Description: The fourier partial sum for F is the sum of two integrals, with the same integrand involving F and the Dirichlet Kernel D , but on two opposite intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fourierdlem111.a | |
|
fourierdlem111.b | |
||
fourierdlem111.s | |
||
fourierdlem111.d | |
||
fourierdlem111.p | |
||
fourierdlem111.m | |
||
fourierdlem111.q | |
||
fourierdlem111.x | |
||
fourierdlem111.6 | |
||
fourierdlem111.fper | |
||
fourierdlem111.g | |
||
fourierdlem111.fcn | |
||
fourierdlem111.r | |
||
fourierdlem111.l | |
||
fourierdlem111.t | |
||
fourierdlem111.o | |
||
fourierdlem111.14 | |
||
Assertion | fourierdlem111 | |