
421 420 biimpi sHiHi+1Hi+1sHiHi+1sHi+1
422 421 orcomd sHiHi+1Hi+1sHi+1sHiHi+1
423 422 ord sHiHi+1Hi+1¬sHi+1sHiHi+1
424 419 423 biimtrrid sHiHi+1Hi+1¬s=Hi+1sHiHi+1
425 424 imp sHiHi+1Hi+1¬s=Hi+1sHiHi+1
426 425 adantll φi0..^MsHiHi+1Hi+1¬s=Hi+1sHiHi+1
427 5 ad2antrr φi0..^MsHiHi+1Hi+1X
428 elioore sHiHi+1s
429 428 adantl φi0..^MsHiHi+1s
430 elsni sHi+1s=Hi+1
431 430 adantl φi0..^MsHi+1s=Hi+1
432 225 adantr φi0..^MsHi+1Hi+1
433 431 432 eqeltrd φi0..^MsHi+1s
434 429 433 jaodan φi0..^MsHiHi+1sHi+1s
435 420 434 sylan2b φi0..^MsHiHi+1Hi+1s
436 427 435 readdcld φi0..^MsHiHi+1Hi+1X+s
437 436 adantr φi0..^MsHiHi+1Hi+1¬s=Hi+1X+s
438 415 417 426 437 fvmptd φi0..^MsHiHi+1Hi+1¬s=Hi+1tHiHi+1X+ts=X+s
439 414 438 eqtrd φi0..^MsHiHi+1Hi+1¬s=Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts=X+s
440 412 439 pm2.61dan φi0..^MsHiHi+1Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts=X+s
441 405 440 mpteq12dva φi0..^MsHiHi+1Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts=sHiHi+1X+s
442 405 oveq2d φi0..^MTopOpenfld𝑡HiHi+1Hi+1=TopOpenfld𝑡HiHi+1
443 442 oveq1d φi0..^MTopOpenfld𝑡HiHi+1Hi+1CnPTopOpenfld=TopOpenfld𝑡HiHi+1CnPTopOpenfld
444 443 fveq1d φi0..^MTopOpenfld𝑡HiHi+1Hi+1CnPTopOpenfldHi+1=TopOpenfld𝑡HiHi+1CnPTopOpenfldHi+1
445 403 441 444 3eltr4d φi0..^MsHiHi+1Hi+1ifs=Hi+1Qi+1tHiHi+1X+tsTopOpenfld𝑡HiHi+1Hi+1CnPTopOpenfldHi+1
446 eqid TopOpenfld𝑡HiHi+1Hi+1=TopOpenfld𝑡HiHi+1Hi+1
447 eqid sHiHi+1Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts=sHiHi+1Hi+1ifs=Hi+1Qi+1tHiHi+1X+ts
448 264 301 fssd φi0..^MtHiHi+1X+t:HiHi+1
449 225 recnd φi0..^MHi+1
450 446 380 447 448 299 449 ellimc φi0..^MQi+1tHiHi+1X+tlimHi+1sHiHi+1Hi+1ifs=Hi+1Qi+1tHiHi+1X+tsTopOpenfld𝑡HiHi+1Hi+1CnPTopOpenfldHi+1
451 445 450 mpbird φi0..^MQi+1tHiHi+1X+tlimHi+1
452 359 451 9 limccog φi0..^MLFQiQi+1tHiHi+1X+tlimHi+1
453 266 286 eqtrd φi0..^MFQiQi+1tHiHi+1X+t=tHiHi+1FX+t
454 453 oveq1d φi0..^MFQiQi+1tHiHi+1X+tlimHi+1=tHiHi+1FX+tlimHi+1
455 452 454 eleqtrd φi0..^MLtHiHi+1FX+tlimHi+1
456 45 adantr φi0..^MrrantHiHi+1X+tQi
457 456 334 gtned φi0..^MrrantHiHi+1X+trQi
458 457 neneqd φi0..^MrrantHiHi+1X+t¬r=Qi
459 velsn rQir=Qi
460 458 459 sylnibr φi0..^MrrantHiHi+1X+t¬rQi
461 351 460 eldifd φi0..^MrrantHiHi+1X+trdomFQiQi+1Qi
462 461 ralrimiva φi0..^MrrantHiHi+1X+trdomFQiQi+1Qi
463 dfss3 rantHiHi+1X+tdomFQiQi+1QirrantHiHi+1X+trdomFQiQi+1Qi
464 462 463 sylibr φi0..^MrantHiHi+1X+tdomFQiQi+1Qi
465 icossre HiHi+1*HiHi+1
466 224 245 465 syl2anc φi0..^MHiHi+1
467 466 373 sstrdi φi0..^MHiHi+1
468 196 ad2antrr φi0..^MsHiHi+1X
469 467 sselda φi0..^MsHiHi+1s
470 468 469 addcld φi0..^MsHiHi+1X+s
471 360 369 467 375 470 cncfmptssg φi0..^MsHiHi+1X+s:HiHi+1cn
472 eqid TopOpenfld𝑡HiHi+1=TopOpenfld𝑡HiHi+1
473 380 472 386 cncfcn HiHi+1HiHi+1cn=TopOpenfld𝑡HiHi+1CnTopOpenfld
474 467 375 473 syl2anc φi0..^MHiHi+1cn=TopOpenfld𝑡HiHi+1CnTopOpenfld
475 471 474 eleqtrd φi0..^MsHiHi+1X+sTopOpenfld𝑡HiHi+1CnTopOpenfld
476 resttopon TopOpenfldTopOnHiHi+1TopOpenfld𝑡HiHi+1TopOnHiHi+1
477 391 467 476 syl2anc φi0..^MTopOpenfld𝑡HiHi+1TopOnHiHi+1
478 cncnp TopOpenfld𝑡HiHi+1TopOnHiHi+1TopOpenfldTopOnsHiHi+1X+sTopOpenfld𝑡HiHi+1CnTopOpenfldsHiHi+1X+s:HiHi+1tHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldt
479 477 391 478 syl2anc φi0..^MsHiHi+1X+sTopOpenfld𝑡HiHi+1CnTopOpenfldsHiHi+1X+s:HiHi+1tHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldt
480 475 479 mpbid φi0..^MsHiHi+1X+s:HiHi+1tHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldt
481 480 simprd φi0..^MtHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldt
482 lbico1 Hi*Hi+1*Hi<Hi+1HiHiHi+1
483 370 245 174 482 syl3anc φi0..^MHiHiHi+1
484 fveq2 t=HiTopOpenfld𝑡HiHi+1CnPTopOpenfldt=TopOpenfld𝑡HiHi+1CnPTopOpenfldHi
485 484 eleq2d t=HisHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldtsHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldHi
486 485 rspccva tHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldtHiHiHi+1sHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldHi
487 481 483 486 syl2anc φi0..^MsHiHi+1X+sTopOpenfld𝑡HiHi+1CnPTopOpenfldHi
488 uncom HiHi+1Hi=HiHiHi+1
489 snunioo Hi*Hi+1*Hi<Hi+1HiHiHi+1=HiHi+1
490 370 245 174 489 syl3anc φi0..^MHiHiHi+1=HiHi+1
491 488 490 eqtrid φi0..^MHiHi+1Hi=HiHi+1
492 iftrue s=Hiifs=HiQitHiHi+1X+ts=Qi
493 492 adantl φi0..^Ms=Hiifs=HiQitHiHi+1X+ts=Qi
494 240 adantr φi0..^Ms=HiQi=X+Hi
495 oveq2 s=HiX+s=X+Hi
496 495 eqcomd s=HiX+Hi=X+s
497 496 adantl φi0..^Ms=HiX+Hi=X+s
498 493 494 497 3eqtrd φi0..^Ms=Hiifs=HiQitHiHi+1X+ts=X+s
499 498 adantlr φi0..^MsHiHi+1His=Hiifs=HiQitHiHi+1X+ts=X+s
500 iffalse ¬s=Hiifs=HiQitHiHi+1X+ts=tHiHi+1X+ts
501 500 adantl φi0..^MsHiHi+1Hi¬s=Hiifs=HiQitHiHi+1X+ts=tHiHi+1X+ts
502 eqidd φi0..^MsHiHi+1Hi¬s=HitHiHi+1X+t=tHiHi+1X+t
503 416 adantl φi0..^MsHiHi+1Hi¬s=Hit=sX+t=X+s
504 velsn sHis=Hi
505 504 notbii ¬sHi¬s=Hi
506 elun sHiHi+1HisHiHi+1sHi
507 506 biimpi sHiHi+1HisHiHi+1sHi
508 507 orcomd sHiHi+1HisHisHiHi+1
509 508 ord sHiHi+1Hi¬sHisHiHi+1
510 505 509 biimtrrid sHiHi+1Hi¬s=HisHiHi+1
511 510 imp sHiHi+1Hi¬s=HisHiHi+1
512 511 adantll φi0..^MsHiHi+1Hi¬s=HisHiHi+1
513 5 ad2antrr φi0..^MsHiHi+1HiX
514 elsni sHis=Hi
515 514 adantl φi0..^MsHis=Hi
516 224 adantr φi0..^MsHiHi
517 515 516 eqeltrd φi0..^MsHis
518 429 517 jaodan φi0..^MsHiHi+1sHis
519 506 518 sylan2b φi0..^MsHiHi+1His
520 513 519 readdcld φi0..^MsHiHi+1HiX+s
521 520 adantr φi0..^MsHiHi+1Hi¬s=HiX+s
522 502 503 512 521 fvmptd φi0..^MsHiHi+1Hi¬s=HitHiHi+1X+ts=X+s
523 501 522 eqtrd φi0..^MsHiHi+1Hi¬s=Hiifs=HiQitHiHi+1X+ts=X+s
524 499 523 pm2.61dan φi0..^MsHiHi+1Hiifs=HiQitHiHi+1X+ts=X+s
525 491 524 mpteq12dva φi0..^MsHiHi+1Hiifs=HiQitHiHi+1X+ts=sHiHi+1X+s
526 491 oveq2d φi0..^MTopOpenfld𝑡HiHi+1Hi=TopOpenfld𝑡HiHi+1
527 526 oveq1d φi0..^MTopOpenfld𝑡HiHi+1HiCnPTopOpenfld=TopOpenfld𝑡HiHi+1CnPTopOpenfld
528 527 fveq1d φi0..^MTopOpenfld𝑡HiHi+1HiCnPTopOpenfldHi=TopOpenfld𝑡HiHi+1CnPTopOpenfldHi
529 487 525 528 3eltr4d φi0..^MsHiHi+1Hiifs=HiQitHiHi+1X+tsTopOpenfld𝑡HiHi+1HiCnPTopOpenfldHi
530 eqid TopOpenfld𝑡HiHi+1Hi=TopOpenfld𝑡HiHi+1Hi
531 eqid sHiHi+1Hiifs=HiQitHiHi+1X+ts=sHiHi+1Hiifs=HiQitHiHi+1X+ts
532 224 recnd φi0..^MHi
533 530 380 531 448 299 532 ellimc φi0..^MQitHiHi+1X+tlimHisHiHi+1Hiifs=HiQitHiHi+1X+tsTopOpenfld𝑡HiHi+1HiCnPTopOpenfldHi
534 529 533 mpbird φi0..^MQitHiHi+1X+tlimHi
535 464 534 8 limccog φi0..^MRFQiQi+1tHiHi+1X+tlimHi
536 453 oveq1d φi0..^MFQiQi+1tHiHi+1X+tlimHi=tHiHi+1FX+tlimHi
537 535 536 eleqtrd φi0..^MRtHiHi+1FX+tlimHi
538 224 225 304 455 537 iblcncfioo φi0..^MtHiHi+1FX+t𝐿1
539 6 ad2antrr φi0..^MtHiHi+1F:ππ
540 54 a1i φi0..^MtHiHi+1π*
541 56 a1i φi0..^MtHiHi+1π*
542 27 ad2antrr φi0..^MtHiHi+1Q:0Mππ
543 simplr φi0..^MtHiHi+1i0..^M
544 simpr φi0..^MtHiHi+1tHiHi+1
545 163 173 oveq12d φi0..^MHiHi+1=QiXQi+1X
546 545 adantr φi0..^MtHiHi+1HiHi+1=QiXQi+1X
547 544 546 eleqtrd φi0..^MtHiHi+1tQiXQi+1X
548 547 117 syldan φi0..^MtHiHi+1X+tQiQi+1
549 540 541 542 543 548 fourierdlem1 φi0..^MtHiHi+1X+tππ
550 539 549 ffvelcdmd φi0..^MtHiHi+1FX+t
551 224 225 538 550 ibliooicc φi0..^MtHiHi+1FX+t𝐿1
552 20 26 159 174 223 551 itgspltprt φH0HMFX+tdt=i0..^MHiHi+1FX+tdt
553 545 itgeq1d φi0..^MHiHi+1FX+tdt=QiXQi+1XFX+tdt
554 553 sumeq2dv φi0..^MHiHi+1FX+tdt=i0..^MQiXQi+1XFX+tdt
555 552 554 eqtrd φH0HMFX+tdt=i0..^MQiXQi+1XFX+tdt
556 126 155 555 3eqtrd φ-π-XπXFX+sds=i0..^MQiXQi+1XFX+tdt
557 122 556 eqtr4d φi0..^MQiQi+1Ftdt=-π-XπXFX+sds
558 19 78 557 3eqtrd φππFtdt=-π-XπXFX+sds