Metamath Proof Explorer


Theorem areacirc

Description: The area of a circle of radius R is _pi x. R ^ 2 . This is Metamath 100 proof #9. (Contributed by Brendan Leahy, 31-Aug-2017) (Revised by Brendan Leahy, 22-Sep-2017) (Revised by Brendan Leahy, 11-Jul-2018)

Ref Expression
Hypothesis areacirc.1 S=xy|xyx2+y2R2
Assertion areacirc R0RareaS=πR2

Proof

Step Hyp Ref Expression
1 areacirc.1 S=xy|xyx2+y2R2
2 opabssxp xy|xyx2+y2R22
3 1 2 eqsstri S2
4 3 a1i R0RS2
5 1 areacirclem5 R0RtSt=iftRR2t2R2t2
6 resqcl RR2
7 6 3ad2ant1 R0RtR2
8 resqcl tt2
9 8 3ad2ant3 R0Rtt2
10 7 9 resubcld R0RtR2t2
11 10 adantr R0RttRR2t2
12 absresq tt2=t2
13 12 3ad2ant3 R0Rtt2=t2
14 13 breq1d R0Rtt2R2t2R2
15 recn tt
16 15 abscld tt
17 16 3ad2ant3 R0Rtt
18 simp1 R0RtR
19 15 absge0d t0t
20 19 3ad2ant3 R0Rt0t
21 simp2 R0Rt0R
22 17 18 20 21 le2sqd R0RttRt2R2
23 7 9 subge0d R0Rt0R2t2t2R2
24 14 22 23 3bitr4d R0RttR0R2t2
25 24 biimpa R0RttR0R2t2
26 11 25 resqrtcld R0RttRR2t2
27 26 renegcld R0RttRR2t2
28 iccmbl R2t2R2t2R2t2R2t2domvol
29 27 26 28 syl2anc R0RttRR2t2R2t2domvol
30 mblvol R2t2R2t2domvolvolR2t2R2t2=vol*R2t2R2t2
31 29 30 syl R0RttRvolR2t2R2t2=vol*R2t2R2t2
32 11 25 sqrtge0d R0RttR0R2t2
33 26 26 32 32 addge0d R0RttR0R2t2+R2t2
34 recn RR
35 34 sqcld RR2
36 35 3ad2ant1 R0RtR2
37 15 sqcld tt2
38 37 3ad2ant3 R0Rtt2
39 36 38 subcld R0RtR2t2
40 39 sqrtcld R0RtR2t2
41 40 adantr R0RttRR2t2
42 41 41 subnegd R0RttRR2t2R2t2=R2t2+R2t2
43 42 breq2d R0RttR0R2t2R2t20R2t2+R2t2
44 26 27 subge0d R0RttR0R2t2R2t2R2t2R2t2
45 43 44 bitr3d R0RttR0R2t2+R2t2R2t2R2t2
46 33 45 mpbid R0RttRR2t2R2t2
47 ovolicc R2t2R2t2R2t2R2t2vol*R2t2R2t2=R2t2R2t2
48 27 26 46 47 syl3anc R0RttRvol*R2t2R2t2=R2t2R2t2
49 31 48 eqtrd R0RttRvolR2t2R2t2=R2t2R2t2
50 26 27 resubcld R0RttRR2t2R2t2
51 49 50 eqeltrd R0RttRvolR2t2R2t2
52 volf vol:domvol0+∞
53 ffn vol:domvol0+∞volFndomvol
54 elpreima volFndomvolR2t2R2t2vol-1R2t2R2t2domvolvolR2t2R2t2
55 52 53 54 mp2b R2t2R2t2vol-1R2t2R2t2domvolvolR2t2R2t2
56 29 51 55 sylanbrc R0RttRR2t2R2t2vol-1
57 0mbl domvol
58 mblvol domvolvol=vol*
59 57 58 ax-mp vol=vol*
60 ovol0 vol*=0
61 59 60 eqtri vol=0
62 0re 0
63 61 62 eqeltri vol
64 elpreima volFndomvolvol-1domvolvol
65 52 53 64 mp2b vol-1domvolvol
66 57 63 65 mpbir2an vol-1
67 66 a1i R0Rt¬tRvol-1
68 56 67 ifclda R0RtiftRR2t2R2t2vol-1
69 5 68 eqeltrd R0RtStvol-1
70 69 3expa R0RtStvol-1
71 70 ralrimiva R0RtStvol-1
72 5 fveq2d R0RtvolSt=voliftRR2t2R2t2
73 72 3expa R0RtvolSt=voliftRR2t2R2t2
74 73 mpteq2dva R0RtvolSt=tvoliftRR2t2R2t2
75 renegcl RR
76 75 adantr R0RR
77 simpl R0RR
78 iccssre RRRR
79 76 77 78 syl2anc R0RRR
80 rembl domvol
81 80 a1i R0Rdomvol
82 fvexd R0RtRRvoliftRR2t2R2t2V
83 eldif tRRt¬tRR
84 3anass tRttRtRttR
85 84 a1i R0RttRttRtRttR
86 75 3ad2ant1 R0RtR
87 elicc2 RRtRRtRttR
88 86 18 87 syl2anc R0RttRRtRttR
89 simp3 R0Rtt
90 89 18 absled R0RttRRttR
91 89 biantrurd R0RtRttRtRttR
92 90 91 bitrd R0RttRtRttR
93 85 88 92 3bitr4rd R0RttRtRR
94 93 biimpd R0RttRtRR
95 94 con3d R0Rt¬tRR¬tR
96 95 3expia R0Rt¬tRR¬tR
97 96 impd R0Rt¬tRR¬tR
98 83 97 biimtrid R0RtRR¬tR
99 98 imp R0RtRR¬tR
100 iffalse ¬tRiftRR2t2R2t2=
101 100 fveq2d ¬tRvoliftRR2t2R2t2=vol
102 101 61 eqtrdi ¬tRvoliftRR2t2R2t2=0
103 99 102 syl R0RtRRvoliftRR2t2R2t2=0
104 76 77 87 syl2anc R0RtRRtRttR
105 90 biimprd R0RtRttRtR
106 105 expd R0RtRttRtR
107 106 3expia R0RtRttRtR
108 107 3impd R0RtRttRtR
109 104 108 sylbid R0RtRRtR
110 109 3impia R0RtRRtR
111 iftrue tRiftRR2t2R2t2=R2t2R2t2
112 111 fveq2d tRvoliftRR2t2R2t2=volR2t2R2t2
113 110 112 syl R0RtRRvoliftRR2t2R2t2=volR2t2R2t2
114 6 3ad2ant1 R0RtRRR2
115 75 78 mpancom RRR
116 115 sselda RtRRt
117 116 3adant2 R0RtRRt
118 117 resqcld R0RtRRt2
119 114 118 resubcld R0RtRRR2t2
120 75 87 mpancom RtRRtRttR
121 120 adantr R0RtRRtRttR
122 22 90 14 3bitr3rd R0Rtt2R2RttR
123 23 122 bitrd R0Rt0R2t2RttR
124 123 biimprd R0RtRttR0R2t2
125 124 expd R0RtRttR0R2t2
126 125 3expia R0RtRttR0R2t2
127 126 3impd R0RtRttR0R2t2
128 121 127 sylbid R0RtRR0R2t2
129 128 3impia R0RtRR0R2t2
130 119 129 resqrtcld R0RtRRR2t2
131 130 renegcld R0RtRRR2t2
132 131 130 28 syl2anc R0RtRRR2t2R2t2domvol
133 132 30 syl R0RtRRvolR2t2R2t2=vol*R2t2R2t2
134 119 recnd R0RtRRR2t2
135 134 sqrtcld R0RtRRR2t2
136 135 135 subnegd R0RtRRR2t2R2t2=R2t2+R2t2
137 119 129 sqrtge0d R0RtRR0R2t2
138 130 130 137 137 addge0d R0RtRR0R2t2+R2t2
139 136 breq2d R0RtRR0R2t2R2t20R2t2+R2t2
140 130 131 subge0d R0RtRR0R2t2R2t2R2t2R2t2
141 139 140 bitr3d R0RtRR0R2t2+R2t2R2t2R2t2
142 138 141 mpbid R0RtRRR2t2R2t2
143 131 130 142 47 syl3anc R0RtRRvol*R2t2R2t2=R2t2R2t2
144 135 2timesd R0RtRR2R2t2=R2t2+R2t2
145 136 143 144 3eqtr4d R0RtRRvol*R2t2R2t2=2R2t2
146 113 133 145 3eqtrd R0RtRRvoliftRR2t2R2t2=2R2t2
147 146 3expa R0RtRRvoliftRR2t2R2t2=2R2t2
148 147 mpteq2dva R0RtRRvoliftRR2t2R2t2=tRR2R2t2
149 areacirclem3 R0RtRR2R2t2𝐿1
150 148 149 eqeltrd R0RtRRvoliftRR2t2R2t2𝐿1
151 79 81 82 103 150 iblss2 R0RtvoliftRR2t2R2t2𝐿1
152 74 151 eqeltrd R0RtvolSt𝐿1
153 dmarea SdomareaS2tStvol-1tvolSt𝐿1
154 4 71 152 153 syl3anbrc R0RSdomarea
155 areaval SdomareaareaS=volStdt
156 154 155 syl R0RareaS=volStdt
157 elioore tRRt
158 5 3expa R0RtSt=iftRR2t2R2t2
159 157 158 sylan2 R0RtRRSt=iftRR2t2R2t2
160 159 fveq2d R0RtRRvolSt=voliftRR2t2R2t2
161 160 itgeq2dv R0RRRvolStdt=RRvoliftRR2t2R2t2dt
162 ioossre RR
163 162 a1i R0RRR
164 eldif tRRt¬tRR
165 75 rexrd RR*
166 rexr RR*
167 elioo2 R*R*tRRtR<tt<R
168 165 166 167 syl2anc RtRRtR<tt<R
169 168 3ad2ant1 R0RttRRtR<tt<R
170 89 biantrurd R0RtR<tt<RtR<tt<R
171 89 18 absltd R0Rtt<RR<tt<R
172 3anass tR<tt<RtR<tt<R
173 172 a1i R0RttR<tt<RtR<tt<R
174 170 171 173 3bitr4rd R0RttR<tt<Rt<R
175 169 174 bitrd R0RttRRt<R
176 175 notbid R0Rt¬tRR¬t<R
177 18 17 lenltd R0RtRt¬t<R
178 176 177 bitr4d R0Rt¬tRRRt
179 5 adantr R0RtRtSt=iftRR2t2R2t2
180 179 fveq2d R0RtRtvolSt=voliftRR2t2R2t2
181 17 anim1i R0Rtt=Rtt=R
182 eqle tt=RtR
183 181 182 112 3syl R0Rtt=RvoliftRR2t2R2t2=volR2t2R2t2
184 oveq1 t=Rt2=R2
185 184 adantl R0Rtt=Rt2=R2
186 13 adantr R0Rtt=Rt2=t2
187 185 186 eqtr3d R0Rtt=RR2=t2
188 fvoveq1 R2=t2R2t2=t2t2
189 188 negeqd R2=t2R2t2=t2t2
190 189 188 oveq12d R2=t2R2t2R2t2=t2t2t2t2
191 8 recnd tt2
192 191 subidd tt2t2=0
193 192 fveq2d tt2t2=0
194 193 negeqd tt2t2=0
195 sqrt0 0=0
196 195 negeqi 0=0
197 neg0 0=0
198 196 197 eqtri 0=0
199 194 198 eqtrdi tt2t2=0
200 193 195 eqtrdi tt2t2=0
201 199 200 oveq12d tt2t2t2t2=00
202 201 3ad2ant3 R0Rtt2t2t2t2=00
203 190 202 sylan9eqr R0RtR2=t2R2t2R2t2=00
204 203 fveq2d R0RtR2=t2volR2t2R2t2=vol00
205 iccmbl 0000domvol
206 62 62 205 mp2an 00domvol
207 mblvol 00domvolvol00=vol*00
208 206 207 ax-mp vol00=vol*00
209 0xr 0*
210 iccid 0*00=0
211 210 fveq2d 0*vol*00=vol*0
212 209 211 ax-mp vol*00=vol*0
213 ovolsn 0vol*0=0
214 62 213 ax-mp vol*0=0
215 212 214 eqtri vol*00=0
216 208 215 eqtri vol00=0
217 204 216 eqtrdi R0RtR2=t2volR2t2R2t2=0
218 187 217 syldan R0Rtt=RvolR2t2R2t2=0
219 183 218 eqtrd R0Rtt=RvoliftRR2t2R2t2=0
220 219 ex R0Rtt=RvoliftRR2t2R2t2=0
221 220 adantr R0RtRtt=RvoliftRR2t2R2t2=0
222 18 17 ltnled R0RtR<t¬tR
223 222 adantr R0RtRtR<t¬tR
224 simpl1 R0RtRtR
225 17 adantr R0RtRtt
226 simpr R0RtRtRt
227 224 225 226 leltned R0RtRtR<ttR
228 223 227 bitr3d R0RtRt¬tRtR
229 228 102 syl6bir R0RtRttRvoliftRR2t2R2t2=0
230 221 229 pm2.61dne R0RtRtvoliftRR2t2R2t2=0
231 180 230 eqtrd R0RtRtvolSt=0
232 231 ex R0RtRtvolSt=0
233 178 232 sylbid R0Rt¬tRRvolSt=0
234 233 3expia R0Rt¬tRRvolSt=0
235 234 impd R0Rt¬tRRvolSt=0
236 164 235 biimtrid R0RtRRvolSt=0
237 236 imp R0RtRRvolSt=0
238 163 237 itgss R0RRRvolStdt=volStdt
239 negeq R=0R=0
240 239 197 eqtrdi R=0R=0
241 id R=0R=0
242 240 241 oveq12d R=0RR=00
243 iooid 00=
244 242 243 eqtrdi R=0RR=
245 244 adantl R0RR=0RR=
246 itgeq1 RR=RRvoliftRR2t2R2t2dt=voliftRR2t2R2t2dt
247 245 246 syl R0RR=0RRvoliftRR2t2R2t2dt=voliftRR2t2R2t2dt
248 itg0 voliftRR2t2R2t2dt=0
249 sq0 02=0
250 249 oveq2i π02=π0
251 picn π
252 251 mul01i π0=0
253 250 252 eqtr2i 0=π02
254 oveq1 R=0R2=02
255 254 oveq2d R=0πR2=π02
256 253 255 eqtr4id R=00=πR2
257 256 adantl R0RR=00=πR2
258 248 257 eqtrid R0RR=0voliftRR2t2R2t2dt=πR2
259 247 258 eqtrd R0RR=0RRvoliftRR2t2R2t2dt=πR2
260 simp1 R0RR0R
261 0red R0R0
262 simpr R0R0R
263 261 77 262 leltned R0R0<RR0
264 263 biimp3ar R0RR00<R
265 260 264 elrpd R0RR0R+
266 265 3expa R0RR0R+
267 157 16 syl tRRt
268 267 adantl R+tRRt
269 rpre R+R
270 269 adantr R+tRRR
271 269 renegcld R+R
272 271 rexrd R+R*
273 rpxr R+R*
274 272 273 167 syl2anc R+tRRtR<tt<R
275 simpr R+tt
276 269 adantr R+tR
277 275 276 absltd R+tt<RR<tt<R
278 277 biimprd R+tR<tt<Rt<R
279 278 exp4b R+tR<tt<Rt<R
280 279 3impd R+tR<tt<Rt<R
281 274 280 sylbid R+tRRt<R
282 281 imp R+tRRt<R
283 268 270 282 ltled R+tRRtR
284 283 112 syl R+tRRvoliftRR2t2R2t2=volR2t2R2t2
285 269 resqcld R+R2
286 285 recnd R+R2
287 286 adantr R+tR2
288 191 adantl R+tt2
289 287 288 subcld R+tR2t2
290 289 sqrtcld R+tR2t2
291 290 290 subnegd R+tR2t2R2t2=R2t2+R2t2
292 157 291 sylan2 R+tRRR2t2R2t2=R2t2+R2t2
293 285 adantr R+tR2
294 8 adantl R+tt2
295 293 294 resubcld R+tR2t2
296 157 295 sylan2 R+tRRR2t2
297 0red R+tRR0
298 16 adantl R+tt
299 19 adantl R+t0t
300 rpge0 R+0R
301 300 adantr R+t0R
302 298 276 299 301 lt2sqd R+tt<Rt2<R2
303 12 adantl R+tt2=t2
304 303 breq1d R+tt2<R2t2<R2
305 302 277 304 3bitr3rd R+tt2<R2R<tt<R
306 294 293 posdifd R+tt2<R20<R2t2
307 305 306 bitr3d R+tR<tt<R0<R2t2
308 307 biimpd R+tR<tt<R0<R2t2
309 308 exp4b R+tR<tt<R0<R2t2
310 309 3impd R+tR<tt<R0<R2t2
311 274 310 sylbid R+tRR0<R2t2
312 311 imp R+tRR0<R2t2
313 297 296 312 ltled R+tRR0R2t2
314 296 313 resqrtcld R+tRRR2t2
315 314 renegcld R+tRRR2t2
316 315 314 28 syl2anc R+tRRR2t2R2t2domvol
317 316 30 syl R+tRRvolR2t2R2t2=vol*R2t2R2t2
318 296 313 sqrtge0d R+tRR0R2t2
319 314 314 318 318 addge0d R+tRR0R2t2+R2t2
320 292 breq2d R+tRR0R2t2R2t20R2t2+R2t2
321 314 315 subge0d R+tRR0R2t2R2t2R2t2R2t2
322 320 321 bitr3d R+tRR0R2t2+R2t2R2t2R2t2
323 319 322 mpbid R+tRRR2t2R2t2
324 315 314 323 47 syl3anc R+tRRvol*R2t2R2t2=R2t2R2t2
325 317 324 eqtrd R+tRRvolR2t2R2t2=R2t2R2t2
326 ax-resscn
327 326 a1i R+
328 271 269 78 syl2anc R+RR
329 rpcn R+R
330 329 sqcld R+R2
331 330 adantr R+uRRR2
332 328 sselda R+uRRu
333 332 recnd R+uRRu
334 329 adantr R+uRRR
335 rpne0 R+R0
336 335 adantr R+uRRR0
337 333 334 336 divcld R+uRRuR
338 asincl uRarcsinuR
339 337 338 syl R+uRRarcsinuR
340 1cnd R+uRR1
341 337 sqcld R+uRRuR2
342 340 341 subcld R+uRR1uR2
343 342 sqrtcld R+uRR1uR2
344 337 343 mulcld R+uRRuR1uR2
345 339 344 addcld R+uRRarcsinuR+uR1uR2
346 331 345 mulcld R+uRRR2arcsinuR+uR1uR2
347 eqid TopOpenfld=TopOpenfld
348 347 tgioo2 topGenran.=TopOpenfld𝑡
349 iccntr RRinttopGenran.RR=RR
350 271 269 349 syl2anc R+inttopGenran.RR=RR
351 327 328 346 348 347 350 dvmptntr R+duRRR2arcsinuR+uR1uR2du=duRRR2arcsinuR+uR1uR2du
352 areacirclem1 R+duRRR2arcsinuR+uR1uR2du=uRR2R2u2
353 351 352 eqtrd R+duRRR2arcsinuR+uR1uR2du=uRR2R2u2
354 353 adantr R+tRRduRRR2arcsinuR+uR1uR2du=uRR2R2u2
355 oveq1 u=tu2=t2
356 355 oveq2d u=tR2u2=R2t2
357 356 fveq2d u=tR2u2=R2t2
358 357 oveq2d u=t2R2u2=2R2t2
359 358 adantl R+tRRu=t2R2u2=2R2t2
360 simpr R+tRRtRR
361 ovexd R+tRR2R2t2V
362 354 359 360 361 fvmptd R+tRRduRRR2arcsinuR+uR1uR2dut=2R2t2
363 157 290 sylan2 R+tRRR2t2
364 363 2timesd R+tRR2R2t2=R2t2+R2t2
365 362 364 eqtrd R+tRRduRRR2arcsinuR+uR1uR2dut=R2t2+R2t2
366 292 325 365 3eqtr4rd R+tRRduRRR2arcsinuR+uR1uR2dut=volR2t2R2t2
367 284 366 eqtr4d R+tRRvoliftRR2t2R2t2=duRRR2arcsinuR+uR1uR2dut
368 367 itgeq2dv R+RRvoliftRR2t2R2t2dt=RRduRRR2arcsinuR+uR1uR2dutdt
369 269 269 300 300 addge0d R+0R+R
370 329 329 subnegd R+RR=R+R
371 370 breq2d R+0RR0R+R
372 269 271 subge0d R+0RRRR
373 371 372 bitr3d R+0R+RRR
374 369 373 mpbid R+RR
375 2cn 2
376 162 326 sstri RR
377 ssid
378 375 376 377 3pm3.2i 2RR
379 cncfmptc 2RRuRR2:RRcn
380 378 379 mp1i R+uRR2:RRcn
381 ioossicc RRRR
382 resmpt RRRRuRRR2u2RR=uRRR2u2
383 381 382 ax-mp uRRR2u2RR=uRRR2u2
384 areacirclem2 R0RuRRR2u2:RRcn
385 269 300 384 syl2anc R+uRRR2u2:RRcn
386 rescncf RRRRuRRR2u2:RRcnuRRR2u2RR:RRcn
387 381 385 386 mpsyl R+uRRR2u2RR:RRcn
388 383 387 eqeltrrid R+uRRR2u2:RRcn
389 380 388 mulcncf R+uRR2R2u2:RRcn
390 353 389 eqeltrd R+duRRR2arcsinuR+uR1uR2du:RRcn
391 381 a1i R0RRRRR
392 ioombl RRdomvol
393 392 a1i R0RRRdomvol
394 ovexd R0RuRR2R2u2V
395 areacirclem3 R0RuRR2R2u2𝐿1
396 391 393 394 395 iblss R0RuRR2R2u2𝐿1
397 269 300 396 syl2anc R+uRR2R2u2𝐿1
398 353 397 eqeltrd R+duRRR2arcsinuR+uR1uR2du𝐿1
399 areacirclem4 R+uRRR2arcsinuR+uR1uR2:RRcn
400 271 269 374 390 398 399 ftc2nc R+RRduRRR2arcsinuR+uR1uR2dutdt=uRRR2arcsinuR+uR1uR2RuRRR2arcsinuR+uR1uR2R
401 eqidd R+uRRR2arcsinuR+uR1uR2=uRRR2arcsinuR+uR1uR2
402 fvoveq1 u=RarcsinuR=arcsinRR
403 oveq1 u=RuR=RR
404 403 oveq1d u=RuR2=RR2
405 404 oveq2d u=R1uR2=1RR2
406 405 fveq2d u=R1uR2=1RR2
407 403 406 oveq12d u=RuR1uR2=RR1RR2
408 402 407 oveq12d u=RarcsinuR+uR1uR2=arcsinRR+RR1RR2
409 408 oveq2d u=RR2arcsinuR+uR1uR2=R2arcsinRR+RR1RR2
410 409 adantl R+u=RR2arcsinuR+uR1uR2=R2arcsinRR+RR1RR2
411 ubicc2 R*R*RRRRR
412 272 273 374 411 syl3anc R+RRR
413 ovexd R+R2arcsinRR+RR1RR2V
414 401 410 412 413 fvmptd R+uRRR2arcsinuR+uR1uR2R=R2arcsinRR+RR1RR2
415 329 335 dividd R+RR=1
416 415 fveq2d R+arcsinRR=arcsin1
417 asin1 arcsin1=π2
418 416 417 eqtrdi R+arcsinRR=π2
419 415 oveq1d R+RR2=12
420 sq1 12=1
421 419 420 eqtrdi R+RR2=1
422 421 oveq2d R+1RR2=11
423 1cnd R+1
424 423 subidd R+11=0
425 422 424 eqtrd R+1RR2=0
426 425 fveq2d R+1RR2=0
427 426 195 eqtrdi R+1RR2=0
428 427 oveq2d R+RR1RR2=RR0
429 329 329 335 divcld R+RR
430 429 mul01d R+RR0=0
431 428 430 eqtrd R+RR1RR2=0
432 418 431 oveq12d R+arcsinRR+RR1RR2=π2+0
433 2ne0 20
434 251 375 433 divcli π2
435 434 a1i R+π2
436 435 addridd R+π2+0=π2
437 432 436 eqtrd R+arcsinRR+RR1RR2=π2
438 437 oveq2d R+R2arcsinRR+RR1RR2=R2π2
439 414 438 eqtrd R+uRRR2arcsinuR+uR1uR2R=R2π2
440 fvoveq1 u=RarcsinuR=arcsinRR
441 oveq1 u=RuR=RR
442 441 oveq1d u=RuR2=RR2
443 442 oveq2d u=R1uR2=1RR2
444 443 fveq2d u=R1uR2=1RR2
445 441 444 oveq12d u=RuR1uR2=RR1RR2
446 440 445 oveq12d u=RarcsinuR+uR1uR2=arcsinRR+RR1RR2
447 446 adantl R+u=RarcsinuR+uR1uR2=arcsinRR+RR1RR2
448 447 oveq2d R+u=RR2arcsinuR+uR1uR2=R2arcsinRR+RR1RR2
449 lbicc2 R*R*RRRRR
450 272 273 374 449 syl3anc R+RRR
451 ovexd R+R2arcsinRR+RR1RR2V
452 401 448 450 451 fvmptd R+uRRR2arcsinuR+uR1uR2R=R2arcsinRR+RR1RR2
453 329 329 335 divnegd R+RR=RR
454 415 negeqd R+RR=1
455 453 454 eqtr3d R+RR=1
456 455 fveq2d R+arcsinRR=arcsin1
457 ax-1cn 1
458 asinneg 1arcsin1=arcsin1
459 457 458 ax-mp arcsin1=arcsin1
460 417 negeqi arcsin1=π2
461 459 460 eqtri arcsin1=π2
462 456 461 eqtrdi R+arcsinRR=π2
463 455 oveq1d R+RR2=12
464 neg1sqe1 12=1
465 463 464 eqtrdi R+RR2=1
466 465 oveq2d R+1RR2=11
467 466 424 eqtrd R+1RR2=0
468 467 fveq2d R+1RR2=0
469 468 195 eqtrdi R+1RR2=0
470 469 oveq2d R+RR1RR2=RR0
471 271 recnd R+R
472 471 329 335 divcld R+RR
473 472 mul01d R+RR0=0
474 470 473 eqtrd R+RR1RR2=0
475 462 474 oveq12d R+arcsinRR+RR1RR2=-π2+0
476 434 negcli π2
477 476 a1i R+π2
478 477 addridd R+-π2+0=π2
479 475 478 eqtrd R+arcsinRR+RR1RR2=π2
480 479 oveq2d R+R2arcsinRR+RR1RR2=R2π2
481 452 480 eqtrd R+uRRR2arcsinuR+uR1uR2R=R2π2
482 439 481 oveq12d R+uRRR2arcsinuR+uR1uR2RuRRR2arcsinuR+uR1uR2R=R2π2R2π2
483 434 434 subnegi π2π2=π2+π2
484 pidiv2halves π2+π2=π
485 483 484 eqtri π2π2=π
486 485 a1i R+π2π2=π
487 486 oveq2d R+R2π2π2=R2π
488 330 435 477 subdid R+R2π2π2=R2π2R2π2
489 251 a1i R+π
490 330 489 mulcomd R+R2π=πR2
491 487 488 490 3eqtr3d R+R2π2R2π2=πR2
492 482 491 eqtrd R+uRRR2arcsinuR+uR1uR2RuRRR2arcsinuR+uR1uR2R=πR2
493 368 400 492 3eqtrd R+RRvoliftRR2t2R2t2dt=πR2
494 266 493 syl R0RR0RRvoliftRR2t2R2t2dt=πR2
495 259 494 pm2.61dane R0RRRvoliftRR2t2R2t2dt=πR2
496 161 238 495 3eqtr3d R0RvolStdt=πR2
497 156 496 eqtrd R0RareaS=πR2