Metamath Proof Explorer


Theorem etransclem46

Description: This is the proof for equation *(7) in Juillerat p. 12. The proven equality will lead to a contradiction, because the left-hand side goes to 0 for large P , but the right-hand side is a nonzero integer. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem46.q φQPoly0𝑝
etransclem46.qe0 φQe=0
etransclem46.a A=coeffQ
etransclem46.m M=degQ
etransclem46.rex φ
etransclem46.s φ
etransclem46.x φTopOpenfld𝑡
etransclem46.p φP
etransclem46.f F=xxP1j=1MxjP
etransclem46.l L=j=0MAjej0jexFxdx
etransclem46.r R=MP+P-1
etransclem46.g G=xi=0RDnFix
etransclem46.h O=x0jexGx
Assertion etransclem46 φLP1!=k0M×0RA1stkDnF2ndk1stkP1!

Proof

Step Hyp Ref Expression
1 etransclem46.q φQPoly0𝑝
2 etransclem46.qe0 φQe=0
3 etransclem46.a A=coeffQ
4 etransclem46.m M=degQ
5 etransclem46.rex φ
6 etransclem46.s φ
7 etransclem46.x φTopOpenfld𝑡
8 etransclem46.p φP
9 etransclem46.f F=xxP1j=1MxjP
10 etransclem46.l L=j=0MAjej0jexFxdx
11 etransclem46.r R=MP+P-1
12 etransclem46.g G=xi=0RDnFix
13 etransclem46.h O=x0jexGx
14 10 a1i φL=j=0MAjej0jexFxdx
15 13 oveq2i DO=dx0jexGxdx
16 15 a1i φj0MDO=dx0jexGxdx
17 6 adantr φj0M
18 ere e
19 18 recni e
20 19 a1i xe
21 recn xx
22 21 negcld xx
23 20 22 cxpcld xex
24 23 adantl φxex
25 simpr φxx
26 fzfid φx0RFin
27 elfznn0 i0Ri0
28 6 adantr φi0
29 7 adantr φi0TopOpenfld𝑡
30 8 adantr φi0P
31 1 eldifad φQPoly
32 dgrcl QPolydegQ0
33 31 32 syl φdegQ0
34 4 33 eqeltrid φM0
35 34 adantr φi0M0
36 simpr φi0i0
37 28 29 30 35 9 36 etransclem33 φi0DnFi:
38 27 37 sylan2 φi0RDnFi:
39 38 adantlr φxi0RDnFi:
40 simplr φxi0Rx
41 39 40 ffvelcdmd φxi0RDnFix
42 26 41 fsumcl φxi=0RDnFix
43 12 fvmpt2 xi=0RDnFixGx=i=0RDnFix
44 25 42 43 syl2anc φxGx=i=0RDnFix
45 44 42 eqeltrd φxGx
46 24 45 mulcld φxexGx
47 46 negcld φxexGx
48 47 adantlr φj0MxexGx
49 6 7 dvdmsscn φ
50 49 8 9 etransclem8 φF:
51 50 ffvelcdmda φxFx
52 24 51 mulcld φxexFx
53 52 negcld φxexFx
54 53 negcld φxexFx
55 54 adantlr φj0MxexFx
56 18 a1i xe
57 0re 0
58 epos 0<e
59 57 18 58 ltleii 0e
60 59 a1i x0e
61 renegcl xx
62 56 60 61 recxpcld xex
63 62 renegcld xex
64 63 adantl φxex
65 reelprrecn
66 65 a1i
67 cnelprrecn
68 67 a1i
69 22 adantl xx
70 neg1rr 1
71 70 a1i x1
72 19 a1i ye
73 id yy
74 72 73 cxpcld yey
75 74 adantl yey
76 21 adantl xx
77 1red x1
78 66 dvmptid dxxdx=x1
79 66 76 77 78 dvmptneg dxxdx=x1
80 epr e+
81 dvcxp2 e+dyeydy=ylogeey
82 80 81 ax-mp dyeydy=ylogeey
83 loge loge=1
84 83 oveq1i logeey=1ey
85 74 mullidd y1ey=ey
86 84 85 eqtrid ylogeey=ey
87 86 mpteq2ia ylogeey=yey
88 82 87 eqtri dyeydy=yey
89 88 a1i dyeydy=yey
90 oveq2 y=xey=ex
91 66 68 69 71 75 75 79 89 90 90 dvmptco dxexdx=xex-1
92 91 mptru dxexdx=xex-1
93 70 a1i x1
94 93 recnd x1
95 23 94 mulcomd xex-1=-1ex
96 23 mulm1d x-1ex=ex
97 95 96 eqtrd xex-1=ex
98 97 mpteq2ia xex-1=xex
99 92 98 eqtri dxexdx=xex
100 99 a1i φdxexdx=xex
101 27 adantl φi0Ri0
102 peano2nn0 i0i+10
103 101 102 syl φi0Ri+10
104 ovex i+1V
105 eleq1 j=i+1j0i+10
106 105 anbi2d j=i+1φj0φi+10
107 fveq2 j=i+1DnFj=DnFi+1
108 107 feq1d j=i+1DnFj:DnFi+1:
109 106 108 imbi12d j=i+1φj0DnFj:φi+10DnFi+1:
110 eleq1 i=ji0j0
111 110 anbi2d i=jφi0φj0
112 fveq2 i=jDnFi=DnFj
113 112 feq1d i=jDnFi:DnFj:
114 111 113 imbi12d i=jφi0DnFi:φj0DnFj:
115 114 37 chvarvv φj0DnFj:
116 104 109 115 vtocl φi+10DnFi+1:
117 103 116 syldan φi0RDnFi+1:
118 117 adantlr φxi0RDnFi+1:
119 118 40 ffvelcdmd φxi0RDnFi+1x
120 26 119 fsumcl φxi=0RDnFi+1x
121 8 34 9 12 etransclem39 φG:
122 121 feqmptd φG=xGx
123 122 eqcomd φxGx=G
124 123 oveq2d φdxGxdx=DG
125 nfcv _xF
126 elfznn0 i0R+1i0
127 126 37 sylan2 φi0R+1DnFi:
128 125 50 127 12 etransclem2 φDG=xi=0RDnFi+1x
129 124 128 eqtrd φdxGxdx=xi=0RDnFi+1x
130 6 24 64 100 45 120 129 dvmptmul φdxexGxdx=xexGx+i=0RDnFi+1xex
131 120 24 mulcomd φxi=0RDnFi+1xex=exi=0RDnFi+1x
132 131 oveq2d φxexGx+i=0RDnFi+1xex=exGx+exi=0RDnFi+1x
133 24 negcld φxex
134 133 45 mulcld φxexGx
135 24 120 mulcld φxexi=0RDnFi+1x
136 134 135 addcomd φxexGx+exi=0RDnFi+1x=exi=0RDnFi+1x+exGx
137 135 46 negsubd φxexi=0RDnFi+1x+exGx=exi=0RDnFi+1xexGx
138 24 45 mulneg1d φxexGx=exGx
139 138 oveq2d φxexi=0RDnFi+1x+exGx=exi=0RDnFi+1x+exGx
140 24 120 45 subdid φxexi=0RDnFi+1xGx=exi=0RDnFi+1xexGx
141 137 139 140 3eqtr4d φxexi=0RDnFi+1x+exGx=exi=0RDnFi+1xGx
142 44 oveq2d φxi=0RDnFi+1xGx=i=0RDnFi+1xi=0RDnFix
143 26 119 41 fsumsub φxi=0RDnFi+1xDnFix=i=0RDnFi+1xi=0RDnFix
144 fveq2 j=iDnFj=DnFi
145 144 fveq1d j=iDnFjx=DnFix
146 107 fveq1d j=i+1DnFjx=DnFi+1x
147 fveq2 j=0DnFj=DnF0
148 147 fveq1d j=0DnFjx=DnF0x
149 fveq2 j=R+1DnFj=DnFR+1
150 149 fveq1d j=R+1DnFjx=DnFR+1x
151 8 nnnn0d φP0
152 34 151 nn0mulcld φMP0
153 nnm1nn0 PP10
154 8 153 syl φP10
155 152 154 nn0addcld φMP+P-10
156 11 155 eqeltrid φR0
157 156 adantr φxR0
158 157 nn0zd φxR
159 peano2nn0 R0R+10
160 156 159 syl φR+10
161 nn0uz 0=0
162 160 161 eleqtrdi φR+10
163 162 adantr φxR+10
164 elfznn0 j0R+1j0
165 164 115 sylan2 φj0R+1DnFj:
166 165 adantlr φxj0R+1DnFj:
167 simplr φxj0R+1x
168 166 167 ffvelcdmd φxj0R+1DnFjx
169 145 146 148 150 158 163 168 telfsum2 φxi=0RDnFi+1xDnFix=DnFR+1xDnF0x
170 142 143 169 3eqtr2d φxi=0RDnFi+1xGx=DnFR+1xDnF0x
171 170 oveq2d φxexi=0RDnFi+1xGx=exDnFR+1xDnF0x
172 156 nn0red φR
173 172 ltp1d φR<R+1
174 11 173 eqbrtrrid φMP+P-1<R+1
175 etransclem5 k0Myykifk=0P1P=j0Mxxjifj=0P1P
176 6 7 8 34 9 160 174 175 etransclem32 φDnFR+1=x0
177 176 fveq1d φDnFR+1x=x0x
178 eqid x0=x0
179 178 fvmpt2 x0x0x=0
180 57 179 mpan2 xx0x=0
181 177 180 sylan9eq φxDnFR+1x=0
182 cnex V
183 182 a1i φV
184 6 5 ssexd φV
185 elpm2r VVF:F𝑝𝑚
186 183 184 50 5 185 syl22anc φF𝑝𝑚
187 dvn0 F𝑝𝑚DnF0=F
188 49 186 187 syl2anc φDnF0=F
189 188 fveq1d φDnF0x=Fx
190 189 adantr φxDnF0x=Fx
191 181 190 oveq12d φxDnFR+1xDnF0x=0Fx
192 df-neg Fx=0Fx
193 191 192 eqtr4di φxDnFR+1xDnF0x=Fx
194 193 oveq2d φxexDnFR+1xDnF0x=exFx
195 141 171 194 3eqtrd φxexi=0RDnFi+1x+exGx=exFx
196 132 136 195 3eqtrd φxexGx+i=0RDnFi+1xex=exFx
197 196 mpteq2dva φxexGx+i=0RDnFi+1xex=xexFx
198 24 51 mulneg2d φxexFx=exFx
199 198 mpteq2dva φxexFx=xexFx
200 130 197 199 3eqtrd φdxexGxdx=xexFx
201 6 46 53 200 dvmptneg φdxexGxdx=xexFx
202 201 adantr φj0MdxexGxdx=xexFx
203 0red φj0M0
204 elfzelz j0Mj
205 204 zred j0Mj
206 205 adantl φj0Mj
207 203 206 iccssred φj0M0j
208 eqid TopOpenfld=TopOpenfld
209 208 tgioo2 topGenran.=TopOpenfld𝑡
210 0red j0M0
211 iccntr 0jinttopGenran.0j=0j
212 210 205 211 syl2anc j0MinttopGenran.0j=0j
213 212 adantl φj0MinttopGenran.0j=0j
214 17 48 55 202 207 209 208 213 dvmptres2 φj0Mdx0jexGxdx=x0jexFx
215 19 a1i φx0je
216 elioore x0jx
217 216 recnd x0jx
218 217 adantl φx0jx
219 218 negcld φx0jx
220 215 219 cxpcld φx0jex
221 50 adantr φx0jF:
222 216 adantl φx0jx
223 221 222 ffvelcdmd φx0jFx
224 220 223 mulcld φx0jexFx
225 224 negnegd φx0jexFx=exFx
226 225 mpteq2dva φx0jexFx=x0jexFx
227 226 adantr φj0Mx0jexFx=x0jexFx
228 16 214 227 3eqtrd φj0MDO=x0jexFx
229 228 fveq1d φj0MOx=x0jexFxx
230 229 adantr φj0Mx0jOx=x0jexFxx
231 simpr φx0jx0j
232 eqid x0jexFx=x0jexFx
233 232 fvmpt2 x0jexFxx0jexFxx=exFx
234 231 224 233 syl2anc φx0jx0jexFxx=exFx
235 234 adantlr φj0Mx0jx0jexFxx=exFx
236 230 235 eqtr2d φj0Mx0jexFx=Ox
237 236 itgeq2dv φj0M0jexFxdx=0jOxdx
238 elfzle1 j0M0j
239 238 adantl φj0M0j
240 eqid x0jexFx=x0jexFx
241 eqidd j0Mx0jyey=yey
242 90 adantl j0Mx0jy=xey=ex
243 210 205 iccssred j0M0j
244 ax-resscn
245 243 244 sstrdi j0M0j
246 245 sselda j0Mx0jx
247 246 negcld j0Mx0jx
248 19 a1i xe
249 negcl xx
250 248 249 cxpcld xex
251 246 250 syl j0Mx0jex
252 241 242 247 251 fvmptd j0Mx0jyeyx=ex
253 252 eqcomd j0Mx0jex=yeyx
254 253 adantll φj0Mx0jex=yeyx
255 254 mpteq2dva φj0Mx0jex=x0jyeyx
256 mnfxr −∞*
257 256 a1i e+−∞*
258 0red e+0
259 rpxr e+e*
260 rpgt0 e+0<e
261 257 258 259 260 gtnelioc e+¬e−∞0
262 80 261 ax-mp ¬e−∞0
263 eldif e−∞0e¬e−∞0
264 19 262 263 mpbir2an e−∞0
265 cxpcncf2 e−∞0yey:cn
266 264 265 mp1i φj0Myey:cn
267 eqid x0jx=x0jx
268 267 negcncf 0jx0jx:0jcn
269 245 268 syl j0Mx0jx:0jcn
270 269 adantl φj0Mx0jx:0jcn
271 266 270 cncfmpt1f φj0Mx0jyeyx:0jcn
272 255 271 eqeltrd φj0Mx0jex:0jcn
273 244 a1i φj0Mx0j
274 8 ad2antrr φj0Mx0jP
275 34 ad2antrr φj0Mx0jM0
276 etransclem6 xxP1j=1MxjP=yyP1k=1MykP
277 9 276 eqtri F=yyP1k=1MykP
278 243 sselda j0Mx0jx
279 278 adantll φj0Mx0jx
280 273 274 275 277 279 etransclem13 φj0Mx0jFx=k=0Mxkifk=0P1P
281 280 mpteq2dva φj0Mx0jFx=x0jk=0Mxkifk=0P1P
282 245 adantl φj0M0j
283 fzfid φj0M0MFin
284 279 recnd φj0Mx0jx
285 284 3adant3 φj0Mx0jk0Mx
286 elfzelz k0Mk
287 286 zcnd k0Mk
288 287 3ad2ant3 φj0Mx0jk0Mk
289 285 288 subcld φj0Mx0jk0Mxk
290 8 adantr φx0jP
291 290 153 syl φx0jP10
292 151 adantr φx0jP0
293 291 292 ifcld φx0jifk=0P1P0
294 293 3adant3 φx0jk0Mifk=0P1P0
295 294 3adant1r φj0Mx0jk0Mifk=0P1P0
296 289 295 expcld φj0Mx0jk0Mxkifk=0P1P
297 nfv xφj0Mk0M
298 245 adantr j0Mk0M0j
299 ssid
300 299 a1i j0Mk0M
301 298 300 idcncfg j0Mk0Mx0jx:0jcn
302 287 adantl j0Mk0Mk
303 298 302 300 constcncfg j0Mk0Mx0jk:0jcn
304 301 303 subcncf j0Mk0Mx0jxk:0jcn
305 304 adantll φj0Mk0Mx0jxk:0jcn
306 154 151 ifcld φifk=0P1P0
307 expcncf ifk=0P1P0yyifk=0P1P:cn
308 306 307 syl φyyifk=0P1P:cn
309 308 ad2antrr φj0Mk0Myyifk=0P1P:cn
310 299 a1i φj0Mk0M
311 oveq1 y=xkyifk=0P1P=xkifk=0P1P
312 297 305 309 310 311 cncfcompt2 φj0Mk0Mx0jxkifk=0P1P:0jcn
313 282 283 296 312 fprodcncf φj0Mx0jk=0Mxkifk=0P1P:0jcn
314 281 313 eqeltrd φj0Mx0jFx:0jcn
315 272 314 mulcncf φj0Mx0jexFx:0jcn
316 ioossicc 0j0j
317 316 a1i φj0M0j0j
318 299 a1i φj0M
319 224 adantlr φj0Mx0jexFx
320 240 315 317 318 319 cncfmptssg φj0Mx0jexFx:0jcn
321 228 320 eqeltrd φj0MO:0jcn
322 7 adantr φj0MTopOpenfld𝑡
323 8 adantr φj0MP
324 34 adantr φj0MM0
325 oveq2 j=kxj=xk
326 325 oveq1d j=kxjP=xkP
327 326 cbvprodv j=1MxjP=k=1MxkP
328 327 oveq2i xP1j=1MxjP=xP1k=1MxkP
329 328 mpteq2i xxP1j=1MxjP=xxP1k=1MxkP
330 9 329 eqtri F=xxP1k=1MxkP
331 17 322 323 324 330 203 206 etransclem18 φj0Mx0jexFx𝐿1
332 228 331 eqeltrd φj0MDO𝐿1
333 eqid xGx=xGx
334 6 7 8 34 9 12 etransclem43 φG:cn
335 123 334 eqeltrd φxGx:cn
336 335 adantr φj0MxGx:cn
337 121 ad2antrr φj0Mx0jG:
338 337 279 ffvelcdmd φj0Mx0jGx
339 333 336 207 318 338 cncfmptssg φj0Mx0jGx:0jcn
340 272 339 mulcncf φj0Mx0jexGx:0jcn
341 340 negcncfg φj0Mx0jexGx:0jcn
342 13 341 eqeltrid φj0MO:0jcn
343 203 206 239 321 332 342 ftc2 φj0M0jOxdx=OjO0
344 negeq x=jx=j
345 344 oveq2d x=jex=ej
346 fveq2 x=jGx=Gj
347 345 346 oveq12d x=jexGx=ejGj
348 347 negeqd x=jexGx=ejGj
349 203 rexrd φj0M0*
350 206 rexrd φj0Mj*
351 ubicc2 0*j*0jj0j
352 349 350 239 351 syl3anc φj0Mj0j
353 19 a1i j0Me
354 205 recnd j0Mj
355 354 negcld j0Mj
356 353 355 cxpcld j0Mej
357 356 adantl φj0Mej
358 121 adantr φj0MG:
359 358 206 ffvelcdmd φj0MGj
360 357 359 mulcld φj0MejGj
361 360 negcld φj0MejGj
362 13 348 352 361 fvmptd3 φj0MOj=ejGj
363 13 a1i φj0MO=x0jexGx
364 negeq x=0x=0
365 364 oveq2d x=0ex=e0
366 neg0 0=0
367 366 oveq2i e0=e0
368 cxp0 ee0=1
369 19 368 ax-mp e0=1
370 367 369 eqtri e0=1
371 365 370 eqtrdi x=0ex=1
372 fveq2 x=0Gx=G0
373 371 372 oveq12d x=0exGx=1G0
374 0red φ0
375 121 374 ffvelcdmd φG0
376 375 mullidd φ1G0=G0
377 373 376 sylan9eqr φx=0exGx=G0
378 377 negeqd φx=0exGx=G0
379 378 adantlr φj0Mx=0exGx=G0
380 lbicc2 0*j*0j00j
381 349 350 239 380 syl3anc φj0M00j
382 375 negcld φG0
383 382 adantr φj0MG0
384 363 379 381 383 fvmptd φj0MO0=G0
385 362 384 oveq12d φj0MOjO0=-ejGj-G0
386 375 adantr φj0MG0
387 361 386 subnegd φj0M-ejGj-G0=-ejGj+G0
388 361 386 addcomd φj0M-ejGj+G0=G0+ejGj
389 386 360 negsubd φj0MG0+ejGj=G0ejGj
390 388 389 eqtrd φj0M-ejGj+G0=G0ejGj
391 385 387 390 3eqtrd φj0MOjO0=G0ejGj
392 237 343 391 3eqtrd φj0M0jexFxdx=G0ejGj
393 392 oveq2d φj0MAjej0jexFxdx=AjejG0ejGj
394 31 adantr φj0MQPoly
395 0zd φj0M0
396 3 coef2 QPoly0A:0
397 394 395 396 syl2anc φj0MA:0
398 elfznn0 j0Mj0
399 398 adantl φj0Mj0
400 397 399 ffvelcdmd φj0MAj
401 400 zcnd φj0MAj
402 353 354 cxpcld j0Mej
403 402 adantl φj0Mej
404 401 403 mulcld φj0MAjej
405 404 386 360 subdid φj0MAjejG0ejGj=AjejG0AjejejGj
406 393 405 eqtrd φj0MAjej0jexFxdx=AjejG0AjejejGj
407 406 sumeq2dv φj=0MAjej0jexFxdx=j=0MAjejG0AjejejGj
408 fzfid φ0MFin
409 404 386 mulcld φj0MAjejG0
410 404 360 mulcld φj0MAjejejGj
411 408 409 410 fsumsub φj=0MAjejG0AjejejGj=j=0MAjejG0j=0MAjejejGj
412 2 eqcomd φ0=Qe
413 3 4 coeid2 QPolyeQe=j=0MAjej
414 31 19 413 sylancl φQe=j=0MAjej
415 cxpexp ej0ej=ej
416 353 398 415 syl2anc j0Mej=ej
417 416 eqcomd j0Mej=ej
418 417 oveq2d j0MAjej=Ajej
419 418 adantl φj0MAjej=Ajej
420 419 sumeq2dv φj=0MAjej=j=0MAjej
421 412 414 420 3eqtrd φ0=j=0MAjej
422 421 oveq1d φ0G0=j=0MAjejG0
423 375 mul02d φ0G0=0
424 408 375 404 fsummulc1 φj=0MAjejG0=j=0MAjejG0
425 422 423 424 3eqtr3rd φj=0MAjejG0=0
426 fveq2 x=jDnFix=DnFij
427 426 sumeq2sdv x=ji=0RDnFix=i=0RDnFij
428 fzfid φj0M0RFin
429 38 adantlr φj0Mi0RDnFi:
430 206 adantr φj0Mi0Rj
431 429 430 ffvelcdmd φj0Mi0RDnFij
432 428 431 fsumcl φj0Mi=0RDnFij
433 12 427 206 432 fvmptd3 φj0MGj=i=0RDnFij
434 433 oveq2d φj0MejGj=eji=0RDnFij
435 434 oveq2d φj0MAjejejGj=Ajejeji=0RDnFij
436 357 432 mulcld φj0Meji=0RDnFij
437 401 403 436 mulassd φj0MAjejeji=0RDnFij=Ajejeji=0RDnFij
438 369 eqcomi 1=e0
439 438 a1i j0M1=e0
440 354 negidd j0Mj+j=0
441 440 eqcomd j0M0=j+j
442 441 oveq2d j0Me0=ej+j
443 57 58 gtneii e0
444 443 a1i j0Me0
445 353 444 354 355 cxpaddd j0Mej+j=ejej
446 439 442 445 3eqtrd j0M1=ejej
447 446 oveq1d j0M1i=0RDnFij=ejeji=0RDnFij
448 447 adantl φj0M1i=0RDnFij=ejeji=0RDnFij
449 432 mullidd φj0M1i=0RDnFij=i=0RDnFij
450 403 357 432 mulassd φj0Mejeji=0RDnFij=ejeji=0RDnFij
451 448 449 450 3eqtr3rd φj0Mejeji=0RDnFij=i=0RDnFij
452 451 oveq2d φj0MAjejeji=0RDnFij=Aji=0RDnFij
453 428 401 431 fsummulc2 φj0MAji=0RDnFij=i=0RAjDnFij
454 452 453 eqtrd φj0MAjejeji=0RDnFij=i=0RAjDnFij
455 435 437 454 3eqtrd φj0MAjejejGj=i=0RAjDnFij
456 455 sumeq2dv φj=0MAjejejGj=j=0Mi=0RAjDnFij
457 vex jV
458 vex iV
459 457 458 op1std k=ji1stk=j
460 459 fveq2d k=jiA1stk=Aj
461 457 458 op2ndd k=ji2ndk=i
462 461 fveq2d k=jiDnF2ndk=DnFi
463 462 459 fveq12d k=jiDnF2ndk1stk=DnFij
464 460 463 oveq12d k=jiA1stkDnF2ndk1stk=AjDnFij
465 fzfid φ0RFin
466 401 adantrr φj0Mi0RAj
467 431 anasss φj0Mi0RDnFij
468 466 467 mulcld φj0Mi0RAjDnFij
469 464 408 465 468 fsumxp φj=0Mi=0RAjDnFij=k0M×0RA1stkDnF2ndk1stk
470 456 469 eqtrd φj=0MAjejejGj=k0M×0RA1stkDnF2ndk1stk
471 425 470 oveq12d φj=0MAjejG0j=0MAjejejGj=0k0M×0RA1stkDnF2ndk1stk
472 df-neg k0M×0RA1stkDnF2ndk1stk=0k0M×0RA1stkDnF2ndk1stk
473 472 eqcomi 0k0M×0RA1stkDnF2ndk1stk=k0M×0RA1stkDnF2ndk1stk
474 473 a1i φ0k0M×0RA1stkDnF2ndk1stk=k0M×0RA1stkDnF2ndk1stk
475 411 471 474 3eqtrd φj=0MAjejG0AjejejGj=k0M×0RA1stkDnF2ndk1stk
476 14 407 475 3eqtrd φL=k0M×0RA1stkDnF2ndk1stk
477 476 oveq1d φLP1!=k0M×0RA1stkDnF2ndk1stkP1!