Metamath Proof Explorer


Theorem fourierdlem111

Description: The fourier partial sum for F is the sum of two integrals, with the same integrand involving F and the Dirichlet Kernel D , but on two opposite intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem111.a A=n0ππFtcosntdtπ
fourierdlem111.b B=nππFtsinntdtπ
fourierdlem111.s S=mA02+n=1mAncosnX+BnsinnX
fourierdlem111.d D=nyifymod2π=02n+12πsinn+12y2πsiny2
fourierdlem111.p P=mp0m|p0=πpm=πi0..^mpi<pi+1
fourierdlem111.m φM
fourierdlem111.q φQPM
fourierdlem111.x φX
fourierdlem111.6 φF:
fourierdlem111.fper φxFx+T=Fx
fourierdlem111.g G=xFX+xDnx
fourierdlem111.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem111.r φi0..^MRFQiQi+1limQi
fourierdlem111.l φi0..^MLFQiQi+1limQi+1
fourierdlem111.t T=2π
fourierdlem111.o O=mp0m|p0=-π-Xpm=πXi0..^mpi<pi+1
fourierdlem111.14 W=i0MQiX
Assertion fourierdlem111 φnSn=π0FX+sDnsds+0πFX+sDnsds

Proof

Step Hyp Ref Expression
1 fourierdlem111.a A=n0ππFtcosntdtπ
2 fourierdlem111.b B=nππFtsinntdtπ
3 fourierdlem111.s S=mA02+n=1mAncosnX+BnsinnX
4 fourierdlem111.d D=nyifymod2π=02n+12πsinn+12y2πsiny2
5 fourierdlem111.p P=mp0m|p0=πpm=πi0..^mpi<pi+1
6 fourierdlem111.m φM
7 fourierdlem111.q φQPM
8 fourierdlem111.x φX
9 fourierdlem111.6 φF:
10 fourierdlem111.fper φxFx+T=Fx
11 fourierdlem111.g G=xFX+xDnx
12 fourierdlem111.fcn φi0..^MFQiQi+1:QiQi+1cn
13 fourierdlem111.r φi0..^MRFQiQi+1limQi
14 fourierdlem111.l φi0..^MLFQiQi+1limQi+1
15 fourierdlem111.t T=2π
16 fourierdlem111.o O=mp0m|p0=-π-Xpm=πXi0..^mpi<pi+1
17 fourierdlem111.14 W=i0MQiX
18 eleq1 k=nkn
19 18 anbi2d k=nφkφn
20 fveq2 k=nSk=Sn
21 fveq2 k=nDk=Dn
22 21 fveq1d k=nDktX=DntX
23 22 oveq2d k=nFtDktX=FtDntX
24 23 adantr k=ntππFtDktX=FtDntX
25 24 itgeq2dv k=nππFtDktXdt=ππFtDntXdt
26 20 25 eqeq12d k=nSk=ππFtDktXdtSn=ππFtDntXdt
27 19 26 imbi12d k=nφkSk=ππFtDktXdtφnSn=ππFtDntXdt
28 9 adantr φkF:
29 eqid ππ=ππ
30 ioossre ππ
31 30 a1i φππ
32 9 31 feqresmpt φFππ=xππFx
33 ioossicc ππππ
34 33 a1i φππππ
35 ioombl ππdomvol
36 35 a1i φππdomvol
37 9 adantr φxππF:
38 pire π
39 38 renegcli π
40 39 38 elicc2i tππtπttπ
41 40 simp1bi tππt
42 41 ssriv ππ
43 42 a1i φππ
44 43 sselda φxππx
45 37 44 ffvelcdmd φxππFx
46 9 43 feqresmpt φFππ=xππFx
47 ax-resscn
48 47 a1i φ
49 9 48 fssd φF:
50 49 43 fssresd φFππ:ππ
51 ioossicc QiQi+1QiQi+1
52 39 rexri π*
53 52 a1i φi0..^Mπ*
54 38 rexri π*
55 54 a1i φi0..^Mπ*
56 5 6 7 fourierdlem15 φQ:0Mππ
57 56 adantr φi0..^MQ:0Mππ
58 simpr φi0..^Mi0..^M
59 53 55 57 58 fourierdlem8 φi0..^MQiQi+1ππ
60 51 59 sstrid φi0..^MQiQi+1ππ
61 60 resabs1d φi0..^MFππQiQi+1=FQiQi+1
62 61 12 eqeltrd φi0..^MFππQiQi+1:QiQi+1cn
63 61 oveq1d φi0..^MFππQiQi+1limQi=FQiQi+1limQi
64 13 63 eleqtrrd φi0..^MRFππQiQi+1limQi
65 61 oveq1d φi0..^MFππQiQi+1limQi+1=FQiQi+1limQi+1
66 14 65 eleqtrrd φi0..^MLFππQiQi+1limQi+1
67 5 6 7 50 62 64 66 fourierdlem69 φFππ𝐿1
68 46 67 eqeltrrd φxππFx𝐿1
69 34 36 45 68 iblss φxππFx𝐿1
70 32 69 eqeltrd φFππ𝐿1
71 70 adantr φkFππ𝐿1
72 8 adantr φkX
73 simpr φkk
74 28 29 71 1 2 72 3 4 73 fourierdlem83 φkSk=ππFtDktXdt
75 27 74 chvarvv φnSn=ππFtDntXdt
76 39 a1i φnπ
77 38 a1i φnπ
78 49 adantr φtππF:
79 41 adantl φtππt
80 78 79 ffvelcdmd φtππFt
81 80 adantlr φntππFt
82 4 dirkerf nDn:
83 82 ad2antlr φntππDn:
84 8 adantr φtππX
85 79 84 resubcld φtππtX
86 85 adantlr φntππtX
87 83 86 ffvelcdmd φntππDntX
88 87 recnd φntππDntX
89 81 88 mulcld φntππFtDntX
90 76 77 89 itgioo φnππFtDntXdt=ππFtDntXdt
91 fvres tππFππt=Ft
92 91 eqcomd tππFt=Fππt
93 92 oveq1d tππFtDntX=FππtDntX
94 93 adantl φntππFtDntX=FππtDntX
95 94 itgeq2dv φnππFtDntXdt=ππFππtDntXdt
96 simpl n=myn=m
97 96 oveq2d n=my2n=2m
98 97 oveq1d n=my2n+1=2m+1
99 98 oveq1d n=my2n+12π=2m+12π
100 96 oveq1d n=myn+12=m+12
101 100 oveq1d n=myn+12y=m+12y
102 101 fveq2d n=mysinn+12y=sinm+12y
103 102 oveq1d n=mysinn+12y2πsiny2=sinm+12y2πsiny2
104 99 103 ifeq12d n=myifymod2π=02n+12πsinn+12y2πsiny2=ifymod2π=02m+12πsinm+12y2πsiny2
105 104 mpteq2dva n=myifymod2π=02n+12πsinn+12y2πsiny2=yifymod2π=02m+12πsinm+12y2πsiny2
106 105 cbvmptv nyifymod2π=02n+12πsinn+12y2πsiny2=myifymod2π=02m+12πsinm+12y2πsiny2
107 4 106 eqtri D=myifymod2π=02m+12πsinm+12y2πsiny2
108 fveq2 s=tFππs=Fππt
109 oveq1 s=tsX=tX
110 109 fveq2d s=tDnsX=DntX
111 108 110 oveq12d s=tFππsDnsX=FππtDntX
112 111 cbvmptv sππFππsDnsX=tππFππtDntX
113 7 adantr φnQPM
114 6 adantr φnM
115 simpr φnn
116 8 adantr φnX
117 50 adantr φnFππ:ππ
118 62 adantlr φni0..^MFππQiQi+1:QiQi+1cn
119 64 adantlr φni0..^MRFππQiQi+1limQi
120 66 adantlr φni0..^MLFππQiQi+1limQi+1
121 107 5 112 113 114 115 116 117 118 119 120 fourierdlem101 φnππFππtDntXdt=-π-XπXFππX+yDnydy
122 oveq2 s=yX+s=X+y
123 122 fveq2d s=yFX+s=FX+y
124 fveq2 s=yDns=Dny
125 123 124 oveq12d s=yFX+sDns=FX+yDny
126 125 cbvitgv -π-XπXFX+sDnsds=-π-XπXFX+yDnydy
127 126 a1i φn-π-XπXFX+sDnsds=-π-XπXFX+yDnydy
128 39 a1i φπ
129 128 8 resubcld φ-π-X
130 129 adantr φn-π-X
131 38 a1i φπ
132 131 8 resubcld φπX
133 132 adantr φnπX
134 49 adantr φy-π-XπXF:
135 8 adantr φy-π-XπXX
136 simpr φy-π-XπXy-π-XπX
137 129 adantr φy-π-XπX-π-X
138 132 adantr φy-π-XπXπX
139 elicc2 -π-XπXy-π-XπXy-π-XyyπX
140 137 138 139 syl2anc φy-π-XπXy-π-XπXy-π-XyyπX
141 136 140 mpbid φy-π-XπXy-π-XyyπX
142 141 simp1d φy-π-XπXy
143 135 142 readdcld φy-π-XπXX+y
144 134 143 ffvelcdmd φy-π-XπXFX+y
145 144 adantlr φny-π-XπXFX+y
146 82 ad2antlr φny-π-XπXDn:
147 142 adantlr φny-π-XπXy
148 146 147 ffvelcdmd φny-π-XπXDny
149 148 recnd φny-π-XπXDny
150 145 149 mulcld φny-π-XπXFX+yDny
151 130 133 150 itgioo φn-π-XπXFX+yDnydy=-π-XπXFX+yDnydy
152 39 a1i φy-π-XπXπ
153 38 a1i φy-π-XπXπ
154 8 recnd φX
155 131 recnd φπ
156 155 negcld φπ
157 154 156 pncan3d φX+π-X=π
158 157 eqcomd φπ=X+π-X
159 158 adantr φy-π-XπXπ=X+π-X
160 141 simp2d φy-π-XπX-π-Xy
161 137 142 135 160 leadd2dd φy-π-XπXX+π-XX+y
162 159 161 eqbrtrd φy-π-XπXπX+y
163 141 simp3d φy-π-XπXyπX
164 142 138 135 163 leadd2dd φy-π-XπXX+yX+π-X
165 154 adantr φy-π-XπXX
166 155 adantr φy-π-XπXπ
167 165 166 pncan3d φy-π-XπXX+π-X=π
168 164 167 breqtrd φy-π-XπXX+yπ
169 152 153 143 162 168 eliccd φy-π-XπXX+yππ
170 fvres X+yππFππX+y=FX+y
171 169 170 syl φy-π-XπXFππX+y=FX+y
172 171 eqcomd φy-π-XπXFX+y=FππX+y
173 172 adantlr φny-π-XπXFX+y=FππX+y
174 173 oveq1d φny-π-XπXFX+yDny=FππX+yDny
175 174 itgeq2dv φn-π-XπXFX+yDnydy=-π-XπXFππX+yDnydy
176 127 151 175 3eqtrrd φn-π-XπXFππX+yDnydy=-π-XπXFX+sDnsds
177 121 176 eqtrd φnππFππtDntXdt=-π-XπXFX+sDnsds
178 90 95 177 3eqtrd φnππFtDntXdt=-π-XπXFX+sDnsds
179 elioore s-π-XπXs
180 179 adantl φns-π-XπXs
181 49 adantr φs-π-XπXF:
182 8 adantr φs-π-XπXX
183 179 adantl φs-π-XπXs
184 182 183 readdcld φs-π-XπXX+s
185 181 184 ffvelcdmd φs-π-XπXFX+s
186 185 adantlr φns-π-XπXFX+s
187 82 ad2antlr φns-π-XπXDn:
188 187 180 ffvelcdmd φns-π-XπXDns
189 188 recnd φns-π-XπXDns
190 186 189 mulcld φns-π-XπXFX+sDns
191 oveq2 x=sX+x=X+s
192 191 fveq2d x=sFX+x=FX+s
193 fveq2 x=sDnx=Dns
194 192 193 oveq12d x=sFX+xDnx=FX+sDns
195 194 cbvmptv xFX+xDnx=sFX+sDns
196 11 195 eqtri G=sFX+sDns
197 196 fvmpt2 sFX+sDnsGs=FX+sDns
198 180 190 197 syl2anc φns-π-XπXGs=FX+sDns
199 198 eqcomd φns-π-XπXFX+sDns=Gs
200 199 itgeq2dv φn-π-XπXFX+sDnsds=-π-XπXGsds
201 49 adantr φxF:
202 8 adantr φxX
203 simpr φxx
204 202 203 readdcld φxX+x
205 201 204 ffvelcdmd φxFX+x
206 205 adantlr φnxFX+x
207 82 adantl φnDn:
208 207 ffvelcdmda φnxDnx
209 208 recnd φnxDnx
210 206 209 mulcld φnxFX+xDnx
211 210 11 fmptd φnG:
212 211 adantr φns-π-XπXG:
213 129 adantr φs-π-XπX-π-X
214 132 adantr φs-π-XπXπX
215 simpr φs-π-XπXs-π-XπX
216 eliccre -π-XπXs-π-XπXs
217 213 214 215 216 syl3anc φs-π-XπXs
218 217 adantlr φns-π-XπXs
219 212 218 ffvelcdmd φns-π-XπXGs
220 130 133 219 itgioo φn-π-XπXGsds=-π-XπXGsds
221 fveq2 s=xGs=Gx
222 221 cbvitgv -π-XπXGsds=-π-XπXGxdx
223 220 222 eqtrdi φn-π-XπXGsds=-π-XπXGxdx
224 200 223 eqtrd φn-π-XπXFX+sDnsds=-π-XπXGxdx
225 eqid π-X--π-X=π-X--π-X
226 116 renegcld φnX
227 5 fourierdlem2 MQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
228 6 227 syl φQPMQ0MQ0=πQM=πi0..^MQi<Qi+1
229 7 228 mpbid φQ0MQ0=πQM=πi0..^MQi<Qi+1
230 229 simpld φQ0M
231 elmapi Q0MQ:0M
232 230 231 syl φQ:0M
233 232 ffvelcdmda φi0MQi
234 8 adantr φi0MX
235 233 234 resubcld φi0MQiX
236 235 17 fmptd φW:0M
237 reex V
238 ovex 0MV
239 237 238 pm3.2i V0MV
240 elmapg V0MVW0MW:0M
241 239 240 mp1i φW0MW:0M
242 236 241 mpbird φW0M
243 17 a1i φW=i0MQiX
244 fveq2 i=0Qi=Q0
245 229 simprd φQ0=πQM=πi0..^MQi<Qi+1
246 245 simpld φQ0=πQM=π
247 246 simpld φQ0=π
248 244 247 sylan9eqr φi=0Qi=π
249 248 oveq1d φi=0QiX=-π-X
250 0zd φ0
251 6 nnzd φM
252 0red M0
253 nnre MM
254 nngt0 M0<M
255 252 253 254 ltled M0M
256 6 255 syl φ0M
257 eluz2 M00M0M
258 250 251 256 257 syl3anbrc φM0
259 eluzfz1 M000M
260 258 259 syl φ00M
261 243 249 260 129 fvmptd φW0=-π-X
262 fveq2 i=MQi=QM
263 246 simprd φQM=π
264 262 263 sylan9eqr φi=MQi=π
265 264 oveq1d φi=MQiX=πX
266 eluzfz2 M0M0M
267 258 266 syl φM0M
268 243 265 267 132 fvmptd φWM=πX
269 261 268 jca φW0=-π-XWM=πX
270 232 adantr φi0..^MQ:0M
271 elfzofz i0..^Mi0M
272 271 adantl φi0..^Mi0M
273 270 272 ffvelcdmd φi0..^MQi
274 fzofzp1 i0..^Mi+10M
275 274 adantl φi0..^Mi+10M
276 270 275 ffvelcdmd φi0..^MQi+1
277 8 adantr φi0..^MX
278 245 simprd φi0..^MQi<Qi+1
279 278 r19.21bi φi0..^MQi<Qi+1
280 273 276 277 279 ltsub1dd φi0..^MQiX<Qi+1X
281 272 235 syldan φi0..^MQiX
282 17 fvmpt2 i0MQiXWi=QiX
283 272 281 282 syl2anc φi0..^MWi=QiX
284 fveq2 i=jQi=Qj
285 284 oveq1d i=jQiX=QjX
286 285 cbvmptv i0MQiX=j0MQjX
287 17 286 eqtri W=j0MQjX
288 287 a1i φi0..^MW=j0MQjX
289 fveq2 j=i+1Qj=Qi+1
290 289 oveq1d j=i+1QjX=Qi+1X
291 290 adantl φi0..^Mj=i+1QjX=Qi+1X
292 276 277 resubcld φi0..^MQi+1X
293 288 291 275 292 fvmptd φi0..^MWi+1=Qi+1X
294 280 283 293 3brtr4d φi0..^MWi<Wi+1
295 294 ralrimiva φi0..^MWi<Wi+1
296 242 269 295 jca32 φW0MW0=-π-XWM=πXi0..^MWi<Wi+1
297 16 fourierdlem2 MWOMW0MW0=-π-XWM=πXi0..^MWi<Wi+1
298 6 297 syl φWOMW0MW0=-π-XWM=πXi0..^MWi<Wi+1
299 296 298 mpbird φWOM
300 299 adantr φnWOM
301 155 156 154 nnncan2d φπ-X--π-X=ππ
302 picn π
303 302 2timesi 2π=π+π
304 302 302 subnegi ππ=π+π
305 303 15 304 3eqtr4i T=ππ
306 301 305 eqtr4di φπ-X--π-X=T
307 306 oveq2d φx+πX--π-X=x+T
308 307 fveq2d φGx+πX--π-X=Gx+T
309 308 ad2antrr φnxGx+πX--π-X=Gx+T
310 simpr φnxx
311 11 fvmpt2 xFX+xDnxGx=FX+xDnx
312 310 210 311 syl2anc φnxGx=FX+xDnx
313 154 adantr φxX
314 203 recnd φxx
315 2re 2
316 315 38 remulcli 2π
317 15 316 eqeltri T
318 317 a1i φT
319 318 recnd φT
320 319 adantr φxT
321 313 314 320 addassd φxX+x+T=X+x+T
322 321 eqcomd φxX+x+T=X+x+T
323 322 fveq2d φxFX+x+T=FX+x+T
324 simpl φxφ
325 324 204 jca φxφX+x
326 eleq1 s=X+xsX+x
327 326 anbi2d s=X+xφsφX+x
328 oveq1 s=X+xs+T=X+x+T
329 328 fveq2d s=X+xFs+T=FX+x+T
330 fveq2 s=X+xFs=FX+x
331 329 330 eqeq12d s=X+xFs+T=FsFX+x+T=FX+x
332 327 331 imbi12d s=X+xφsFs+T=FsφX+xFX+x+T=FX+x
333 eleq1 x=sxs
334 333 anbi2d x=sφxφs
335 oveq1 x=sx+T=s+T
336 335 fveq2d x=sFx+T=Fs+T
337 fveq2 x=sFx=Fs
338 336 337 eqeq12d x=sFx+T=FxFs+T=Fs
339 334 338 imbi12d x=sφxFx+T=FxφsFs+T=Fs
340 339 10 chvarvv φsFs+T=Fs
341 332 340 vtoclg X+xφX+xFX+x+T=FX+x
342 204 325 341 sylc φxFX+x+T=FX+x
343 323 342 eqtr2d φxFX+x=FX+x+T
344 343 adantlr φnxFX+x=FX+x+T
345 4 15 dirkerper nxDnx+T=Dnx
346 345 eqcomd nxDnx=Dnx+T
347 346 adantll φnxDnx=Dnx+T
348 344 347 oveq12d φnxFX+xDnx=FX+x+TDnx+T
349 196 a1i φnxG=sFX+sDns
350 oveq2 s=x+TX+s=X+x+T
351 350 fveq2d s=x+TFX+s=FX+x+T
352 fveq2 s=x+TDns=Dnx+T
353 351 352 oveq12d s=x+TFX+sDns=FX+x+TDnx+T
354 353 adantl φnxs=x+TFX+sDns=FX+x+TDnx+T
355 317 a1i φnxT
356 310 355 readdcld φnxx+T
357 317 a1i φxT
358 203 357 readdcld φxx+T
359 202 358 readdcld φxX+x+T
360 201 359 ffvelcdmd φxFX+x+T
361 360 adantlr φnxFX+x+T
362 82 ad2antlr φnxDn:
363 362 356 ffvelcdmd φnxDnx+T
364 363 recnd φnxDnx+T
365 361 364 mulcld φnxFX+x+TDnx+T
366 349 354 356 365 fvmptd φnxGx+T=FX+x+TDnx+T
367 366 eqcomd φnxFX+x+TDnx+T=Gx+T
368 312 348 367 3eqtrrd φnxGx+T=Gx
369 309 368 eqtrd φnxGx+πX--π-X=Gx
370 196 reseq1i GWiWi+1=sFX+sDnsWiWi+1
371 370 a1i φni0..^MGWiWi+1=sFX+sDnsWiWi+1
372 ioossre WiWi+1
373 resmpt WiWi+1sFX+sDnsWiWi+1=sWiWi+1FX+sDns
374 372 373 ax-mp sFX+sDnsWiWi+1=sWiWi+1FX+sDns
375 371 374 eqtrdi φni0..^MGWiWi+1=sWiWi+1FX+sDns
376 273 rexrd φi0..^MQi*
377 376 adantr φi0..^MsWiWi+1Qi*
378 276 rexrd φi0..^MQi+1*
379 378 adantr φi0..^MsWiWi+1Qi+1*
380 8 adantr φsWiWi+1X
381 elioore sWiWi+1s
382 381 adantl φsWiWi+1s
383 380 382 readdcld φsWiWi+1X+s
384 383 adantlr φi0..^MsWiWi+1X+s
385 eleq1 x=sxWiWi+1sWiWi+1
386 385 anbi2d x=sφi0..^MxWiWi+1φi0..^MsWiWi+1
387 191 breq2d x=sQi<X+xQi<X+s
388 386 387 imbi12d x=sφi0..^MxWiWi+1Qi<X+xφi0..^MsWiWi+1Qi<X+s
389 154 adantr φi0..^MX
390 283 281 eqeltrd φi0..^MWi
391 390 recnd φi0..^MWi
392 389 391 addcomd φi0..^MX+Wi=Wi+X
393 283 oveq1d φi0..^MWi+X=Qi-X+X
394 273 recnd φi0..^MQi
395 394 389 npcand φi0..^MQi-X+X=Qi
396 392 393 395 3eqtrrd φi0..^MQi=X+Wi
397 396 adantr φi0..^MxWiWi+1Qi=X+Wi
398 390 adantr φi0..^MxWiWi+1Wi
399 elioore xWiWi+1x
400 399 adantl φi0..^MxWiWi+1x
401 8 ad2antrr φi0..^MxWiWi+1X
402 390 rexrd φi0..^MWi*
403 402 adantr φi0..^MxWiWi+1Wi*
404 293 292 eqeltrd φi0..^MWi+1
405 404 rexrd φi0..^MWi+1*
406 405 adantr φi0..^MxWiWi+1Wi+1*
407 simpr φi0..^MxWiWi+1xWiWi+1
408 ioogtlb Wi*Wi+1*xWiWi+1Wi<x
409 403 406 407 408 syl3anc φi0..^MxWiWi+1Wi<x
410 398 400 401 409 ltadd2dd φi0..^MxWiWi+1X+Wi<X+x
411 397 410 eqbrtrd φi0..^MxWiWi+1Qi<X+x
412 388 411 chvarvv φi0..^MsWiWi+1Qi<X+s
413 191 breq1d x=sX+x<Qi+1X+s<Qi+1
414 386 413 imbi12d x=sφi0..^MxWiWi+1X+x<Qi+1φi0..^MsWiWi+1X+s<Qi+1
415 404 adantr φi0..^MxWiWi+1Wi+1
416 iooltub Wi*Wi+1*xWiWi+1x<Wi+1
417 403 406 407 416 syl3anc φi0..^MxWiWi+1x<Wi+1
418 400 415 401 417 ltadd2dd φi0..^MxWiWi+1X+x<X+Wi+1
419 404 recnd φi0..^MWi+1
420 389 419 addcomd φi0..^MX+Wi+1=Wi+1+X
421 293 oveq1d φi0..^MWi+1+X=Qi+1-X+X
422 276 recnd φi0..^MQi+1
423 422 389 npcand φi0..^MQi+1-X+X=Qi+1
424 420 421 423 3eqtrd φi0..^MX+Wi+1=Qi+1
425 424 adantr φi0..^MxWiWi+1X+Wi+1=Qi+1
426 418 425 breqtrd φi0..^MxWiWi+1X+x<Qi+1
427 414 426 chvarvv φi0..^MsWiWi+1X+s<Qi+1
428 377 379 384 412 427 eliood φi0..^MsWiWi+1X+sQiQi+1
429 191 cbvmptv xWiWi+1X+x=sWiWi+1X+s
430 429 a1i φi0..^MxWiWi+1X+x=sWiWi+1X+s
431 ioossre QiQi+1
432 431 a1i φQiQi+1
433 9 432 feqresmpt φFQiQi+1=xQiQi+1Fx
434 433 adantr φi0..^MFQiQi+1=xQiQi+1Fx
435 fveq2 x=X+sFx=FX+s
436 428 430 434 435 fmptco φi0..^MFQiQi+1xWiWi+1X+x=sWiWi+1FX+s
437 eqid xX+x=xX+x
438 ssid
439 438 a1i φ
440 439 154 439 constcncfg φxX:cn
441 cncfmptid xx:cn
442 438 438 441 mp2an xx:cn
443 442 a1i φxx:cn
444 440 443 addcncf φxX+x:cn
445 444 adantr φi0..^MxX+x:cn
446 ioosscn WiWi+1
447 446 a1i φi0..^MWiWi+1
448 ioosscn QiQi+1
449 448 a1i φi0..^MQiQi+1
450 376 adantr φi0..^MxWiWi+1Qi*
451 378 adantr φi0..^MxWiWi+1Qi+1*
452 8 adantr φxWiWi+1X
453 399 adantl φxWiWi+1x
454 452 453 readdcld φxWiWi+1X+x
455 454 adantlr φi0..^MxWiWi+1X+x
456 450 451 455 411 426 eliood φi0..^MxWiWi+1X+xQiQi+1
457 437 445 447 449 456 cncfmptssg φi0..^MxWiWi+1X+x:WiWi+1cnQiQi+1
458 457 12 cncfco φi0..^MFQiQi+1xWiWi+1X+x:WiWi+1cn
459 436 458 eqeltrrd φi0..^MsWiWi+1FX+s:WiWi+1cn
460 459 adantlr φni0..^MsWiWi+1FX+s:WiWi+1cn
461 eqid sDns=sDns
462 82 feqmptd nDn=sDns
463 cncfss cncn
464 47 438 463 mp2an cncn
465 4 dirkercncf nDn:cn
466 464 465 sselid nDn:cn
467 462 466 eqeltrrd nsDns:cn
468 372 a1i nWiWi+1
469 438 a1i n
470 cncff Dn:cnDn:
471 466 470 syl nDn:
472 471 adantr nsWiWi+1Dn:
473 381 adantl nsWiWi+1s
474 472 473 ffvelcdmd nsWiWi+1Dns
475 461 467 468 469 474 cncfmptssg nsWiWi+1Dns:WiWi+1cn
476 475 ad2antlr φni0..^MsWiWi+1Dns:WiWi+1cn
477 460 476 mulcncf φni0..^MsWiWi+1FX+sDns:WiWi+1cn
478 375 477 eqeltrd φni0..^MGWiWi+1:WiWi+1cn
479 453 205 syldan φxWiWi+1FX+x
480 479 adantlr φi0..^MxWiWi+1FX+x
481 eqid xWiWi+1FX+x=xWiWi+1FX+x
482 480 481 fmptd φi0..^MxWiWi+1FX+x:WiWi+1
483 482 adantlr φni0..^MxWiWi+1FX+x:WiWi+1
484 82 ad2antlr φni0..^MDn:
485 372 a1i φni0..^MWiWi+1
486 484 485 fssresd φni0..^MDnWiWi+1:WiWi+1
487 47 a1i φni0..^M
488 486 487 fssd φni0..^MDnWiWi+1:WiWi+1
489 eqid sWiWi+1xWiWi+1FX+xsDnWiWi+1s=sWiWi+1xWiWi+1FX+xsDnWiWi+1s
490 fdm F:domF=
491 49 490 syl φdomF=
492 431 491 sseqtrrid φQiQi+1domF
493 ssdmres QiQi+1domFdomFQiQi+1=QiQi+1
494 492 493 sylib φdomFQiQi+1=QiQi+1
495 494 eqcomd φQiQi+1=domFQiQi+1
496 495 ad2antrr φi0..^MxWiWi+1QiQi+1=domFQiQi+1
497 456 496 eleqtrd φi0..^MxWiWi+1X+xdomFQiQi+1
498 273 adantr φi0..^MxWiWi+1Qi
499 498 411 gtned φi0..^MxWiWi+1X+xQi
500 eldifsn X+xdomFQiQi+1QiX+xdomFQiQi+1X+xQi
501 497 499 500 sylanbrc φi0..^MxWiWi+1X+xdomFQiQi+1Qi
502 501 ralrimiva φi0..^MxWiWi+1X+xdomFQiQi+1Qi
503 eqid xWiWi+1X+x=xWiWi+1X+x
504 503 rnmptss xWiWi+1X+xdomFQiQi+1QiranxWiWi+1X+xdomFQiQi+1Qi
505 502 504 syl φi0..^MranxWiWi+1X+xdomFQiQi+1Qi
506 eqidd φi0..^MxWiWi+1X+x=xWiWi+1X+x
507 oveq2 x=WiX+x=X+Wi
508 507 adantl φi0..^Mx=WiX+x=X+Wi
509 390 leidd φi0..^MWiWi
510 390 404 294 ltled φi0..^MWiWi+1
511 390 404 390 509 510 eliccd φi0..^MWiWiWi+1
512 396 273 eqeltrrd φi0..^MX+Wi
513 506 508 511 512 fvmptd φi0..^MxWiWi+1X+xWi=X+Wi
514 396 eqcomd φi0..^MX+Wi=Qi
515 513 514 eqtr2d φi0..^MQi=xWiWi+1X+xWi
516 390 404 iccssred φi0..^MWiWi+1
517 516 47 sstrdi φi0..^MWiWi+1
518 517 resmptd φi0..^MxX+xWiWi+1=xWiWi+1X+x
519 rescncf WiWi+1xX+x:cnxX+xWiWi+1:WiWi+1cn
520 517 445 519 sylc φi0..^MxX+xWiWi+1:WiWi+1cn
521 518 520 eqeltrrd φi0..^MxWiWi+1X+x:WiWi+1cn
522 521 511 cnlimci φi0..^MxWiWi+1X+xWixWiWi+1X+xlimWi
523 515 522 eqeltrd φi0..^MQixWiWi+1X+xlimWi
524 ioossicc WiWi+1WiWi+1
525 resmpt WiWi+1WiWi+1xWiWi+1X+xWiWi+1=xWiWi+1X+x
526 524 525 ax-mp xWiWi+1X+xWiWi+1=xWiWi+1X+x
527 526 eqcomi xWiWi+1X+x=xWiWi+1X+xWiWi+1
528 527 a1i φi0..^MxWiWi+1X+x=xWiWi+1X+xWiWi+1
529 528 oveq1d φi0..^MxWiWi+1X+xlimWi=xWiWi+1X+xWiWi+1limWi
530 154 ad2antrr φi0..^MxWiWi+1X
531 390 adantr φi0..^MxWiWi+1Wi
532 404 adantr φi0..^MxWiWi+1Wi+1
533 simpr φi0..^MxWiWi+1xWiWi+1
534 eliccre WiWi+1xWiWi+1x
535 531 532 533 534 syl3anc φi0..^MxWiWi+1x
536 535 recnd φi0..^MxWiWi+1x
537 530 536 addcld φi0..^MxWiWi+1X+x
538 eqid xWiWi+1X+x=xWiWi+1X+x
539 537 538 fmptd φi0..^MxWiWi+1X+x:WiWi+1
540 390 404 294 539 limciccioolb φi0..^MxWiWi+1X+xWiWi+1limWi=xWiWi+1X+xlimWi
541 529 540 eqtr2d φi0..^MxWiWi+1X+xlimWi=xWiWi+1X+xlimWi
542 523 541 eleqtrd φi0..^MQixWiWi+1X+xlimWi
543 505 542 13 limccog φi0..^MRFQiQi+1xWiWi+1X+xlimWi
544 49 432 fssresd φFQiQi+1:QiQi+1
545 544 adantr φi0..^MFQiQi+1:QiQi+1
546 456 503 fmptd φi0..^MxWiWi+1X+x:WiWi+1QiQi+1
547 fcompt FQiQi+1:QiQi+1xWiWi+1X+x:WiWi+1QiQi+1FQiQi+1xWiWi+1X+x=yWiWi+1FQiQi+1xWiWi+1X+xy
548 545 546 547 syl2anc φi0..^MFQiQi+1xWiWi+1X+x=yWiWi+1FQiQi+1xWiWi+1X+xy
549 eqidd φyWiWi+1xWiWi+1X+x=xWiWi+1X+x
550 oveq2 x=yX+x=X+y
551 550 adantl φyWiWi+1x=yX+x=X+y
552 simpr φyWiWi+1yWiWi+1
553 8 adantr φyWiWi+1X
554 372 552 sselid φyWiWi+1y
555 553 554 readdcld φyWiWi+1X+y
556 549 551 552 555 fvmptd φyWiWi+1xWiWi+1X+xy=X+y
557 556 fveq2d φyWiWi+1FQiQi+1xWiWi+1X+xy=FQiQi+1X+y
558 557 adantlr φi0..^MyWiWi+1FQiQi+1xWiWi+1X+xy=FQiQi+1X+y
559 376 adantr φi0..^MyWiWi+1Qi*
560 378 adantr φi0..^MyWiWi+1Qi+1*
561 555 adantlr φi0..^MyWiWi+1X+y
562 396 adantr φi0..^MyWiWi+1Qi=X+Wi
563 390 adantr φi0..^MyWiWi+1Wi
564 554 adantlr φi0..^MyWiWi+1y
565 8 ad2antrr φi0..^MyWiWi+1X
566 402 adantr φi0..^MyWiWi+1Wi*
567 405 adantr φi0..^MyWiWi+1Wi+1*
568 simpr φi0..^MyWiWi+1yWiWi+1
569 ioogtlb Wi*Wi+1*yWiWi+1Wi<y
570 566 567 568 569 syl3anc φi0..^MyWiWi+1Wi<y
571 563 564 565 570 ltadd2dd φi0..^MyWiWi+1X+Wi<X+y
572 562 571 eqbrtrd φi0..^MyWiWi+1Qi<X+y
573 404 adantr φi0..^MyWiWi+1Wi+1
574 iooltub Wi*Wi+1*yWiWi+1y<Wi+1
575 566 567 568 574 syl3anc φi0..^MyWiWi+1y<Wi+1
576 564 573 565 575 ltadd2dd φi0..^MyWiWi+1X+y<X+Wi+1
577 424 adantr φi0..^MyWiWi+1X+Wi+1=Qi+1
578 576 577 breqtrd φi0..^MyWiWi+1X+y<Qi+1
579 559 560 561 572 578 eliood φi0..^MyWiWi+1X+yQiQi+1
580 fvres X+yQiQi+1FQiQi+1X+y=FX+y
581 579 580 syl φi0..^MyWiWi+1FQiQi+1X+y=FX+y
582 558 581 eqtrd φi0..^MyWiWi+1FQiQi+1xWiWi+1X+xy=FX+y
583 582 mpteq2dva φi0..^MyWiWi+1FQiQi+1xWiWi+1X+xy=yWiWi+1FX+y
584 550 fveq2d x=yFX+x=FX+y
585 584 cbvmptv xWiWi+1FX+x=yWiWi+1FX+y
586 583 585 eqtr4di φi0..^MyWiWi+1FQiQi+1xWiWi+1X+xy=xWiWi+1FX+x
587 548 586 eqtrd φi0..^MFQiQi+1xWiWi+1X+x=xWiWi+1FX+x
588 587 oveq1d φi0..^MFQiQi+1xWiWi+1X+xlimWi=xWiWi+1FX+xlimWi
589 543 588 eleqtrd φi0..^MRxWiWi+1FX+xlimWi
590 589 adantlr φni0..^MRxWiWi+1FX+xlimWi
591 fvres WiWiWi+1DnWiWi+1Wi=DnWi
592 511 591 syl φi0..^MDnWiWi+1Wi=DnWi
593 592 eqcomd φi0..^MDnWi=DnWiWi+1Wi
594 593 adantlr φni0..^MDnWi=DnWiWi+1Wi
595 516 adantlr φni0..^MWiWi+1
596 465 ad2antlr φni0..^MDn:cn
597 rescncf WiWi+1Dn:cnDnWiWi+1:WiWi+1cn
598 595 596 597 sylc φni0..^MDnWiWi+1:WiWi+1cn
599 511 adantlr φni0..^MWiWiWi+1
600 598 599 cnlimci φni0..^MDnWiWi+1WiDnWiWi+1limWi
601 594 600 eqeltrd φni0..^MDnWiDnWiWi+1limWi
602 524 a1i φi0..^MWiWi+1WiWi+1
603 602 resabs1d φi0..^MDnWiWi+1WiWi+1=DnWiWi+1
604 603 eqcomd φi0..^MDnWiWi+1=DnWiWi+1WiWi+1
605 604 oveq1d φi0..^MDnWiWi+1limWi=DnWiWi+1WiWi+1limWi
606 605 adantlr φni0..^MDnWiWi+1limWi=DnWiWi+1WiWi+1limWi
607 390 adantlr φni0..^MWi
608 404 adantlr φni0..^MWi+1
609 294 adantlr φni0..^MWi<Wi+1
610 471 ad2antlr φni0..^MDn:
611 610 595 fssresd φni0..^MDnWiWi+1:WiWi+1
612 607 608 609 611 limciccioolb φni0..^MDnWiWi+1WiWi+1limWi=DnWiWi+1limWi
613 606 612 eqtr2d φni0..^MDnWiWi+1limWi=DnWiWi+1limWi
614 601 613 eleqtrd φni0..^MDnWiDnWiWi+1limWi
615 483 488 489 590 614 mullimcf φni0..^MRDnWisWiWi+1xWiWi+1FX+xsDnWiWi+1slimWi
616 eqidd φi0..^MsWiWi+1xWiWi+1FX+x=xWiWi+1FX+x
617 192 adantl φi0..^MsWiWi+1x=sFX+x=FX+s
618 simpr φi0..^MsWiWi+1sWiWi+1
619 49 adantr φsWiWi+1F:
620 619 383 ffvelcdmd φsWiWi+1FX+s
621 620 adantlr φi0..^MsWiWi+1FX+s
622 616 617 618 621 fvmptd φi0..^MsWiWi+1xWiWi+1FX+xs=FX+s
623 622 adantllr φni0..^MsWiWi+1xWiWi+1FX+xs=FX+s
624 fvres sWiWi+1DnWiWi+1s=Dns
625 624 adantl φni0..^MsWiWi+1DnWiWi+1s=Dns
626 623 625 oveq12d φni0..^MsWiWi+1xWiWi+1FX+xsDnWiWi+1s=FX+sDns
627 626 eqcomd φni0..^MsWiWi+1FX+sDns=xWiWi+1FX+xsDnWiWi+1s
628 627 mpteq2dva φni0..^MsWiWi+1FX+sDns=sWiWi+1xWiWi+1FX+xsDnWiWi+1s
629 375 628 eqtr2d φni0..^MsWiWi+1xWiWi+1FX+xsDnWiWi+1s=GWiWi+1
630 629 oveq1d φni0..^MsWiWi+1xWiWi+1FX+xsDnWiWi+1slimWi=GWiWi+1limWi
631 615 630 eleqtrd φni0..^MRDnWiGWiWi+1limWi
632 455 426 ltned φi0..^MxWiWi+1X+xQi+1
633 eldifsn X+xdomFQiQi+1Qi+1X+xdomFQiQi+1X+xQi+1
634 497 632 633 sylanbrc φi0..^MxWiWi+1X+xdomFQiQi+1Qi+1
635 634 ralrimiva φi0..^MxWiWi+1X+xdomFQiQi+1Qi+1
636 503 rnmptss xWiWi+1X+xdomFQiQi+1Qi+1ranxWiWi+1X+xdomFQiQi+1Qi+1
637 635 636 syl φi0..^MranxWiWi+1X+xdomFQiQi+1Qi+1
638 404 leidd φi0..^MWi+1Wi+1
639 390 404 404 510 638 eliccd φi0..^MWi+1WiWi+1
640 521 639 cnlimci φi0..^MxWiWi+1X+xWi+1xWiWi+1X+xlimWi+1
641 oveq2 x=Wi+1X+x=X+Wi+1
642 641 adantl φi0..^Mx=Wi+1X+x=X+Wi+1
643 277 404 readdcld φi0..^MX+Wi+1
644 506 642 639 643 fvmptd φi0..^MxWiWi+1X+xWi+1=X+Wi+1
645 644 424 eqtrd φi0..^MxWiWi+1X+xWi+1=Qi+1
646 528 oveq1d φi0..^MxWiWi+1X+xlimWi+1=xWiWi+1X+xWiWi+1limWi+1
647 390 404 294 539 limcicciooub φi0..^MxWiWi+1X+xWiWi+1limWi+1=xWiWi+1X+xlimWi+1
648 646 647 eqtr2d φi0..^MxWiWi+1X+xlimWi+1=xWiWi+1X+xlimWi+1
649 640 645 648 3eltr3d φi0..^MQi+1xWiWi+1X+xlimWi+1
650 637 649 14 limccog φi0..^MLFQiQi+1xWiWi+1X+xlimWi+1
651 587 oveq1d φi0..^MFQiQi+1xWiWi+1X+xlimWi+1=xWiWi+1FX+xlimWi+1
652 650 651 eleqtrd φi0..^MLxWiWi+1FX+xlimWi+1
653 652 adantlr φni0..^MLxWiWi+1FX+xlimWi+1
654 639 adantlr φni0..^MWi+1WiWi+1
655 598 654 cnlimci φni0..^MDnWiWi+1Wi+1DnWiWi+1limWi+1
656 fvres Wi+1WiWi+1DnWiWi+1Wi+1=DnWi+1
657 654 656 syl φni0..^MDnWiWi+1Wi+1=DnWi+1
658 607 608 609 611 limcicciooub φni0..^MDnWiWi+1WiWi+1limWi+1=DnWiWi+1limWi+1
659 658 eqcomd φni0..^MDnWiWi+1limWi+1=DnWiWi+1WiWi+1limWi+1
660 resabs1 WiWi+1WiWi+1DnWiWi+1WiWi+1=DnWiWi+1
661 524 660 mp1i φni0..^MDnWiWi+1WiWi+1=DnWiWi+1
662 661 oveq1d φni0..^MDnWiWi+1WiWi+1limWi+1=DnWiWi+1limWi+1
663 659 662 eqtrd φni0..^MDnWiWi+1limWi+1=DnWiWi+1limWi+1
664 655 657 663 3eltr3d φni0..^MDnWi+1DnWiWi+1limWi+1
665 483 488 489 653 664 mullimcf φni0..^MLDnWi+1sWiWi+1xWiWi+1FX+xsDnWiWi+1slimWi+1
666 629 oveq1d φni0..^MsWiWi+1xWiWi+1FX+xsDnWiWi+1slimWi+1=GWiWi+1limWi+1
667 665 666 eleqtrd φni0..^MLDnWi+1GWiWi+1limWi+1
668 130 133 225 226 16 114 300 211 369 478 631 667 fourierdlem110 φnπ-X-Xπ-X-XGxdx=-π-XπXGxdx
669 668 eqcomd φn-π-XπXGxdx=π-X-Xπ-X-XGxdx
670 129 recnd φ-π-X
671 670 154 subnegd φπ-X-X=π-X+X
672 156 154 npcand φπ-X+X=π
673 671 672 eqtrd φπ-X-X=π
674 132 recnd φπX
675 674 154 subnegd φπ-X-X=π-X+X
676 155 154 npcand φπ-X+X=π
677 675 676 eqtrd φπ-X-X=π
678 673 677 oveq12d φπ-X-Xπ-X-X=ππ
679 678 itgeq1d φπ-X-Xπ-X-XGxdx=ππGxdx
680 679 adantr φnπ-X-Xπ-X-XGxdx=ππGxdx
681 669 680 eqtrd φn-π-XπXGxdx=ππGxdx
682 fveq2 x=sGx=Gs
683 682 cbvitgv ππGxdx=ππGsds
684 211 adantr φnxππG:
685 44 adantlr φnxππx
686 684 685 ffvelcdmd φnxππGx
687 76 77 686 itgioo φnππGxdx=ππGxdx
688 elioore sππs
689 688 adantl φnsππs
690 49 adantr φsππF:
691 8 adantr φsππX
692 688 adantl φsππs
693 691 692 readdcld φsππX+s
694 690 693 ffvelcdmd φsππFX+s
695 694 adantlr φnsππFX+s
696 82 ad2antlr φnsππDn:
697 696 689 ffvelcdmd φnsππDns
698 697 recnd φnsππDns
699 695 698 mulcld φnsππFX+sDns
700 689 699 197 syl2anc φnsππGs=FX+sDns
701 700 itgeq2dv φnππGsds=ππFX+sDnsds
702 683 687 701 3eqtr3a φnππGxdx=ππFX+sDnsds
703 224 681 702 3eqtrd φn-π-XπXFX+sDnsds=ππFX+sDnsds
704 75 178 703 3eqtrd φnSn=ππFX+sDnsds
705 77 renegcld φnπ
706 0red φn0
707 0re 0
708 negpilt0 π<0
709 39 707 708 ltleii π0
710 709 a1i φnπ0
711 pipos 0<π
712 707 38 711 ltleii 0π
713 712 a1i φn0π
714 76 77 706 710 713 eliccd φn0ππ
715 ioossicc π0π0
716 715 a1i φnπ0π0
717 ioombl π0domvol
718 717 a1i φnπ0domvol
719 49 adantr φsπ0F:
720 8 adantr φsπ0X
721 39 a1i sπ0π
722 0red sπ00
723 id sπ0sπ0
724 eliccre π0sπ0s
725 721 722 723 724 syl3anc sπ0s
726 725 adantl φsπ0s
727 720 726 readdcld φsπ0X+s
728 719 727 ffvelcdmd φsπ0FX+s
729 728 adantlr φnsπ0FX+s
730 82 ad2antlr φnsπ0Dn:
731 725 adantl φnsπ0s
732 730 731 ffvelcdmd φnsπ0Dns
733 732 recnd φnsπ0Dns
734 729 733 mulcld φnsπ0FX+sDns
735 731 734 197 syl2anc φnsπ0Gs=FX+sDns
736 735 eqcomd φnsπ0FX+sDns=Gs
737 736 mpteq2dva φnsπ0FX+sDns=sπ0Gs
738 306 oveq2d φs+πX--π-X=s+T
739 738 ad2antrr φnss+πX--π-X=s+T
740 739 fveq2d φnsGs+πX--π-X=Gs+T
741 11 a1i φnsG=xFX+xDnx
742 oveq2 x=s+TX+x=X+s+T
743 742 fveq2d x=s+TFX+x=FX+s+T
744 fveq2 x=s+TDnx=Dns+T
745 743 744 oveq12d x=s+TFX+xDnx=FX+s+TDns+T
746 745 adantl φnsx=s+TFX+xDnx=FX+s+TDns+T
747 simpr φss
748 317 a1i φsT
749 747 748 readdcld φss+T
750 749 adantlr φnss+T
751 49 adantr φsF:
752 8 adantr φsX
753 752 749 readdcld φsX+s+T
754 751 753 ffvelcdmd φsFX+s+T
755 754 adantlr φnsFX+s+T
756 82 ad2antlr φnsDn:
757 756 750 ffvelcdmd φnsDns+T
758 757 recnd φnsDns+T
759 755 758 mulcld φnsFX+s+TDns+T
760 741 746 750 759 fvmptd φnsGs+T=FX+s+TDns+T
761 154 adantr φsX
762 747 recnd φss
763 319 adantr φsT
764 761 762 763 addassd φsX+s+T=X+s+T
765 764 eqcomd φsX+s+T=X+s+T
766 765 fveq2d φsFX+s+T=FX+s+T
767 752 747 readdcld φsX+s
768 simpl φsφ
769 768 767 jca φsφX+s
770 eleq1 x=X+sxX+s
771 770 anbi2d x=X+sφxφX+s
772 oveq1 x=X+sx+T=X+s+T
773 772 fveq2d x=X+sFx+T=FX+s+T
774 773 435 eqeq12d x=X+sFx+T=FxFX+s+T=FX+s
775 771 774 imbi12d x=X+sφxFx+T=FxφX+sFX+s+T=FX+s
776 775 10 vtoclg X+sφX+sFX+s+T=FX+s
777 767 769 776 sylc φsFX+s+T=FX+s
778 766 777 eqtrd φsFX+s+T=FX+s
779 778 adantlr φnsFX+s+T=FX+s
780 4 15 dirkerper nsDns+T=Dns
781 780 adantll φnsDns+T=Dns
782 779 781 oveq12d φnsFX+s+TDns+T=FX+sDns
783 simpr φnss
784 782 759 eqeltrrd φnsFX+sDns
785 783 784 197 syl2anc φnsGs=FX+sDns
786 785 eqcomd φnsFX+sDns=Gs
787 782 786 eqtrd φnsFX+s+TDns+T=Gs
788 740 760 787 3eqtrd φnsGs+πX--π-X=Gs
789 0ltpnf 0<+∞
790 pnfxr +∞*
791 elioo2 π*+∞*0π+∞0π<00<+∞
792 52 790 791 mp2an 0π+∞0π<00<+∞
793 707 708 789 792 mpbir3an 0π+∞
794 793 a1i φn0π+∞
795 16 225 114 300 211 788 478 631 667 76 794 fourierdlem105 φnsπ0Gs𝐿1
796 737 795 eqeltrd φnsπ0FX+sDns𝐿1
797 716 718 734 796 iblss φnsπ0FX+sDns𝐿1
798 elioore s0πs
799 798 adantl φns0πs
800 799 784 syldan φns0πFX+sDns
801 799 800 197 syl2anc φns0πGs=FX+sDns
802 801 eqcomd φns0πFX+sDns=Gs
803 802 mpteq2dva φns0πFX+sDns=s0πGs
804 ioossicc 0π0π
805 804 a1i φn0π0π
806 ioombl 0πdomvol
807 806 a1i φn0πdomvol
808 211 adantr φns0πG:
809 0red φs0π0
810 38 a1i φs0ππ
811 simpr φs0πs0π
812 eliccre 0πs0πs
813 809 810 811 812 syl3anc φs0πs
814 813 adantlr φns0πs
815 808 814 ffvelcdmd φns0πGs
816 0xr 0*
817 816 a1i φn0*
818 790 a1i φn+∞*
819 711 a1i φn0<π
820 ltpnf ππ<+∞
821 38 820 mp1i φnπ<+∞
822 817 818 77 819 821 eliood φnπ0+∞
823 16 225 114 300 211 788 478 631 667 706 822 fourierdlem105 φns0πGs𝐿1
824 805 807 815 823 iblss φns0πGs𝐿1
825 803 824 eqeltrd φns0πFX+sDns𝐿1
826 705 77 714 699 797 825 itgsplitioo φnππFX+sDnsds=π0FX+sDnsds+0πFX+sDnsds
827 704 826 eqtrd φnSn=π0FX+sDnsds+0πFX+sDnsds