Metamath Proof Explorer


Theorem logtayl

Description: The Taylor series for -u log ( 1 - A ) . (Contributed by Mario Carneiro, 1-Apr-2015)

Ref Expression
Assertion logtayl AA<1seq1+kAkklog1A

Proof

Step Hyp Ref Expression
1 nn0uz 0=0
2 0zd AA<10
3 eqeq1 k=nk=0n=0
4 oveq2 k=n1k=1n
5 3 4 ifbieq2d k=nifk=001k=ifn=001n
6 oveq2 k=nAk=An
7 5 6 oveq12d k=nifk=001kAk=ifn=001nAn
8 eqid k0ifk=001kAk=k0ifk=001kAk
9 ovex ifn=001nAnV
10 7 8 9 fvmpt n0k0ifk=001kAkn=ifn=001nAn
11 10 adantl AA<1n0k0ifk=001kAkn=ifn=001nAn
12 0cnd AA<1n0n=00
13 simpr AA<1n0n0
14 elnn0 n0nn=0
15 13 14 sylib AA<1n0nn=0
16 15 ord AA<1n0¬nn=0
17 16 con1d AA<1n0¬n=0n
18 17 imp AA<1n0¬n=0n
19 18 nnrecred AA<1n0¬n=01n
20 19 recnd AA<1n0¬n=01n
21 12 20 ifclda AA<1n0ifn=001n
22 expcl An0An
23 22 adantlr AA<1n0An
24 21 23 mulcld AA<1n0ifn=001nAn
25 logtayllem AA<1seq0+k0ifk=001kAkdom
26 1 2 11 24 25 isumclim2 AA<1seq0+k0ifk=001kAkn0ifn=001nAn
27 simpl AA<1A
28 0cn 0
29 eqid abs=abs
30 29 cnmetdval A0Aabs0=A0
31 27 28 30 sylancl AA<1Aabs0=A0
32 subid1 AA0=A
33 32 adantr AA<1A0=A
34 33 fveq2d AA<1A0=A
35 31 34 eqtrd AA<1Aabs0=A
36 simpr AA<1A<1
37 35 36 eqbrtrd AA<1Aabs0<1
38 cnxmet abs∞Met
39 1xr 1*
40 elbl3 abs∞Met1*0AA0ballabs1Aabs0<1
41 38 39 40 mpanl12 0AA0ballabs1Aabs0<1
42 28 27 41 sylancr AA<1A0ballabs1Aabs0<1
43 37 42 mpbird AA<1A0ballabs1
44 tru
45 eqid 0ballabs1=0ballabs1
46 0cnd 0
47 39 a1i 1*
48 ax-1cn 1
49 blssm abs∞Met01*0ballabs1
50 38 28 39 49 mp3an 0ballabs1
51 50 sseli y0ballabs1y
52 subcl 1y1y
53 48 51 52 sylancr y0ballabs11y
54 51 abscld y0ballabs1y
55 29 cnmetdval y0yabs0=y0
56 51 28 55 sylancl y0ballabs1yabs0=y0
57 51 subid1d y0ballabs1y0=y
58 57 fveq2d y0ballabs1y0=y
59 56 58 eqtrd y0ballabs1yabs0=y
60 elbl3 abs∞Met1*0yy0ballabs1yabs0<1
61 38 39 60 mpanl12 0yy0ballabs1yabs0<1
62 28 51 61 sylancr y0ballabs1y0ballabs1yabs0<1
63 62 ibi y0ballabs1yabs0<1
64 59 63 eqbrtrrd y0ballabs1y<1
65 54 64 gtned y0ballabs11y
66 abs1 1=1
67 fveq2 1=y1=y
68 66 67 eqtr3id 1=y1=y
69 68 necon3i 1y1y
70 65 69 syl y0ballabs11y
71 subeq0 1y1y=01=y
72 71 necon3bid 1y1y01y
73 48 51 72 sylancr y0ballabs11y01y
74 70 73 mpbird y0ballabs11y0
75 53 74 logcld y0ballabs1log1y
76 75 negcld y0ballabs1log1y
77 76 adantl y0ballabs1log1y
78 77 fmpttd y0ballabs1log1y:0ballabs1
79 51 absge0d y0ballabs10y
80 54 rexrd y0ballabs1y*
81 peano2re yy+1
82 54 81 syl y0ballabs1y+1
83 82 rehalfcld y0ballabs1y+12
84 83 rexrd y0ballabs1y+12*
85 iccssxr 0+∞*
86 eqeq1 m=jm=0j=0
87 oveq2 m=j1m=1j
88 86 87 ifbieq2d m=jifm=001m=ifj=001j
89 eqid m0ifm=001m=m0ifm=001m
90 c0ex 0V
91 ovex 1jV
92 90 91 ifex ifj=001jV
93 88 89 92 fvmpt j0m0ifm=001mj=ifj=001j
94 93 eqcomd j0ifj=001j=m0ifm=001mj
95 94 oveq1d j0ifj=001jxj=m0ifm=001mjxj
96 95 mpteq2ia j0ifj=001jxj=j0m0ifm=001mjxj
97 96 mpteq2i xj0ifj=001jxj=xj0m0ifm=001mjxj
98 0cnd m0m=00
99 nn0cn m0m
100 99 adantl m0m
101 neqne ¬m=0m0
102 reccl mm01m
103 100 101 102 syl2an m0¬m=01m
104 98 103 ifclda m0ifm=001m
105 104 fmpttd m0ifm=001m:0
106 recn rr
107 oveq1 x=rxj=rj
108 107 oveq2d x=rifj=001jxj=ifj=001jrj
109 108 mpteq2dv x=rj0ifj=001jxj=j0ifj=001jrj
110 eqid xj0ifj=001jxj=xj0ifj=001jxj
111 nn0ex 0V
112 111 mptex j0ifj=001jrjV
113 109 110 112 fvmpt rxj0ifj=001jxjr=j0ifj=001jrj
114 106 113 syl rxj0ifj=001jxjr=j0ifj=001jrj
115 114 eqcomd rj0ifj=001jrj=xj0ifj=001jxjr
116 115 seqeq3d rseq0+j0ifj=001jrj=seq0+xj0ifj=001jxjr
117 116 eleq1d rseq0+j0ifj=001jrjdomseq0+xj0ifj=001jxjrdom
118 117 rabbiia r|seq0+j0ifj=001jrjdom=r|seq0+xj0ifj=001jxjrdom
119 118 supeq1i supr|seq0+j0ifj=001jrjdom*<=supr|seq0+xj0ifj=001jxjrdom*<
120 97 105 119 radcnvcl supr|seq0+j0ifj=001jrjdom*<0+∞
121 85 120 sselid supr|seq0+j0ifj=001jrjdom*<*
122 44 121 mp1i y0ballabs1supr|seq0+j0ifj=001jrjdom*<*
123 1re 1
124 avglt1 y1y<1y<y+12
125 54 123 124 sylancl y0ballabs1y<1y<y+12
126 64 125 mpbid y0ballabs1y<y+12
127 0red y0ballabs10
128 127 54 83 79 126 lelttrd y0ballabs10<y+12
129 127 83 128 ltled y0ballabs10y+12
130 83 129 absidd y0ballabs1y+12=y+12
131 44 105 mp1i y0ballabs1m0ifm=001m:0
132 83 recnd y0ballabs1y+12
133 oveq1 x=y+12xj=y+12j
134 133 oveq2d x=y+12ifj=001jxj=ifj=001jy+12j
135 134 mpteq2dv x=y+12j0ifj=001jxj=j0ifj=001jy+12j
136 111 mptex j0ifj=001jy+12jV
137 135 110 136 fvmpt y+12xj0ifj=001jxjy+12=j0ifj=001jy+12j
138 132 137 syl y0ballabs1xj0ifj=001jxjy+12=j0ifj=001jy+12j
139 138 seqeq3d y0ballabs1seq0+xj0ifj=001jxjy+12=seq0+j0ifj=001jy+12j
140 avglt2 y1y<1y+12<1
141 54 123 140 sylancl y0ballabs1y<1y+12<1
142 64 141 mpbid y0ballabs1y+12<1
143 130 142 eqbrtrd y0ballabs1y+12<1
144 logtayllem y+12y+12<1seq0+j0ifj=001jy+12jdom
145 132 143 144 syl2anc y0ballabs1seq0+j0ifj=001jy+12jdom
146 139 145 eqeltrd y0ballabs1seq0+xj0ifj=001jxjy+12dom
147 97 131 119 132 146 radcnvle y0ballabs1y+12supr|seq0+j0ifj=001jrjdom*<
148 130 147 eqbrtrrd y0ballabs1y+12supr|seq0+j0ifj=001jrjdom*<
149 80 84 122 126 148 xrltletrd y0ballabs1y<supr|seq0+j0ifj=001jrjdom*<
150 0re 0
151 elico2 0supr|seq0+j0ifj=001jrjdom*<*y0supr|seq0+j0ifj=001jrjdom*<y0yy<supr|seq0+j0ifj=001jrjdom*<
152 150 122 151 sylancr y0ballabs1y0supr|seq0+j0ifj=001jrjdom*<y0yy<supr|seq0+j0ifj=001jrjdom*<
153 54 79 149 152 mpbir3and y0ballabs1y0supr|seq0+j0ifj=001jrjdom*<
154 absf abs:
155 ffn abs:absFn
156 elpreima absFnyabs-10supr|seq0+j0ifj=001jrjdom*<yy0supr|seq0+j0ifj=001jrjdom*<
157 154 155 156 mp2b yabs-10supr|seq0+j0ifj=001jrjdom*<yy0supr|seq0+j0ifj=001jrjdom*<
158 51 153 157 sylanbrc y0ballabs1yabs-10supr|seq0+j0ifj=001jrjdom*<
159 cnvimass abs-10supr|seq0+j0ifj=001jrjdom*<domabs
160 154 fdmi domabs=
161 159 160 sseqtri abs-10supr|seq0+j0ifj=001jrjdom*<
162 161 sseli yabs-10supr|seq0+j0ifj=001jrjdom*<y
163 oveq1 x=yxj=yj
164 163 oveq2d x=yifj=001jxj=ifj=001jyj
165 164 mpteq2dv x=yj0ifj=001jxj=j0ifj=001jyj
166 111 mptex j0ifj=001jyjV
167 165 110 166 fvmpt yxj0ifj=001jxjy=j0ifj=001jyj
168 167 adantr yn0xj0ifj=001jxjy=j0ifj=001jyj
169 168 fveq1d yn0xj0ifj=001jxjyn=j0ifj=001jyjn
170 eqeq1 j=nj=0n=0
171 oveq2 j=n1j=1n
172 170 171 ifbieq2d j=nifj=001j=ifn=001n
173 oveq2 j=nyj=yn
174 172 173 oveq12d j=nifj=001jyj=ifn=001nyn
175 eqid j0ifj=001jyj=j0ifj=001jyj
176 ovex ifn=001nynV
177 174 175 176 fvmpt n0j0ifj=001jyjn=ifn=001nyn
178 177 adantl yn0j0ifj=001jyjn=ifn=001nyn
179 169 178 eqtr2d yn0ifn=001nyn=xj0ifj=001jxjyn
180 179 sumeq2dv yn0ifn=001nyn=n0xj0ifj=001jxjyn
181 162 180 syl yabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyn=n0xj0ifj=001jxjyn
182 181 mpteq2ia yabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyn=yabs-10supr|seq0+j0ifj=001jrjdom*<n0xj0ifj=001jxjyn
183 eqid abs-10supr|seq0+j0ifj=001jrjdom*<=abs-10supr|seq0+j0ifj=001jrjdom*<
184 eqid ifsupr|seq0+j0ifj=001jrjdom*<z+supr|seq0+j0ifj=001jrjdom*<2z+1=ifsupr|seq0+j0ifj=001jrjdom*<z+supr|seq0+j0ifj=001jrjdom*<2z+1
185 97 182 105 119 183 184 psercn yabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyn:abs-10supr|seq0+j0ifj=001jrjdom*<cn
186 cncff yabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyn:abs-10supr|seq0+j0ifj=001jrjdom*<cnyabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyn:abs-10supr|seq0+j0ifj=001jrjdom*<
187 185 186 syl yabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyn:abs-10supr|seq0+j0ifj=001jrjdom*<
188 187 fvmptelcdm yabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyn
189 158 188 sylan2 y0ballabs1n0ifn=001nyn
190 189 fmpttd y0ballabs1n0ifn=001nyn:0ballabs1
191 cnelprrecn
192 191 a1i
193 75 adantl y0ballabs1log1y
194 ovexd y0ballabs111y-1V
195 29 cnmetdval 11y1abs1y=11y
196 48 53 195 sylancr y0ballabs11abs1y=11y
197 nncan 1y11y=y
198 48 51 197 sylancr y0ballabs111y=y
199 198 fveq2d y0ballabs111y=y
200 196 199 eqtrd y0ballabs11abs1y=y
201 200 64 eqbrtrd y0ballabs11abs1y<1
202 elbl abs∞Met11*1y1ballabs11y1abs1y<1
203 38 48 39 202 mp3an 1y1ballabs11y1abs1y<1
204 53 201 203 sylanbrc y0ballabs11y1ballabs1
205 204 adantl y0ballabs11y1ballabs1
206 neg1cn 1
207 206 a1i y0ballabs11
208 eqid 1ballabs1=1ballabs1
209 208 dvlog2lem 1ballabs1−∞0
210 209 sseli x1ballabs1x−∞0
211 210 eldifad x1ballabs1x
212 eqid −∞0=−∞0
213 212 logdmn0 x−∞0x0
214 210 213 syl x1ballabs1x0
215 211 214 logcld x1ballabs1logx
216 215 adantl x1ballabs1logx
217 ovexd x1ballabs11xV
218 simpr yy
219 48 218 52 sylancr y1y
220 206 a1i y1
221 1cnd y1
222 0cnd y0
223 1cnd 1
224 192 223 dvmptc dy1dy=y0
225 192 dvmptid dyydy=y1
226 192 221 222 224 218 221 225 dvmptsub dy1ydy=y01
227 df-neg 1=01
228 227 mpteq2i y1=y01
229 226 228 eqtr4di dy1ydy=y1
230 50 a1i 0ballabs1
231 eqid TopOpenfld=TopOpenfld
232 231 cnfldtopon TopOpenfldTopOn
233 232 toponrestid TopOpenfld=TopOpenfld𝑡
234 231 cnfldtopn TopOpenfld=MetOpenabs
235 234 blopn abs∞Met01*0ballabs1TopOpenfld
236 38 28 39 235 mp3an 0ballabs1TopOpenfld
237 236 a1i 0ballabs1TopOpenfld
238 192 219 220 229 230 233 231 237 dvmptres dy0ballabs11ydy=y0ballabs11
239 logf1o log:01-1 ontoranlog
240 f1of log:01-1 ontoranloglog:0ranlog
241 239 240 ax-mp log:0ranlog
242 212 logdmss −∞00
243 209 242 sstri 1ballabs10
244 fssres log:0ranlog1ballabs10log1ballabs1:1ballabs1ranlog
245 241 243 244 mp2an log1ballabs1:1ballabs1ranlog
246 245 a1i log1ballabs1:1ballabs1ranlog
247 246 feqmptd log1ballabs1=x1ballabs1log1ballabs1x
248 fvres x1ballabs1log1ballabs1x=logx
249 248 mpteq2ia x1ballabs1log1ballabs1x=x1ballabs1logx
250 247 249 eqtrdi log1ballabs1=x1ballabs1logx
251 250 oveq2d Dlog1ballabs1=dx1ballabs1logxdx
252 208 dvlog2 Dlog1ballabs1=x1ballabs11x
253 251 252 eqtr3di dx1ballabs1logxdx=x1ballabs11x
254 fveq2 x=1ylogx=log1y
255 oveq2 x=1y1x=11y
256 192 192 205 207 216 217 238 253 254 255 dvmptco dy0ballabs1log1ydy=y0ballabs111y-1
257 192 193 194 256 dvmptneg dy0ballabs1log1ydy=y0ballabs111y-1
258 53 74 reccld y0ballabs111y
259 mulcom 11y111y-1=-111y
260 258 206 259 sylancl y0ballabs111y-1=-111y
261 258 mulm1d y0ballabs1-111y=11y
262 260 261 eqtrd y0ballabs111y-1=11y
263 262 negeqd y0ballabs111y-1=11y
264 258 negnegd y0ballabs111y=11y
265 263 264 eqtrd y0ballabs111y-1=11y
266 265 mpteq2ia y0ballabs111y-1=y0ballabs111y
267 257 266 eqtrdi dy0ballabs1log1ydy=y0ballabs111y
268 267 dmeqd domdy0ballabs1log1ydy=domy0ballabs111y
269 dmmptg y0ballabs111yVdomy0ballabs111y=0ballabs1
270 ovexd y0ballabs111yV
271 269 270 mprg domy0ballabs111y=0ballabs1
272 268 271 eqtrdi domdy0ballabs1log1ydy=0ballabs1
273 sumex nnm0ifm=001mnyn1V
274 273 a1i yabs-10supr|seq0+j0ifj=001jrjdom*<nnm0ifm=001mnyn1V
275 fveq2 n=kxj0ifj=001jxjyn=xj0ifj=001jxjyk
276 275 cbvsumv n0xj0ifj=001jxjyn=k0xj0ifj=001jxjyk
277 181 276 eqtrdi yabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyn=k0xj0ifj=001jxjyk
278 277 mpteq2ia yabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyn=yabs-10supr|seq0+j0ifj=001jrjdom*<k0xj0ifj=001jxjyk
279 eqid 0ballabsz+ifsupr|seq0+j0ifj=001jrjdom*<z+supr|seq0+j0ifj=001jrjdom*<2z+12=0ballabsz+ifsupr|seq0+j0ifj=001jrjdom*<z+supr|seq0+j0ifj=001jrjdom*<2z+12
280 97 278 105 119 183 184 279 pserdv2 dyabs-10supr|seq0+j0ifj=001jrjdom*<n0ifn=001nyndy=yabs-10supr|seq0+j0ifj=001jrjdom*<nnm0ifm=001mnyn1
281 158 ssriv 0ballabs1abs-10supr|seq0+j0ifj=001jrjdom*<
282 281 a1i 0ballabs1abs-10supr|seq0+j0ifj=001jrjdom*<
283 192 188 274 280 282 233 231 237 dvmptres dy0ballabs1n0ifn=001nyndy=y0ballabs1nnm0ifm=001mnyn1
284 nnnn0 nn0
285 284 adantl y0ballabs1nn0
286 eqeq1 m=nm=0n=0
287 oveq2 m=n1m=1n
288 286 287 ifbieq2d m=nifm=001m=ifn=001n
289 ovex 1nV
290 90 289 ifex ifn=001nV
291 288 89 290 fvmpt n0m0ifm=001mn=ifn=001n
292 285 291 syl y0ballabs1nm0ifm=001mn=ifn=001n
293 nnne0 nn0
294 293 adantl y0ballabs1nn0
295 294 neneqd y0ballabs1n¬n=0
296 295 iffalsed y0ballabs1nifn=001n=1n
297 292 296 eqtrd y0ballabs1nm0ifm=001mn=1n
298 297 oveq2d y0ballabs1nnm0ifm=001mn=n1n
299 nncn nn
300 299 adantl y0ballabs1nn
301 300 294 recidd y0ballabs1nn1n=1
302 298 301 eqtrd y0ballabs1nnm0ifm=001mn=1
303 302 oveq1d y0ballabs1nnm0ifm=001mnyn1=1yn1
304 nnm1nn0 nn10
305 expcl yn10yn1
306 51 304 305 syl2an y0ballabs1nyn1
307 306 mullidd y0ballabs1n1yn1=yn1
308 303 307 eqtrd y0ballabs1nnm0ifm=001mnyn1=yn1
309 308 sumeq2dv y0ballabs1nnm0ifm=001mnyn1=nyn1
310 nnuz =1
311 1e0p1 1=0+1
312 311 fveq2i 1=0+1
313 310 312 eqtri =0+1
314 oveq1 n=1+mn1=1+m-1
315 314 oveq2d n=1+myn1=y1+m-1
316 1zzd y0ballabs11
317 0zd y0ballabs10
318 1 313 315 316 317 306 isumshft y0ballabs1nyn1=m0y1+m-1
319 pncan2 1m1+m-1=m
320 48 99 319 sylancr m01+m-1=m
321 320 oveq2d m0y1+m-1=ym
322 321 sumeq2i m0y1+m-1=m0ym
323 318 322 eqtrdi y0ballabs1nyn1=m0ym
324 geoisum yy<1m0ym=11y
325 51 64 324 syl2anc y0ballabs1m0ym=11y
326 309 323 325 3eqtrd y0ballabs1nnm0ifm=001mnyn1=11y
327 326 mpteq2ia y0ballabs1nnm0ifm=001mnyn1=y0ballabs111y
328 283 327 eqtrdi dy0ballabs1n0ifn=001nyndy=y0ballabs111y
329 267 328 eqtr4d dy0ballabs1log1ydy=dy0ballabs1n0ifn=001nyndy
330 1rp 1+
331 blcntr abs∞Met01+00ballabs1
332 38 28 330 331 mp3an 00ballabs1
333 332 a1i 00ballabs1
334 oveq2 y=01y=10
335 1m0e1 10=1
336 334 335 eqtrdi y=01y=1
337 336 fveq2d y=0log1y=log1
338 log1 log1=0
339 337 338 eqtrdi y=0log1y=0
340 339 negeqd y=0log1y=0
341 neg0 0=0
342 340 341 eqtrdi y=0log1y=0
343 eqid y0ballabs1log1y=y0ballabs1log1y
344 342 343 90 fvmpt 00ballabs1y0ballabs1log1y0=0
345 332 344 mp1i y0ballabs1log1y0=0
346 oveq1 0=ifn=001n0yn=ifn=001nyn
347 346 eqeq1d 0=ifn=001n0yn=0ifn=001nyn=0
348 oveq1 1n=ifn=001n1nyn=ifn=001nyn
349 348 eqeq1d 1n=ifn=001n1nyn=0ifn=001nyn=0
350 simpll y=0n0n=0y=0
351 350 28 eqeltrdi y=0n0n=0y
352 simplr y=0n0n=0n0
353 351 352 expcld y=0n0n=0yn
354 353 mul02d y=0n0n=00yn=0
355 simpll y=0n0¬n=0y=0
356 355 oveq1d y=0n0¬n=0yn=0n
357 simpr y=0n0n0
358 357 14 sylib y=0n0nn=0
359 358 ord y=0n0¬nn=0
360 359 con1d y=0n0¬n=0n
361 360 imp y=0n0¬n=0n
362 361 0expd y=0n0¬n=00n=0
363 356 362 eqtrd y=0n0¬n=0yn=0
364 363 oveq2d y=0n0¬n=01nyn=1n0
365 361 nnrecred y=0n0¬n=01n
366 365 recnd y=0n0¬n=01n
367 366 mul01d y=0n0¬n=01n0=0
368 364 367 eqtrd y=0n0¬n=01nyn=0
369 347 349 354 368 ifbothda y=0n0ifn=001nyn=0
370 369 sumeq2dv y=0n0ifn=001nyn=n00
371 1 eqimssi 00
372 371 orci 000Fin
373 sumz 000Finn00=0
374 372 373 ax-mp n00=0
375 370 374 eqtrdi y=0n0ifn=001nyn=0
376 eqid y0ballabs1n0ifn=001nyn=y0ballabs1n0ifn=001nyn
377 375 376 90 fvmpt 00ballabs1y0ballabs1n0ifn=001nyn0=0
378 332 377 mp1i y0ballabs1n0ifn=001nyn0=0
379 345 378 eqtr4d y0ballabs1log1y0=y0ballabs1n0ifn=001nyn0
380 45 46 47 78 190 272 329 333 379 dv11cn y0ballabs1log1y=y0ballabs1n0ifn=001nyn
381 380 fveq1d y0ballabs1log1yA=y0ballabs1n0ifn=001nynA
382 44 381 mp1i A0ballabs1y0ballabs1log1yA=y0ballabs1n0ifn=001nynA
383 oveq2 y=A1y=1A
384 383 fveq2d y=Alog1y=log1A
385 384 negeqd y=Alog1y=log1A
386 negex log1AV
387 385 343 386 fvmpt A0ballabs1y0ballabs1log1yA=log1A
388 oveq1 y=Ayn=An
389 388 oveq2d y=Aifn=001nyn=ifn=001nAn
390 389 sumeq2sdv y=An0ifn=001nyn=n0ifn=001nAn
391 sumex n0ifn=001nAnV
392 390 376 391 fvmpt A0ballabs1y0ballabs1n0ifn=001nynA=n0ifn=001nAn
393 382 387 392 3eqtr3d A0ballabs1log1A=n0ifn=001nAn
394 43 393 syl AA<1log1A=n0ifn=001nAn
395 26 394 breqtrrd AA<1seq0+k0ifk=001kAklog1A
396 seqex seq0+k0ifk=001kAkV
397 396 a1i AA<1seq0+k0ifk=001kAkV
398 seqex seq1+kAkkV
399 398 a1i AA<1seq1+kAkkV
400 1zzd AA<11
401 elnnuz nn1
402 fvres n1seq0+k0ifk=001kAk1n=seq0+k0ifk=001kAkn
403 401 402 sylbi nseq0+k0ifk=001kAk1n=seq0+k0ifk=001kAkn
404 403 eqcomd nseq0+k0ifk=001kAkn=seq0+k0ifk=001kAk1n
405 addlid n0+n=n
406 405 adantl AA<1n0+n=n
407 0cnd AA<10
408 1eluzge0 10
409 408 a1i AA<110
410 0cnd AA<1k0k=00
411 nn0cn k0k
412 411 adantl AA<1k0k
413 neqne ¬k=0k0
414 reccl kk01k
415 412 413 414 syl2an AA<1k0¬k=01k
416 410 415 ifclda AA<1k0ifk=001k
417 expcl Ak0Ak
418 417 adantlr AA<1k0Ak
419 416 418 mulcld AA<1k0ifk=001kAk
420 419 fmpttd AA<1k0ifk=001kAk:0
421 1nn0 10
422 ffvelcdm k0ifk=001kAk:010k0ifk=001kAk1
423 420 421 422 sylancl AA<1k0ifk=001kAk1
424 elfz1eq n00n=0
425 1m1e0 11=0
426 425 oveq2i 011=00
427 424 426 eleq2s n011n=0
428 427 fveq2d n011k0ifk=001kAkn=k0ifk=001kAk0
429 0nn0 00
430 iftrue k=0ifk=001k=0
431 oveq2 k=0Ak=A0
432 430 431 oveq12d k=0ifk=001kAk=0A0
433 ovex 0A0V
434 432 8 433 fvmpt 00k0ifk=001kAk0=0A0
435 429 434 ax-mp k0ifk=001kAk0=0A0
436 expcl A00A0
437 27 429 436 sylancl AA<1A0
438 437 mul02d AA<10A0=0
439 435 438 eqtrid AA<1k0ifk=001kAk0=0
440 428 439 sylan9eqr AA<1n011k0ifk=001kAkn=0
441 406 407 409 423 440 seqid AA<1seq0+k0ifk=001kAk1=seq1+k0ifk=001kAk
442 293 adantl AA<1nn0
443 442 neneqd AA<1n¬n=0
444 443 iffalsed AA<1nifn=001n=1n
445 444 oveq1d AA<1nifn=001nAn=1nAn
446 284 23 sylan2 AA<1nAn
447 299 adantl AA<1nn
448 446 447 442 divrec2d AA<1nAnn=1nAn
449 445 448 eqtr4d AA<1nifn=001nAn=Ann
450 284 11 sylan2 AA<1nk0ifk=001kAkn=ifn=001nAn
451 id k=nk=n
452 6 451 oveq12d k=nAkk=Ann
453 eqid kAkk=kAkk
454 ovex AnnV
455 452 453 454 fvmpt nkAkkn=Ann
456 455 adantl AA<1nkAkkn=Ann
457 449 450 456 3eqtr4d AA<1nk0ifk=001kAkn=kAkkn
458 401 457 sylan2br AA<1n1k0ifk=001kAkn=kAkkn
459 400 458 seqfeq AA<1seq1+k0ifk=001kAk=seq1+kAkk
460 441 459 eqtrd AA<1seq0+k0ifk=001kAk1=seq1+kAkk
461 460 fveq1d AA<1seq0+k0ifk=001kAk1n=seq1+kAkkn
462 404 461 sylan9eqr AA<1nseq0+k0ifk=001kAkn=seq1+kAkkn
463 310 397 399 400 462 climeq AA<1seq0+k0ifk=001kAklog1Aseq1+kAkklog1A
464 395 463 mpbid AA<1seq1+kAkklog1A