Metamath Proof Explorer


Theorem ftc1anclem5

Description: Lemma for ftc1anc , the existence of a simple function the integral of whose pointwise difference from the function is less than a given positive real. (Contributed by Brendan Leahy, 17-Jun-2018)

Ref Expression
Hypotheses ftc1anc.g G=xABAxFtdt
ftc1anc.a φA
ftc1anc.b φB
ftc1anc.le φAB
ftc1anc.s φABD
ftc1anc.d φD
ftc1anc.i φF𝐿1
ftc1anc.f φF:D
Assertion ftc1anclem5 φY+fdom12tiftDFt0ft<Y

Proof

Step Hyp Ref Expression
1 ftc1anc.g G=xABAxFtdt
2 ftc1anc.a φA
3 ftc1anc.b φB
4 ftc1anc.le φAB
5 ftc1anc.s φABD
6 ftc1anc.d φD
7 ftc1anc.i φF𝐿1
8 ftc1anc.f φF:D
9 iftrue tiftiftDFt00=iftDFt0
10 9 mpteq2ia tiftiftDFt00=tiftDFt0
11 10 fveq2i 2tiftiftDFt00=2tiftDFt0
12 8 ffvelrnda φtDFt
13 0cnd φ¬tD0
14 12 13 ifclda φiftDFt0
15 14 recld φiftDFt0
16 15 adantr φtiftDFt0
17 rembl domvol
18 17 a1i φdomvol
19 15 adantr φtDiftDFt0
20 eldifn tD¬tD
21 20 adantl φtD¬tD
22 iffalse ¬tDiftDFt0=0
23 22 fveq2d ¬tDiftDFt0=0
24 re0 0=0
25 23 24 eqtrdi ¬tDiftDFt0=0
26 21 25 syl φtDiftDFt0=0
27 iftrue tDiftDFt0=Ft
28 27 fveq2d tDiftDFt0=Ft
29 28 mpteq2ia tDiftDFt0=tDFt
30 8 feqmptd φF=tDFt
31 30 7 eqeltrrd φtDFt𝐿1
32 12 iblcn φtDFt𝐿1tDFt𝐿1tDFt𝐿1
33 31 32 mpbid φtDFt𝐿1tDFt𝐿1
34 33 simpld φtDFt𝐿1
35 29 34 eqeltrid φtDiftDFt0𝐿1
36 6 18 19 26 35 iblss2 φtiftDFt0𝐿1
37 15 recnd φiftDFt0
38 37 adantr φtiftDFt0
39 eqidd φtiftDFt0=tiftDFt0
40 absf abs:
41 40 a1i φabs:
42 41 feqmptd φabs=xx
43 fveq2 x=iftDFt0x=iftDFt0
44 38 39 42 43 fmptco φabstiftDFt0=tiftDFt0
45 16 fmpttd φtiftDFt0:
46 iblmbf F𝐿1FMblFn
47 7 46 syl φFMblFn
48 30 47 eqeltrrd φtDFtMblFn
49 12 ismbfcn2 φtDFtMblFntDFtMblFntDFtMblFn
50 48 49 mpbid φtDFtMblFntDFtMblFn
51 50 simpld φtDFtMblFn
52 29 51 eqeltrid φtDiftDFt0MblFn
53 6 18 19 26 52 mbfss φtiftDFt0MblFn
54 ftc1anclem1 tiftDFt0:tiftDFt0MblFnabstiftDFt0MblFn
55 45 53 54 syl2anc φabstiftDFt0MblFn
56 44 55 eqeltrrd φtiftDFt0MblFn
57 16 36 56 iblabsnc φtiftDFt0𝐿1
58 37 abscld φiftDFt0
59 58 adantr φtiftDFt0
60 37 absge0d φ0iftDFt0
61 60 adantr φt0iftDFt0
62 59 61 iblpos φtiftDFt0𝐿1tiftDFt0MblFn2tiftiftDFt00
63 57 62 mpbid φtiftDFt0MblFn2tiftiftDFt00
64 63 simprd φ2tiftiftDFt00
65 11 64 eqeltrrid φ2tiftDFt0
66 ltsubrp 2tiftDFt0Y+2tiftDFt0Y<2tiftDFt0
67 65 66 sylan φY+2tiftDFt0Y<2tiftDFt0
68 rpre Y+Y
69 resubcl 2tiftDFt0Y2tiftDFt0Y
70 65 68 69 syl2an φY+2tiftDFt0Y
71 65 adantr φY+2tiftDFt0
72 70 71 ltnled φY+2tiftDFt0Y<2tiftDFt0¬2tiftDFt02tiftDFt0Y
73 67 72 mpbid φY+¬2tiftDFt02tiftDFt0Y
74 58 rexrd φiftDFt0*
75 elxrge0 iftDFt00+∞iftDFt0*0iftDFt0
76 74 60 75 sylanbrc φiftDFt00+∞
77 76 adantr φtiftDFt00+∞
78 77 fmpttd φtiftDFt0:0+∞
79 78 adantr φY+tiftDFt0:0+∞
80 70 rexrd φY+2tiftDFt0Y*
81 itg2leub tiftDFt0:0+∞2tiftDFt0Y*2tiftDFt02tiftDFt0Ygdom1gftiftDFt01g2tiftDFt0Y
82 79 80 81 syl2anc φY+2tiftDFt02tiftDFt0Ygdom1gftiftDFt01g2tiftDFt0Y
83 73 82 mtbid φY+¬gdom1gftiftDFt01g2tiftDFt0Y
84 rexanali gdom1gftiftDFt0¬1g2tiftDFt0Y¬gdom1gftiftDFt01g2tiftDFt0Y
85 83 84 sylibr φY+gdom1gftiftDFt0¬1g2tiftDFt0Y
86 70 ad2antrr φY+gdom1¬1g2tiftDFt0Y2tiftDFt0Y
87 itg1cl gdom11g
88 87 ad2antlr φY+gdom1¬1g2tiftDFt0Y1g
89 eqid tif0gtgt0=tif0gtgt0
90 89 i1fpos gdom1tif0gtgt0dom1
91 0re 0
92 i1ff gdom1g:
93 92 ffvelrnda gdom1tgt
94 max1 0gt0if0gtgt0
95 91 93 94 sylancr gdom1t0if0gtgt0
96 95 ralrimiva gdom1t0if0gtgt0
97 ax-resscn
98 97 a1i gdom1
99 fvex gtV
100 c0ex 0V
101 99 100 ifex if0gtgt0V
102 101 89 fnmpti tif0gtgt0Fn
103 102 a1i gdom1tif0gtgt0Fn
104 98 103 0pledm gdom10𝑝ftif0gtgt0×0ftif0gtgt0
105 reex V
106 105 a1i gdom1V
107 100 a1i gdom1t0V
108 ifcl gt0if0gtgt0
109 93 91 108 sylancl gdom1tif0gtgt0
110 fconstmpt ×0=t0
111 110 a1i gdom1×0=t0
112 eqidd gdom1tif0gtgt0=tif0gtgt0
113 106 107 109 111 112 ofrfval2 gdom1×0ftif0gtgt0t0if0gtgt0
114 104 113 bitrd gdom10𝑝ftif0gtgt0t0if0gtgt0
115 96 114 mpbird gdom10𝑝ftif0gtgt0
116 itg2itg1 tif0gtgt0dom10𝑝ftif0gtgt02tif0gtgt0=1tif0gtgt0
117 90 115 116 syl2anc gdom12tif0gtgt0=1tif0gtgt0
118 itg1cl tif0gtgt0dom11tif0gtgt0
119 90 118 syl gdom11tif0gtgt0
120 117 119 eqeltrd gdom12tif0gtgt0
121 120 ad2antlr φY+gdom1¬1g2tiftDFt0Y2tif0gtgt0
122 ltnle 2tiftDFt0Y1g2tiftDFt0Y<1g¬1g2tiftDFt0Y
123 70 87 122 syl2an φY+gdom12tiftDFt0Y<1g¬1g2tiftDFt0Y
124 123 biimpar φY+gdom1¬1g2tiftDFt0Y2tiftDFt0Y<1g
125 max2 0gtgtif0gtgt0
126 91 93 125 sylancr gdom1tgtif0gtgt0
127 126 ralrimiva gdom1tgtif0gtgt0
128 92 feqmptd gdom1g=tgt
129 106 93 109 128 112 ofrfval2 gdom1gftif0gtgt0tgtif0gtgt0
130 127 129 mpbird gdom1gftif0gtgt0
131 itg1le gdom1tif0gtgt0dom1gftif0gtgt01g1tif0gtgt0
132 90 130 131 mpd3an23 gdom11g1tif0gtgt0
133 132 117 breqtrrd gdom11g2tif0gtgt0
134 133 ad2antlr φY+gdom1¬1g2tiftDFt0Y1g2tif0gtgt0
135 86 88 121 124 134 ltletrd φY+gdom1¬1g2tiftDFt0Y2tiftDFt0Y<2tif0gtgt0
136 135 adantrl φY+gdom1gftiftDFt0¬1g2tiftDFt0Y2tiftDFt0Y<2tif0gtgt0
137 i1fmbf tif0gtgt0dom1tif0gtgt0MblFn
138 90 137 syl gdom1tif0gtgt0MblFn
139 138 adantl φgdom1tif0gtgt0MblFn
140 elrege0 if0gtgt00+∞if0gtgt00if0gtgt0
141 109 95 140 sylanbrc gdom1tif0gtgt00+∞
142 141 fmpttd gdom1tif0gtgt0:0+∞
143 142 adantl φgdom1tif0gtgt0:0+∞
144 120 adantl φgdom12tif0gtgt0
145 109 recnd gdom1tif0gtgt0
146 145 negcld gdom1tif0gtgt0
147 145 146 ifcld gdom1tif0iftDFt0if0gtgt0if0gtgt0
148 subcl iftDFt0if0iftDFt0if0gtgt0if0gtgt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0
149 37 147 148 syl2an φgdom1tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
150 149 anassrs φgdom1tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
151 150 abscld φgdom1tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
152 150 absge0d φgdom1t0iftDFt0if0iftDFt0if0gtgt0if0gtgt0
153 elrege0 iftDFt0if0iftDFt0if0gtgt0if0gtgt00+∞iftDFt0if0iftDFt0if0gtgt0if0gtgt00iftDFt0if0iftDFt0if0gtgt0if0gtgt0
154 151 152 153 sylanbrc φgdom1tiftDFt0if0iftDFt0if0gtgt0if0gtgt00+∞
155 154 fmpttd φgdom1tiftDFt0if0iftDFt0if0gtgt0if0gtgt0:0+∞
156 eleq1w x=txDtD
157 fveq2 x=tFx=Ft
158 156 157 ifbieq1d x=tifxDFx0=iftDFt0
159 158 fveq2d x=tifxDFx0=iftDFt0
160 eqid xifxDFx0=xifxDFx0
161 fvex iftDFt0V
162 159 160 161 fvmpt txifxDFx0t=iftDFt0
163 159 breq2d x=t0ifxDFx00iftDFt0
164 fveq2 x=tgx=gt
165 164 breq2d x=t0gx0gt
166 165 164 ifbieq1d x=tif0gxgx0=if0gtgt0
167 166 negeqd x=tif0gxgx0=if0gtgt0
168 163 166 167 ifbieq12d x=tif0ifxDFx0if0gxgx0if0gxgx0=if0iftDFt0if0gtgt0if0gtgt0
169 eqid xif0ifxDFx0if0gxgx0if0gxgx0=xif0ifxDFx0if0gxgx0if0gxgx0
170 negex if0gtgt0V
171 101 170 ifex if0iftDFt0if0gtgt0if0gtgt0V
172 168 169 171 fvmpt txif0ifxDFx0if0gxgx0if0gxgx0t=if0iftDFt0if0gtgt0if0gtgt0
173 162 172 oveq12d txifxDFx0txif0ifxDFx0if0gxgx0if0gxgx0t=iftDFt0if0iftDFt0if0gtgt0if0gtgt0
174 173 fveq2d txifxDFx0txif0ifxDFx0if0gxgx0if0gxgx0t=iftDFt0if0iftDFt0if0gtgt0if0gtgt0
175 174 mpteq2ia txifxDFx0txif0ifxDFx0if0gxgx0if0gxgx0t=tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
176 175 fveq2i 2txifxDFx0txif0ifxDFx0if0gxgx0if0gxgx0t=2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
177 105 a1i φV
178 fvex gxV
179 178 100 ifex if0gxgx0V
180 179 100 ifex if0ifxDFx0if0gxgx00V
181 180 a1i φxif0ifxDFx0if0gxgx00V
182 ovex -1if0gxgx0V
183 100 182 ifex if0ifxDFx00-1if0gxgx0V
184 183 a1i φxif0ifxDFx00-1if0gxgx0V
185 ffn F:DFFnD
186 frn F:DranF
187 ref :
188 ffn :Fn
189 187 188 ax-mp Fn
190 fnco FnFFnDranFFFnD
191 189 190 mp3an1 FFnDranFFFnD
192 185 186 191 syl2anc F:DFFnD
193 elpreima FFnDxF-10+∞xDFx0+∞
194 8 192 193 3syl φxF-10+∞xDFx0+∞
195 fco :F:DF:D
196 187 8 195 sylancr φF:D
197 196 ffvelrnda φxDFx
198 197 biantrurd φxD0FxFx0Fx
199 elrege0 Fx0+∞Fx0Fx
200 198 199 bitr4di φxD0FxFx0+∞
201 fvco3 F:DxDFx=Fx
202 8 201 sylan φxDFx=Fx
203 202 breq2d φxD0Fx0Fx
204 200 203 bitr3d φxDFx0+∞0Fx
205 204 pm5.32da φxDFx0+∞xD0Fx
206 194 205 bitrd φxF-10+∞xD0Fx
207 206 adantr φxxF-10+∞xD0Fx
208 eldif xDx¬xD
209 208 baibr x¬xDxD
210 0le0 00
211 210 24 breqtrri 00
212 211 biantru ¬xD¬xD00
213 209 212 bitr3di xxD¬xD00
214 213 adantl φxxD¬xD00
215 207 214 orbi12d φxxF-10+∞xDxD0Fx¬xD00
216 elun xF-10+∞DxF-10+∞xD
217 fveq2 ifxDFx0=FxifxDFx0=Fx
218 217 breq2d ifxDFx0=Fx0ifxDFx00Fx
219 fveq2 ifxDFx0=0ifxDFx0=0
220 219 breq2d ifxDFx0=00ifxDFx000
221 218 220 elimif 0ifxDFx0xD0Fx¬xD00
222 215 216 221 3bitr4g φxxF-10+∞D0ifxDFx0
223 222 ifbid φxifxF-10+∞Dif0gxgx00=if0ifxDFx0if0gxgx00
224 223 mpteq2dva φxifxF-10+∞Dif0gxgx00=xif0ifxDFx0if0gxgx00
225 222 ifbid φxifxF-10+∞D0-1if0gxgx0=if0ifxDFx00-1if0gxgx0
226 225 mpteq2dva φxifxF-10+∞D0-1if0gxgx0=xif0ifxDFx00-1if0gxgx0
227 177 181 184 224 226 offval2 φxifxF-10+∞Dif0gxgx00+fxifxF-10+∞D0-1if0gxgx0=xif0ifxDFx0if0gxgx00+if0ifxDFx00-1if0gxgx0
228 ovif12 if0ifxDFx0if0gxgx00+if0ifxDFx00-1if0gxgx0=if0ifxDFx0if0gxgx0+00+-1if0gxgx0
229 92 ffvelrnda gdom1xgx
230 229 recnd gdom1xgx
231 0cn 0
232 ifcl gx0if0gxgx0
233 230 231 232 sylancl gdom1xif0gxgx0
234 233 addid1d gdom1xif0gxgx0+0=if0gxgx0
235 233 mulm1d gdom1x-1if0gxgx0=if0gxgx0
236 235 oveq2d gdom1x0+-1if0gxgx0=0+if0gxgx0
237 233 negcld gdom1xif0gxgx0
238 237 addid2d gdom1x0+if0gxgx0=if0gxgx0
239 236 238 eqtrd gdom1x0+-1if0gxgx0=if0gxgx0
240 234 239 ifeq12d gdom1xif0ifxDFx0if0gxgx0+00+-1if0gxgx0=if0ifxDFx0if0gxgx0if0gxgx0
241 228 240 eqtrid gdom1xif0ifxDFx0if0gxgx00+if0ifxDFx00-1if0gxgx0=if0ifxDFx0if0gxgx0if0gxgx0
242 241 mpteq2dva gdom1xif0ifxDFx0if0gxgx00+if0ifxDFx00-1if0gxgx0=xif0ifxDFx0if0gxgx0if0gxgx0
243 227 242 sylan9eq φgdom1xifxF-10+∞Dif0gxgx00+fxifxF-10+∞D0-1if0gxgx0=xif0ifxDFx0if0gxgx0if0gxgx0
244 0xr 0*
245 pnfxr +∞*
246 0ltpnf 0<+∞
247 snunioo 0*+∞*0<+∞00+∞=0+∞
248 244 245 246 247 mp3an 00+∞=0+∞
249 248 imaeq2i F-100+∞=F-10+∞
250 imaundi F-100+∞=F-10F-10+∞
251 249 250 eqtr3i F-10+∞=F-10F-10+∞
252 ismbfcn F:DFMblFnFMblFnFMblFn
253 8 252 syl φFMblFnFMblFnFMblFn
254 47 253 mpbid φFMblFnFMblFn
255 254 simpld φFMblFn
256 mbfimasn FMblFnF:D0F-10domvol
257 91 256 mp3an3 FMblFnF:DF-10domvol
258 mbfima FMblFnF:DF-10+∞domvol
259 unmbl F-10domvolF-10+∞domvolF-10F-10+∞domvol
260 257 258 259 syl2anc FMblFnF:DF-10F-10+∞domvol
261 255 196 260 syl2anc φF-10F-10+∞domvol
262 251 261 eqeltrid φF-10+∞domvol
263 8 fdmd φdomF=D
264 mbfdm FMblFndomFdomvol
265 47 264 syl φdomFdomvol
266 263 265 eqeltrrd φDdomvol
267 difmbl domvolDdomvolDdomvol
268 17 266 267 sylancr φDdomvol
269 unmbl F-10+∞domvolDdomvolF-10+∞Ddomvol
270 262 268 269 syl2anc φF-10+∞Ddomvol
271 fveq2 t=xgt=gx
272 271 breq2d t=x0gt0gx
273 272 271 ifbieq1d t=xif0gtgt0=if0gxgx0
274 273 89 179 fvmpt xtif0gtgt0x=if0gxgx0
275 274 eqcomd xif0gxgx0=tif0gtgt0x
276 275 ifeq1d xifxF-10+∞Dif0gxgx00=ifxF-10+∞Dtif0gtgt0x0
277 276 mpteq2ia xifxF-10+∞Dif0gxgx00=xifxF-10+∞Dtif0gtgt0x0
278 277 i1fres tif0gtgt0dom1F-10+∞DdomvolxifxF-10+∞Dif0gxgx00dom1
279 id tif0gtgt0dom1tif0gtgt0dom1
280 neg1rr 1
281 280 a1i tif0gtgt0dom11
282 279 281 i1fmulc tif0gtgt0dom1×1×ftif0gtgt0dom1
283 cmmbl F-10+∞DdomvolF-10+∞Ddomvol
284 ifnot if¬xF-10+∞D-1if0gxgx00=ifxF-10+∞D0-1if0gxgx0
285 eldif xF-10+∞Dx¬xF-10+∞D
286 285 baibr x¬xF-10+∞DxF-10+∞D
287 tru
288 negex 1V
289 288 fconst ×1:1
290 ffn ×1:1×1Fn
291 289 290 mp1i ×1Fn
292 102 a1i tif0gtgt0Fn
293 105 a1i V
294 inidm =
295 288 fvconst2 x×1x=1
296 295 adantl x×1x=1
297 274 adantl xtif0gtgt0x=if0gxgx0
298 291 292 293 293 294 296 297 ofval x×1×ftif0gtgt0x=-1if0gxgx0
299 287 298 mpan x×1×ftif0gtgt0x=-1if0gxgx0
300 299 eqcomd x-1if0gxgx0=×1×ftif0gtgt0x
301 286 300 ifbieq1d xif¬xF-10+∞D-1if0gxgx00=ifxF-10+∞D×1×ftif0gtgt0x0
302 284 301 eqtr3id xifxF-10+∞D0-1if0gxgx0=ifxF-10+∞D×1×ftif0gtgt0x0
303 302 mpteq2ia xifxF-10+∞D0-1if0gxgx0=xifxF-10+∞D×1×ftif0gtgt0x0
304 303 i1fres ×1×ftif0gtgt0dom1F-10+∞DdomvolxifxF-10+∞D0-1if0gxgx0dom1
305 282 283 304 syl2an tif0gtgt0dom1F-10+∞DdomvolxifxF-10+∞D0-1if0gxgx0dom1
306 278 305 i1fadd tif0gtgt0dom1F-10+∞DdomvolxifxF-10+∞Dif0gxgx00+fxifxF-10+∞D0-1if0gxgx0dom1
307 90 270 306 syl2anr φgdom1xifxF-10+∞Dif0gxgx00+fxifxF-10+∞D0-1if0gxgx0dom1
308 243 307 eqeltrrd φgdom1xif0ifxDFx0if0gxgx0if0gxgx0dom1
309 159 cbvmptv xifxDFx0=tiftDFt0
310 309 36 eqeltrid φxifxDFx0𝐿1
311 16 309 fmptd φxifxDFx0:
312 310 311 jca φxifxDFx0𝐿1xifxDFx0:
313 312 adantr φgdom1xifxDFx0𝐿1xifxDFx0:
314 ftc1anclem4 xif0ifxDFx0if0gxgx0if0gxgx0dom1xifxDFx0𝐿1xifxDFx0:2txifxDFx0txif0ifxDFx0if0gxgx0if0gxgx0t
315 314 3expb xif0ifxDFx0if0gxgx0if0gxgx0dom1xifxDFx0𝐿1xifxDFx0:2txifxDFx0txif0ifxDFx0if0gxgx0if0gxgx0t
316 308 313 315 syl2anc φgdom12txifxDFx0txif0ifxDFx0if0gxgx0if0gxgx0t
317 176 316 eqeltrrid φgdom12tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
318 139 143 144 155 317 itg2addnc φgdom12tif0gtgt0+ftiftDFt0if0iftDFt0if0gtgt0if0gtgt0=2tif0gtgt0+2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
319 105 a1i φgdom1V
320 101 a1i φgdom1tif0gtgt0V
321 eqidd φgdom1tif0gtgt0=tif0gtgt0
322 eqidd φgdom1tiftDFt0if0iftDFt0if0gtgt0if0gtgt0=tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
323 319 320 151 321 322 offval2 φgdom1tif0gtgt0+ftiftDFt0if0iftDFt0if0gtgt0if0gtgt0=tif0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0
324 323 fveq2d φgdom12tif0gtgt0+ftiftDFt0if0iftDFt0if0gtgt0if0gtgt0=2tif0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0
325 318 324 eqtr3d φgdom12tif0gtgt0+2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0=2tif0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0
326 325 adantr φgdom1gftiftDFt02tif0gtgt0+2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0=2tif0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0
327 nfv tφgdom1
328 nfcv _tg
329 nfcv _tr
330 nfmpt1 _ttiftDFt0
331 328 329 330 nfbr tgftiftDFt0
332 327 331 nfan tφgdom1gftiftDFt0
333 anass φgdom1tφgdom1t
334 92 ffnd gdom1gFn
335 fvex iftDFt0V
336 eqid tiftDFt0=tiftDFt0
337 335 336 fnmpti tiftDFt0Fn
338 337 a1i gdom1tiftDFt0Fn
339 eqidd gdom1tgt=gt
340 336 fvmpt2 tiftDFt0VtiftDFt0t=iftDFt0
341 335 340 mpan2 ttiftDFt0t=iftDFt0
342 341 adantl gdom1ttiftDFt0t=iftDFt0
343 334 338 106 106 294 339 342 ofrval gdom1gftiftDFt0tgtiftDFt0
344 343 3com23 gdom1tgftiftDFt0gtiftDFt0
345 344 3expa gdom1tgftiftDFt0gtiftDFt0
346 345 adantll φgdom1tgftiftDFt0gtiftDFt0
347 resubcl iftDFt0if0gtgt0iftDFt0if0gtgt0
348 15 109 347 syl2an φgdom1tiftDFt0if0gtgt0
349 348 ad2antrr φgdom1tgtiftDFt00iftDFt0iftDFt0if0gtgt0
350 absid iftDFt00iftDFt0iftDFt0=iftDFt0
351 15 350 sylan φ0iftDFt0iftDFt0=iftDFt0
352 351 breq2d φ0iftDFt0gtiftDFt0gtiftDFt0
353 352 biimpa φ0iftDFt0gtiftDFt0gtiftDFt0
354 353 an32s φgtiftDFt00iftDFt0gtiftDFt0
355 354 adantllr φgdom1tgtiftDFt00iftDFt0gtiftDFt0
356 breq1 gt=if0gtgt0gtiftDFt0if0gtgt0iftDFt0
357 breq1 0=if0gtgt00iftDFt0if0gtgt0iftDFt0
358 356 357 ifboth gtiftDFt00iftDFt0if0gtgt0iftDFt0
359 355 358 sylancom φgdom1tgtiftDFt00iftDFt0if0gtgt0iftDFt0
360 subge0 iftDFt0if0gtgt00iftDFt0if0gtgt0if0gtgt0iftDFt0
361 15 109 360 syl2an φgdom1t0iftDFt0if0gtgt0if0gtgt0iftDFt0
362 361 ad2antrr φgdom1tgtiftDFt00iftDFt00iftDFt0if0gtgt0if0gtgt0iftDFt0
363 359 362 mpbird φgdom1tgtiftDFt00iftDFt00iftDFt0if0gtgt0
364 349 363 absidd φgdom1tgtiftDFt00iftDFt0iftDFt0if0gtgt0=iftDFt0if0gtgt0
365 iftrue 0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=if0gtgt0
366 365 oveq2d 0iftDFt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0if0gtgt0
367 366 fveq2d 0iftDFt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0if0gtgt0
368 367 adantl φgdom1tgtiftDFt00iftDFt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0if0gtgt0
369 15 ad2antrr φgdom1tgtiftDFt0iftDFt0
370 350 oveq1d iftDFt00iftDFt0iftDFt0if0gtgt0=iftDFt0if0gtgt0
371 369 370 sylan φgdom1tgtiftDFt00iftDFt0iftDFt0if0gtgt0=iftDFt0if0gtgt0
372 364 368 371 3eqtr4d φgdom1tgtiftDFt00iftDFt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0if0gtgt0
373 109 renegcld gdom1tif0gtgt0
374 resubcl iftDFt0if0gtgt0iftDFt0if0gtgt0
375 15 373 374 syl2an φgdom1tiftDFt0if0gtgt0
376 375 ad2antrr φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0gtgt0
377 93 ad3antlr φgdom1tgtiftDFt0¬0iftDFt0gt
378 15 ad3antrrr φgdom1tgtiftDFt0¬0iftDFt0iftDFt0
379 15 adantr φgdom1tiftDFt0
380 ltnle iftDFt00iftDFt0<0¬0iftDFt0
381 91 380 mpan2 iftDFt0iftDFt0<0¬0iftDFt0
382 ltle iftDFt00iftDFt0<0iftDFt00
383 91 382 mpan2 iftDFt0iftDFt0<0iftDFt00
384 381 383 sylbird iftDFt0¬0iftDFt0iftDFt00
385 384 imp iftDFt0¬0iftDFt0iftDFt00
386 absnid iftDFt0iftDFt00iftDFt0=iftDFt0
387 385 386 syldan iftDFt0¬0iftDFt0iftDFt0=iftDFt0
388 387 breq2d iftDFt0¬0iftDFt0gtiftDFt0gtiftDFt0
389 388 biimpa iftDFt0¬0iftDFt0gtiftDFt0gtiftDFt0
390 389 an32s iftDFt0gtiftDFt0¬0iftDFt0gtiftDFt0
391 379 390 sylanl1 φgdom1tgtiftDFt0¬0iftDFt0gtiftDFt0
392 377 378 391 lenegcon2d φgdom1tgtiftDFt0¬0iftDFt0iftDFt0gt
393 simpll φgdom1tgtiftDFt0φ
394 91 a1i φ0
395 15 394 ltnled φiftDFt0<0¬0iftDFt0
396 15 91 382 sylancl φiftDFt0<0iftDFt00
397 395 396 sylbird φ¬0iftDFt0iftDFt00
398 397 imp φ¬0iftDFt0iftDFt00
399 393 398 sylan φgdom1tgtiftDFt0¬0iftDFt0iftDFt00
400 negeq gt=if0gtgt0gt=if0gtgt0
401 400 breq2d gt=if0gtgt0iftDFt0gtiftDFt0if0gtgt0
402 neg0 0=0
403 negeq 0=if0gtgt00=if0gtgt0
404 402 403 eqtr3id 0=if0gtgt00=if0gtgt0
405 404 breq2d 0=if0gtgt0iftDFt00iftDFt0if0gtgt0
406 401 405 ifboth iftDFt0gtiftDFt00iftDFt0if0gtgt0
407 392 399 406 syl2anc φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0gtgt0
408 suble0 iftDFt0if0gtgt0iftDFt0if0gtgt00iftDFt0if0gtgt0
409 15 373 408 syl2an φgdom1tiftDFt0if0gtgt00iftDFt0if0gtgt0
410 409 ad2antrr φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0gtgt00iftDFt0if0gtgt0
411 407 410 mpbird φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0gtgt00
412 376 411 absnidd φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0gtgt0=iftDFt0if0gtgt0
413 subneg iftDFt0if0gtgt0iftDFt0if0gtgt0=iftDFt0+if0gtgt0
414 413 negeqd iftDFt0if0gtgt0iftDFt0if0gtgt0=iftDFt0+if0gtgt0
415 negdi2 iftDFt0if0gtgt0iftDFt0+if0gtgt0=-iftDFt0-if0gtgt0
416 414 415 eqtrd iftDFt0if0gtgt0iftDFt0if0gtgt0=-iftDFt0-if0gtgt0
417 37 145 416 syl2an φgdom1tiftDFt0if0gtgt0=-iftDFt0-if0gtgt0
418 417 ad2antrr φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0gtgt0=-iftDFt0-if0gtgt0
419 412 418 eqtrd φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0gtgt0=-iftDFt0-if0gtgt0
420 iffalse ¬0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=if0gtgt0
421 420 oveq2d ¬0iftDFt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0if0gtgt0
422 421 fveq2d ¬0iftDFt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0if0gtgt0
423 422 adantl φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0if0gtgt0
424 15 386 sylan φiftDFt00iftDFt0=iftDFt0
425 398 424 syldan φ¬0iftDFt0iftDFt0=iftDFt0
426 425 oveq1d φ¬0iftDFt0iftDFt0if0gtgt0=-iftDFt0-if0gtgt0
427 393 426 sylan φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0gtgt0=-iftDFt0-if0gtgt0
428 419 423 427 3eqtr4d φgdom1tgtiftDFt0¬0iftDFt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0if0gtgt0
429 372 428 pm2.61dan φgdom1tgtiftDFt0iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0if0gtgt0
430 429 oveq2d φgdom1tgtiftDFt0if0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0=if0gtgt0+iftDFt0-if0gtgt0
431 58 recnd φiftDFt0
432 pncan3 if0gtgt0iftDFt0if0gtgt0+iftDFt0-if0gtgt0=iftDFt0
433 145 431 432 syl2anr φgdom1tif0gtgt0+iftDFt0-if0gtgt0=iftDFt0
434 433 adantr φgdom1tgtiftDFt0if0gtgt0+iftDFt0-if0gtgt0=iftDFt0
435 430 434 eqtrd φgdom1tgtiftDFt0if0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0
436 346 435 syldan φgdom1tgftiftDFt0if0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0
437 333 436 sylanb φgdom1tgftiftDFt0if0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0
438 437 an32s φgdom1gftiftDFt0tif0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0=iftDFt0
439 332 438 mpteq2da φgdom1gftiftDFt0tif0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0=tiftDFt0
440 439 fveq2d φgdom1gftiftDFt02tif0gtgt0+iftDFt0if0iftDFt0if0gtgt0if0gtgt0=2tiftDFt0
441 326 440 eqtrd φgdom1gftiftDFt02tif0gtgt0+2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0=2tiftDFt0
442 441 breq1d φgdom1gftiftDFt02tif0gtgt0+2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<2tif0gtgt0+Y2tiftDFt0<2tif0gtgt0+Y
443 442 adantllr φY+gdom1gftiftDFt02tif0gtgt0+2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<2tif0gtgt0+Y2tiftDFt0<2tif0gtgt0+Y
444 317 adantlr φY+gdom12tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
445 68 ad2antlr φY+gdom1Y
446 120 adantl φY+gdom12tif0gtgt0
447 444 445 446 ltadd2d φY+gdom12tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Y2tif0gtgt0+2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<2tif0gtgt0+Y
448 447 adantr φY+gdom1gftiftDFt02tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Y2tif0gtgt0+2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<2tif0gtgt0+Y
449 ltsubadd 2tiftDFt0Y2tif0gtgt02tiftDFt0Y<2tif0gtgt02tiftDFt0<2tif0gtgt0+Y
450 65 68 120 449 syl3an φY+gdom12tiftDFt0Y<2tif0gtgt02tiftDFt0<2tif0gtgt0+Y
451 450 3expa φY+gdom12tiftDFt0Y<2tif0gtgt02tiftDFt0<2tif0gtgt0+Y
452 451 adantr φY+gdom1gftiftDFt02tiftDFt0Y<2tif0gtgt02tiftDFt0<2tif0gtgt0+Y
453 443 448 452 3bitr4d φY+gdom1gftiftDFt02tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Y2tiftDFt0Y<2tif0gtgt0
454 453 adantrr φY+gdom1gftiftDFt0¬1g2tiftDFt0Y2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Y2tiftDFt0Y<2tif0gtgt0
455 136 454 mpbird φY+gdom1gftiftDFt0¬1g2tiftDFt0Y2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Y
456 455 ex φY+gdom1gftiftDFt0¬1g2tiftDFt0Y2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Y
457 456 reximdva φY+gdom1gftiftDFt0¬1g2tiftDFt0Ygdom12tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Y
458 fveq1 f=xif0ifxDFx0if0gxgx0if0gxgx0ft=xif0ifxDFx0if0gxgx0if0gxgx0t
459 458 172 sylan9eq f=xif0ifxDFx0if0gxgx0if0gxgx0tft=if0iftDFt0if0gtgt0if0gtgt0
460 459 oveq2d f=xif0ifxDFx0if0gxgx0if0gxgx0tiftDFt0ft=iftDFt0if0iftDFt0if0gtgt0if0gtgt0
461 460 fveq2d f=xif0ifxDFx0if0gxgx0if0gxgx0tiftDFt0ft=iftDFt0if0iftDFt0if0gtgt0if0gtgt0
462 461 mpteq2dva f=xif0ifxDFx0if0gxgx0if0gxgx0tiftDFt0ft=tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
463 462 fveq2d f=xif0ifxDFx0if0gxgx0if0gxgx02tiftDFt0ft=2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0
464 463 breq1d f=xif0ifxDFx0if0gxgx0if0gxgx02tiftDFt0ft<Y2tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Y
465 464 rspcev xif0ifxDFx0if0gxgx0if0gxgx0dom12tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Yfdom12tiftDFt0ft<Y
466 465 ex xif0ifxDFx0if0gxgx0if0gxgx0dom12tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Yfdom12tiftDFt0ft<Y
467 308 466 syl φgdom12tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Yfdom12tiftDFt0ft<Y
468 467 rexlimdva φgdom12tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Yfdom12tiftDFt0ft<Y
469 468 adantr φY+gdom12tiftDFt0if0iftDFt0if0gtgt0if0gtgt0<Yfdom12tiftDFt0ft<Y
470 457 469 syld φY+gdom1gftiftDFt0¬1g2tiftDFt0Yfdom12tiftDFt0ft<Y
471 85 470 mpd φY+fdom12tiftDFt0ft<Y