Metamath Proof Explorer


Theorem poimirlem32

Description: Lemma for poimir , combining poimirlem28 , poimirlem30 , and poimirlem31 to get Equation (1) of Kulpa p. 547. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimir.i I=011N
poimir.r R=𝑡1N×topGenran.
poimir.1 φFR𝑡ICnR
poimir.2 φn1NzIzn=0Fzn0
poimir.3 φn1NzIzn=10Fzn
Assertion poimirlem32 φcIn1NvR𝑡Icvr-1zv0rFzn

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimir.i I=011N
3 poimir.r R=𝑡1N×topGenran.
4 poimir.1 φFR𝑡ICnR
5 poimir.2 φn1NzIzn=0Fzn0
6 poimir.3 φn1NzIzn=10Fzn
7 1 adantr φkN
8 fvoveq1 p=1sts+f2nds1j×12ndsj+1N×0Fp÷f1N×k=F1sts+f2nds1j×12ndsj+1N×0÷f1N×k
9 8 fveq1d p=1sts+f2nds1j×12ndsj+1N×0Fp÷f1N×kb=F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb
10 9 breq2d p=1sts+f2nds1j×12ndsj+1N×00Fp÷f1N×kb0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb
11 fveq1 p=1sts+f2nds1j×12ndsj+1N×0pb=1sts+f2nds1j×12ndsj+1N×0b
12 11 neeq1d p=1sts+f2nds1j×12ndsj+1N×0pb01sts+f2nds1j×12ndsj+1N×0b0
13 10 12 anbi12d p=1sts+f2nds1j×12ndsj+1N×00Fp÷f1N×kbpb00F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0
14 13 ralbidv p=1sts+f2nds1j×12ndsj+1N×0b1a0Fp÷f1N×kbpb0b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0
15 14 rabbidv p=1sts+f2nds1j×12ndsj+1N×0a1N|b1a0Fp÷f1N×kbpb0=a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0
16 15 uneq2d p=1sts+f2nds1j×12ndsj+1N×00a1N|b1a0Fp÷f1N×kbpb0=0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0
17 16 supeq1d p=1sts+f2nds1j×12ndsj+1N×0sup0a1N|b1a0Fp÷f1N×kbpb0<=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<
18 1 nnnn0d φN0
19 0elfz N000N
20 18 19 syl φ00N
21 20 snssd φ00N
22 ssrab2 a1N|b1a0Fp÷f1N×kbpb01N
23 fz1ssfz0 1N0N
24 22 23 sstri a1N|b1a0Fp÷f1N×kbpb00N
25 24 a1i φa1N|b1a0Fp÷f1N×kbpb00N
26 21 25 unssd φ0a1N|b1a0Fp÷f1N×kbpb00N
27 ltso <Or
28 snfi 0Fin
29 fzfi 1NFin
30 rabfi 1NFina1N|b1a0Fp÷f1N×kbpb0Fin
31 29 30 ax-mp a1N|b1a0Fp÷f1N×kbpb0Fin
32 unfi 0Fina1N|b1a0Fp÷f1N×kbpb0Fin0a1N|b1a0Fp÷f1N×kbpb0Fin
33 28 31 32 mp2an 0a1N|b1a0Fp÷f1N×kbpb0Fin
34 c0ex 0V
35 34 snid 00
36 elun1 0000a1N|b1a0Fp÷f1N×kbpb0
37 ne0i 00a1N|b1a0Fp÷f1N×kbpb00a1N|b1a0Fp÷f1N×kbpb0
38 35 36 37 mp2b 0a1N|b1a0Fp÷f1N×kbpb0
39 0red φN0
40 39 snssd φN0
41 1 40 ax-mp 0
42 elfzelz n1Nn
43 42 ssriv 1N
44 zssre
45 43 44 sstri 1N
46 22 45 sstri a1N|b1a0Fp÷f1N×kbpb0
47 41 46 unssi 0a1N|b1a0Fp÷f1N×kbpb0
48 33 38 47 3pm3.2i 0a1N|b1a0Fp÷f1N×kbpb0Fin0a1N|b1a0Fp÷f1N×kbpb00a1N|b1a0Fp÷f1N×kbpb0
49 fisupcl <Or0a1N|b1a0Fp÷f1N×kbpb0Fin0a1N|b1a0Fp÷f1N×kbpb00a1N|b1a0Fp÷f1N×kbpb0sup0a1N|b1a0Fp÷f1N×kbpb0<0a1N|b1a0Fp÷f1N×kbpb0
50 27 48 49 mp2an sup0a1N|b1a0Fp÷f1N×kbpb0<0a1N|b1a0Fp÷f1N×kbpb0
51 ssel 0a1N|b1a0Fp÷f1N×kbpb00Nsup0a1N|b1a0Fp÷f1N×kbpb0<0a1N|b1a0Fp÷f1N×kbpb0sup0a1N|b1a0Fp÷f1N×kbpb0<0N
52 26 50 51 mpisyl φsup0a1N|b1a0Fp÷f1N×kbpb0<0N
53 52 ad2antrr φkp:1N0ksup0a1N|b1a0Fp÷f1N×kbpb0<0N
54 elfznn n1Nn
55 nngt0 n0<n
56 55 adantr npn=00<n
57 simpr 0Fp÷f1N×kbpb0pb0
58 57 ralimi b1s0Fp÷f1N×kbpb0b1spb0
59 elfznn s1Ns
60 nnre nn
61 nnre ss
62 lenlt nsns¬s<n
63 60 61 62 syl2an nsns¬s<n
64 elfz1b n1snsns
65 64 biimpri nsnsn1s
66 65 3expia nsnsn1s
67 63 66 sylbird ns¬s<nn1s
68 fveq2 b=npb=pn
69 68 eqeq1d b=npb=0pn=0
70 69 rspcev n1spn=0b1spb=0
71 70 expcom pn=0n1sb1spb=0
72 67 71 sylan9 nspn=0¬s<nb1spb=0
73 72 an32s npn=0s¬s<nb1spb=0
74 nne ¬pb0pb=0
75 74 rexbii b1s¬pb0b1spb=0
76 rexnal b1s¬pb0¬b1spb0
77 75 76 bitr3i b1spb=0¬b1spb0
78 73 77 imbitrdi npn=0s¬s<n¬b1spb0
79 78 con4d npn=0sb1spb0s<n
80 59 79 sylan2 npn=0s1Nb1spb0s<n
81 58 80 syl5 npn=0s1Nb1s0Fp÷f1N×kbpb0s<n
82 81 ralrimiva npn=0s1Nb1s0Fp÷f1N×kbpb0s<n
83 ralunb s0a1N|b1a0Fp÷f1N×kbpb0s<ns0s<nsa1N|b1a0Fp÷f1N×kbpb0s<n
84 breq1 s=0s<n0<n
85 34 84 ralsn s0s<n0<n
86 oveq2 a=s1a=1s
87 86 raleqdv a=sb1a0Fp÷f1N×kbpb0b1s0Fp÷f1N×kbpb0
88 87 ralrab sa1N|b1a0Fp÷f1N×kbpb0s<ns1Nb1s0Fp÷f1N×kbpb0s<n
89 85 88 anbi12i s0s<nsa1N|b1a0Fp÷f1N×kbpb0s<n0<ns1Nb1s0Fp÷f1N×kbpb0s<n
90 83 89 bitri s0a1N|b1a0Fp÷f1N×kbpb0s<n0<ns1Nb1s0Fp÷f1N×kbpb0s<n
91 56 82 90 sylanbrc npn=0s0a1N|b1a0Fp÷f1N×kbpb0s<n
92 breq1 s=sup0a1N|b1a0Fp÷f1N×kbpb0<s<nsup0a1N|b1a0Fp÷f1N×kbpb0<<n
93 92 rspcva sup0a1N|b1a0Fp÷f1N×kbpb0<0a1N|b1a0Fp÷f1N×kbpb0s0a1N|b1a0Fp÷f1N×kbpb0s<nsup0a1N|b1a0Fp÷f1N×kbpb0<<n
94 50 91 93 sylancr npn=0sup0a1N|b1a0Fp÷f1N×kbpb0<<n
95 54 94 sylan n1Npn=0sup0a1N|b1a0Fp÷f1N×kbpb0<<n
96 95 3adant2 n1Np:1N0kpn=0sup0a1N|b1a0Fp÷f1N×kbpb0<<n
97 96 adantl φkn1Np:1N0kpn=0sup0a1N|b1a0Fp÷f1N×kbpb0<<n
98 42 zred n1Nn
99 98 3ad2ant1 n1Np:1N0kpn=kn
100 99 adantl φkn1Np:1N0kpn=kn
101 simpr1 φkn1Np:1N0kpn=kn1N
102 simpll φkn1Np:1N0kpn=kφ
103 simplr φkn1Np:1N0kk
104 elfzelz i0ki
105 104 zred i0ki
106 nndivre ikik
107 105 106 sylan i0kkik
108 elfzle1 i0k0i
109 105 108 jca i0ki0i
110 nnrp kk+
111 110 rpregt0d kk0<k
112 divge0 i0ik0<k0ik
113 109 111 112 syl2an i0kk0ik
114 elfzle2 i0kik
115 114 adantr i0kkik
116 105 adantr i0kki
117 1red i0kk1
118 110 adantl i0kkk+
119 116 117 118 ledivmuld i0kkik1ik1
120 nncn kk
121 120 mulridd kk1=k
122 121 breq2d kik1ik
123 122 adantl i0kkik1ik
124 119 123 bitrd i0kkik1ik
125 115 124 mpbird i0kkik1
126 elicc01 ik01ik0ikik1
127 107 113 125 126 syl3anbrc i0kkik01
128 127 ancoms ki0kik01
129 elsni jkj=k
130 129 oveq2d jkij=ik
131 130 eleq1d jkij01ik01
132 128 131 syl5ibrcom ki0kjkij01
133 132 impr ki0kjkij01
134 103 133 sylan φkn1Np:1N0ki0kjkij01
135 simprr φkn1Np:1N0kp:1N0k
136 vex kV
137 136 fconst 1N×k:1Nk
138 137 a1i φkn1Np:1N0k1N×k:1Nk
139 fzfid φkn1Np:1N0k1NFin
140 inidm 1N1N=1N
141 134 135 138 139 139 140 off φkn1Np:1N0kp÷f1N×k:1N01
142 2 eleq2i p÷f1N×kIp÷f1N×k011N
143 ovex 01V
144 ovex 1NV
145 143 144 elmap p÷f1N×k011Np÷f1N×k:1N01
146 142 145 bitri p÷f1N×kIp÷f1N×k:1N01
147 141 146 sylibr φkn1Np:1N0kp÷f1N×kI
148 147 3adantr3 φkn1Np:1N0kpn=kp÷f1N×kI
149 3anass n1Np:1N0kpn=kn1Np:1N0kpn=k
150 ancom n1Np:1N0kpn=kp:1N0kpn=kn1N
151 149 150 bitri n1Np:1N0kpn=kp:1N0kpn=kn1N
152 ffn p:1N0kpFn1N
153 152 ad2antrl φkp:1N0kpn=kpFn1N
154 fnconstg kV1N×kFn1N
155 136 154 mp1i φkp:1N0kpn=k1N×kFn1N
156 fzfid φkp:1N0kpn=k1NFin
157 simplrr φkp:1N0kpn=kn1Npn=k
158 136 fvconst2 n1N1N×kn=k
159 158 adantl φkp:1N0kpn=kn1N1N×kn=k
160 153 155 156 156 140 157 159 ofval φkp:1N0kpn=kn1Np÷f1N×kn=kk
161 160 anasss φkp:1N0kpn=kn1Np÷f1N×kn=kk
162 151 161 sylan2b φkn1Np:1N0kpn=kp÷f1N×kn=kk
163 nnne0 kk0
164 120 163 dividd kkk=1
165 164 ad2antlr φkn1Np:1N0kpn=kkk=1
166 162 165 eqtrd φkn1Np:1N0kpn=kp÷f1N×kn=1
167 ovex p÷f1N×kV
168 eleq1 z=p÷f1N×kzIp÷f1N×kI
169 fveq1 z=p÷f1N×kzn=p÷f1N×kn
170 169 eqeq1d z=p÷f1N×kzn=1p÷f1N×kn=1
171 168 170 3anbi23d z=p÷f1N×kn1NzIzn=1n1Np÷f1N×kIp÷f1N×kn=1
172 171 anbi2d z=p÷f1N×kφn1NzIzn=1φn1Np÷f1N×kIp÷f1N×kn=1
173 fveq2 z=p÷f1N×kFz=Fp÷f1N×k
174 173 fveq1d z=p÷f1N×kFzn=Fp÷f1N×kn
175 174 breq2d z=p÷f1N×k0Fzn0Fp÷f1N×kn
176 172 175 imbi12d z=p÷f1N×kφn1NzIzn=10Fznφn1Np÷f1N×kIp÷f1N×kn=10Fp÷f1N×kn
177 167 176 6 vtocl φn1Np÷f1N×kIp÷f1N×kn=10Fp÷f1N×kn
178 102 101 148 166 177 syl13anc φkn1Np:1N0kpn=k0Fp÷f1N×kn
179 simpr φkk
180 simp3 n1Np:1N0kpn=kpn=k
181 neeq1 pn=kpn0k0
182 163 181 syl5ibrcom kpn=kpn0
183 182 imp kpn=kpn0
184 179 180 183 syl2an φkn1Np:1N0kpn=kpn0
185 vex nV
186 fveq2 b=nFp÷f1N×kb=Fp÷f1N×kn
187 186 breq2d b=n0Fp÷f1N×kb0Fp÷f1N×kn
188 68 neeq1d b=npb0pn0
189 187 188 anbi12d b=n0Fp÷f1N×kbpb00Fp÷f1N×knpn0
190 185 189 ralsn bn0Fp÷f1N×kbpb00Fp÷f1N×knpn0
191 178 184 190 sylanbrc φkn1Np:1N0kpn=kbn0Fp÷f1N×kbpb0
192 42 zcnd n1Nn
193 1cnd n1N1
194 192 193 subeq0ad n1Nn1=0n=1
195 194 biimpcd n1=0n1Nn=1
196 1z 1
197 fzsn 111=1
198 196 197 ax-mp 11=1
199 oveq2 n=11n=11
200 sneq n=1n=1
201 198 199 200 3eqtr4a n=11n=n
202 201 raleqdv n=1b1n0Fp÷f1N×kbpb0bn0Fp÷f1N×kbpb0
203 202 biimprd n=1bn0Fp÷f1N×kbpb0b1n0Fp÷f1N×kbpb0
204 195 203 syl6 n1=0n1Nbn0Fp÷f1N×kbpb0b1n0Fp÷f1N×kbpb0
205 ralun b1n10Fp÷f1N×kbpb0bn0Fp÷f1N×kbpb0b1n1n0Fp÷f1N×kbpb0
206 npcan1 nn-1+1=n
207 192 206 syl n1Nn-1+1=n
208 elfzuz n1Nn1
209 207 208 eqeltrd n1Nn-1+11
210 peano2zm nn1
211 uzid n1n1n1
212 peano2uz n1n1n-1+1n1
213 42 210 211 212 4syl n1Nn-1+1n1
214 207 213 eqeltrrd n1Nnn1
215 fzsplit2 n-1+11nn11n=1n1n-1+1n
216 209 214 215 syl2anc n1N1n=1n1n-1+1n
217 207 oveq1d n1Nn-1+1n=nn
218 fzsn nnn=n
219 42 218 syl n1Nnn=n
220 217 219 eqtrd n1Nn-1+1n=n
221 220 uneq2d n1N1n1n-1+1n=1n1n
222 216 221 eqtrd n1N1n=1n1n
223 222 raleqdv n1Nb1n0Fp÷f1N×kbpb0b1n1n0Fp÷f1N×kbpb0
224 205 223 imbitrrid n1Nb1n10Fp÷f1N×kbpb0bn0Fp÷f1N×kbpb0b1n0Fp÷f1N×kbpb0
225 224 expd n1Nb1n10Fp÷f1N×kbpb0bn0Fp÷f1N×kbpb0b1n0Fp÷f1N×kbpb0
226 225 com12 b1n10Fp÷f1N×kbpb0n1Nbn0Fp÷f1N×kbpb0b1n0Fp÷f1N×kbpb0
227 226 adantl n11Nb1n10Fp÷f1N×kbpb0n1Nbn0Fp÷f1N×kbpb0b1n0Fp÷f1N×kbpb0
228 204 227 jaoi n1=0n11Nb1n10Fp÷f1N×kbpb0n1Nbn0Fp÷f1N×kbpb0b1n0Fp÷f1N×kbpb0
229 228 imdistand n1=0n11Nb1n10Fp÷f1N×kbpb0n1Nbn0Fp÷f1N×kbpb0n1Nb1n0Fp÷f1N×kbpb0
230 229 com12 n1Nbn0Fp÷f1N×kbpb0n1=0n11Nb1n10Fp÷f1N×kbpb0n1Nb1n0Fp÷f1N×kbpb0
231 elun n10a1N|b1a0Fp÷f1N×kbpb0n10n1a1N|b1a0Fp÷f1N×kbpb0
232 ovex n1V
233 232 elsn n10n1=0
234 oveq2 a=n11a=1n1
235 234 raleqdv a=n1b1a0Fp÷f1N×kbpb0b1n10Fp÷f1N×kbpb0
236 235 elrab n1a1N|b1a0Fp÷f1N×kbpb0n11Nb1n10Fp÷f1N×kbpb0
237 233 236 orbi12i n10n1a1N|b1a0Fp÷f1N×kbpb0n1=0n11Nb1n10Fp÷f1N×kbpb0
238 231 237 bitri n10a1N|b1a0Fp÷f1N×kbpb0n1=0n11Nb1n10Fp÷f1N×kbpb0
239 oveq2 a=n1a=1n
240 239 raleqdv a=nb1a0Fp÷f1N×kbpb0b1n0Fp÷f1N×kbpb0
241 240 elrab na1N|b1a0Fp÷f1N×kbpb0n1Nb1n0Fp÷f1N×kbpb0
242 230 238 241 3imtr4g n1Nbn0Fp÷f1N×kbpb0n10a1N|b1a0Fp÷f1N×kbpb0na1N|b1a0Fp÷f1N×kbpb0
243 elun2 na1N|b1a0Fp÷f1N×kbpb0n0a1N|b1a0Fp÷f1N×kbpb0
244 242 243 syl6 n1Nbn0Fp÷f1N×kbpb0n10a1N|b1a0Fp÷f1N×kbpb0n0a1N|b1a0Fp÷f1N×kbpb0
245 101 191 244 syl2anc φkn1Np:1N0kpn=kn10a1N|b1a0Fp÷f1N×kbpb0n0a1N|b1a0Fp÷f1N×kbpb0
246 fimaxre2 0a1N|b1a0Fp÷f1N×kbpb00a1N|b1a0Fp÷f1N×kbpb0Finij0a1N|b1a0Fp÷f1N×kbpb0ji
247 47 33 246 mp2an ij0a1N|b1a0Fp÷f1N×kbpb0ji
248 47 38 247 3pm3.2i 0a1N|b1a0Fp÷f1N×kbpb00a1N|b1a0Fp÷f1N×kbpb0ij0a1N|b1a0Fp÷f1N×kbpb0ji
249 248 suprubii n0a1N|b1a0Fp÷f1N×kbpb0nsup0a1N|b1a0Fp÷f1N×kbpb0<
250 245 249 syl6 φkn1Np:1N0kpn=kn10a1N|b1a0Fp÷f1N×kbpb0nsup0a1N|b1a0Fp÷f1N×kbpb0<
251 ltm1 nn1<n
252 peano2rem nn1
253 47 50 sselii sup0a1N|b1a0Fp÷f1N×kbpb0<
254 ltletr n1nsup0a1N|b1a0Fp÷f1N×kbpb0<n1<nnsup0a1N|b1a0Fp÷f1N×kbpb0<n1<sup0a1N|b1a0Fp÷f1N×kbpb0<
255 253 254 mp3an3 n1nn1<nnsup0a1N|b1a0Fp÷f1N×kbpb0<n1<sup0a1N|b1a0Fp÷f1N×kbpb0<
256 252 255 mpancom nn1<nnsup0a1N|b1a0Fp÷f1N×kbpb0<n1<sup0a1N|b1a0Fp÷f1N×kbpb0<
257 251 256 mpand nnsup0a1N|b1a0Fp÷f1N×kbpb0<n1<sup0a1N|b1a0Fp÷f1N×kbpb0<
258 100 250 257 sylsyld φkn1Np:1N0kpn=kn10a1N|b1a0Fp÷f1N×kbpb0n1<sup0a1N|b1a0Fp÷f1N×kbpb0<
259 253 ltnri ¬sup0a1N|b1a0Fp÷f1N×kbpb0<<sup0a1N|b1a0Fp÷f1N×kbpb0<
260 breq1 sup0a1N|b1a0Fp÷f1N×kbpb0<=n1sup0a1N|b1a0Fp÷f1N×kbpb0<<sup0a1N|b1a0Fp÷f1N×kbpb0<n1<sup0a1N|b1a0Fp÷f1N×kbpb0<
261 259 260 mtbii sup0a1N|b1a0Fp÷f1N×kbpb0<=n1¬n1<sup0a1N|b1a0Fp÷f1N×kbpb0<
262 261 necon2ai n1<sup0a1N|b1a0Fp÷f1N×kbpb0<sup0a1N|b1a0Fp÷f1N×kbpb0<n1
263 258 262 syl6 φkn1Np:1N0kpn=kn10a1N|b1a0Fp÷f1N×kbpb0sup0a1N|b1a0Fp÷f1N×kbpb0<n1
264 eleq1 sup0a1N|b1a0Fp÷f1N×kbpb0<=n1sup0a1N|b1a0Fp÷f1N×kbpb0<0a1N|b1a0Fp÷f1N×kbpb0n10a1N|b1a0Fp÷f1N×kbpb0
265 50 264 mpbii sup0a1N|b1a0Fp÷f1N×kbpb0<=n1n10a1N|b1a0Fp÷f1N×kbpb0
266 265 necon3bi ¬n10a1N|b1a0Fp÷f1N×kbpb0sup0a1N|b1a0Fp÷f1N×kbpb0<n1
267 263 266 pm2.61d1 φkn1Np:1N0kpn=ksup0a1N|b1a0Fp÷f1N×kbpb0<n1
268 7 17 53 97 267 179 poimirlem28 φks0..^k1N×f|f:1N1-1 onto1Ni0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<
269 nn0ex 0V
270 fzo0ssnn0 0..^k0
271 mapss 0V0..^k00..^k1N01N
272 269 270 271 mp2an 0..^k1N01N
273 xpss1 0..^k1N01N0..^k1N×f|f:1N1-1 onto1N01N×f|f:1N1-1 onto1N
274 272 273 ax-mp 0..^k1N×f|f:1N1-1 onto1N01N×f|f:1N1-1 onto1N
275 274 sseli s0..^k1N×f|f:1N1-1 onto1Ns01N×f|f:1N1-1 onto1N
276 xp1st s0..^k1N×f|f:1N1-1 onto1N1sts0..^k1N
277 elmapi 1sts0..^k1N1sts:1N0..^k
278 frn 1sts:1N0..^kran1sts0..^k
279 276 277 278 3syl s0..^k1N×f|f:1N1-1 onto1Nran1sts0..^k
280 275 279 jca s0..^k1N×f|f:1N1-1 onto1Ns01N×f|f:1N1-1 onto1Nran1sts0..^k
281 280 anim1i s0..^k1N×f|f:1N1-1 onto1Ni0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<s01N×f|f:1N1-1 onto1Nran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<
282 anass s01N×f|f:1N1-1 onto1Nran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<s01N×f|f:1N1-1 onto1Nran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<
283 281 282 sylib s0..^k1N×f|f:1N1-1 onto1Ni0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<s01N×f|f:1N1-1 onto1Nran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<
284 283 reximi2 s0..^k1N×f|f:1N1-1 onto1Ni0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<s01N×f|f:1N1-1 onto1Nran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<
285 268 284 syl φks01N×f|f:1N1-1 onto1Nran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<
286 285 ralrimiva φks01N×f|f:1N1-1 onto1Nran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<
287 nnex V
288 144 269 ixpconst n=1N0=01N
289 omelon ωOn
290 nn0ennn 0
291 nnenom ω
292 290 291 entr2i ω0
293 isnumi ωOnω00domcard
294 289 292 293 mp2an 0domcard
295 294 rgenw n1N0domcard
296 finixpnum 1NFinn1N0domcardn=1N0domcard
297 29 295 296 mp2an n=1N0domcard
298 288 297 eqeltrri 01Ndomcard
299 144 144 mapval 1N1N=f|f:1N1N
300 mapfi 1NFin1NFin1N1NFin
301 29 29 300 mp2an 1N1NFin
302 299 301 eqeltrri f|f:1N1NFin
303 f1of f:1N1-1 onto1Nf:1N1N
304 303 ss2abi f|f:1N1-1 onto1Nf|f:1N1N
305 ssfi f|f:1N1NFinf|f:1N1-1 onto1Nf|f:1N1Nf|f:1N1-1 onto1NFin
306 302 304 305 mp2an f|f:1N1-1 onto1NFin
307 finnum f|f:1N1-1 onto1NFinf|f:1N1-1 onto1Ndomcard
308 306 307 ax-mp f|f:1N1-1 onto1Ndomcard
309 xpnum 01Ndomcardf|f:1N1-1 onto1Ndomcard01N×f|f:1N1-1 onto1Ndomcard
310 298 308 309 mp2an 01N×f|f:1N1-1 onto1Ndomcard
311 ssrab2 s01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<01N×f|f:1N1-1 onto1N
312 311 rgenw ks01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<01N×f|f:1N1-1 onto1N
313 ss2iun ks01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<01N×f|f:1N1-1 onto1Nks01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<k01N×f|f:1N1-1 onto1N
314 312 313 ax-mp ks01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<k01N×f|f:1N1-1 onto1N
315 1nn 1
316 ne0i 1
317 iunconst k01N×f|f:1N1-1 onto1N=01N×f|f:1N1-1 onto1N
318 315 316 317 mp2b k01N×f|f:1N1-1 onto1N=01N×f|f:1N1-1 onto1N
319 314 318 sseqtri ks01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<01N×f|f:1N1-1 onto1N
320 ssnum 01N×f|f:1N1-1 onto1Ndomcardks01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<01N×f|f:1N1-1 onto1Nks01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<domcard
321 310 319 320 mp2an ks01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<domcard
322 fveq2 s=gk1sts=1stgk
323 322 rneqd s=gkran1sts=ran1stgk
324 323 sseq1d s=gkran1sts0..^kran1stgk0..^k
325 fveq2 s=gk2nds=2ndgk
326 325 imaeq1d s=gk2nds1j=2ndgk1j
327 326 xpeq1d s=gk2nds1j×1=2ndgk1j×1
328 325 imaeq1d s=gk2ndsj+1N=2ndgkj+1N
329 328 xpeq1d s=gk2ndsj+1N×0=2ndgkj+1N×0
330 327 329 uneq12d s=gk2nds1j×12ndsj+1N×0=2ndgk1j×12ndgkj+1N×0
331 322 330 oveq12d s=gk1sts+f2nds1j×12ndsj+1N×0=1stgk+f2ndgk1j×12ndgkj+1N×0
332 331 fvoveq1d s=gkF1sts+f2nds1j×12ndsj+1N×0÷f1N×k=F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×k
333 332 fveq1d s=gkF1sts+f2nds1j×12ndsj+1N×0÷f1N×kb=F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb
334 333 breq2d s=gk0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb
335 331 fveq1d s=gk1sts+f2nds1j×12ndsj+1N×0b=1stgk+f2ndgk1j×12ndgkj+1N×0b
336 335 neeq1d s=gk1sts+f2nds1j×12ndsj+1N×0b01stgk+f2ndgk1j×12ndgkj+1N×0b0
337 334 336 anbi12d s=gk0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b00F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0
338 337 ralbidv s=gkb1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0
339 338 rabbidv s=gka1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0=a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0
340 339 uneq2d s=gk0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0=0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0
341 340 supeq1d s=gksup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
342 341 eqeq2d s=gki=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<i=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
343 342 rexbidv s=gkj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<j0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
344 343 ralbidv s=gki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<i0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
345 324 344 anbi12d s=gkran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<ran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
346 345 ac6num Vks01N×f|f:1N1-1 onto1N|ran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<domcardks01N×f|f:1N1-1 onto1Nran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<gg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
347 287 321 346 mp3an12 ks01N×f|f:1N1-1 onto1Nran1sts0..^ki0Nj0Ni=sup0a1N|b1a0F1sts+f2nds1j×12ndsj+1N×0÷f1N×kb1sts+f2nds1j×12ndsj+1N×0b0<gg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
348 286 347 syl φgg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
349 1 ad2antrr φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<N
350 4 ad2antrr φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<FR𝑡ICnR
351 eqid F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pn=F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pn
352 simplr φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<g:01N×f|f:1N1-1 onto1N
353 simpl ran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<ran1stgk0..^k
354 353 ralimi kran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<kran1stgk0..^k
355 354 adantl φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<kran1stgk0..^k
356 2fveq3 k=p1stgk=1stgp
357 356 rneqd k=pran1stgk=ran1stgp
358 oveq2 k=p0..^k=0..^p
359 357 358 sseq12d k=pran1stgk0..^kran1stgp0..^p
360 359 rspccva kran1stgk0..^kpran1stgp0..^p
361 355 360 sylan φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<pran1stgp0..^p
362 simpll φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<φ
363 362 5 sylan φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<n1NzIzn=0Fzn0
364 eqid 1stgp+f2ndgp1m×12ndgpm+1N×0=1stgp+f2ndgp1m×12ndgpm+1N×0
365 simpr ran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<i0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
366 365 ralimi kran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
367 366 adantl φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<
368 2fveq3 k=p2ndgk=2ndgp
369 368 imaeq1d k=p2ndgk1j=2ndgp1j
370 369 xpeq1d k=p2ndgk1j×1=2ndgp1j×1
371 368 imaeq1d k=p2ndgkj+1N=2ndgpj+1N
372 371 xpeq1d k=p2ndgkj+1N×0=2ndgpj+1N×0
373 370 372 uneq12d k=p2ndgk1j×12ndgkj+1N×0=2ndgp1j×12ndgpj+1N×0
374 356 373 oveq12d k=p1stgk+f2ndgk1j×12ndgkj+1N×0=1stgp+f2ndgp1j×12ndgpj+1N×0
375 sneq k=pk=p
376 375 xpeq2d k=p1N×k=1N×p
377 374 376 oveq12d k=p1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×k=1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×p
378 377 fveq2d k=pF1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×k=F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×p
379 378 fveq1d k=pF1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb=F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb
380 379 breq2d k=p0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb
381 374 fveq1d k=p1stgk+f2ndgk1j×12ndgkj+1N×0b=1stgp+f2ndgp1j×12ndgpj+1N×0b
382 381 neeq1d k=p1stgk+f2ndgk1j×12ndgkj+1N×0b01stgp+f2ndgp1j×12ndgpj+1N×0b0
383 380 382 anbi12d k=p0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b00F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0
384 383 ralbidv k=pb1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0
385 384 rabbidv k=pa1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0=a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0
386 385 uneq2d k=p0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0=0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0
387 386 supeq1d k=psup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<
388 387 eqeq2d k=pi=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<i=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<
389 388 rexbidv k=pj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<j0Ni=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<
390 eqeq1 i=qi=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<q=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<
391 390 rexbidv i=qj0Ni=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<j0Nq=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<
392 oveq2 j=m1j=1m
393 392 imaeq2d j=m2ndgp1j=2ndgp1m
394 393 xpeq1d j=m2ndgp1j×1=2ndgp1m×1
395 oveq1 j=mj+1=m+1
396 395 oveq1d j=mj+1N=m+1N
397 396 imaeq2d j=m2ndgpj+1N=2ndgpm+1N
398 397 xpeq1d j=m2ndgpj+1N×0=2ndgpm+1N×0
399 394 398 uneq12d j=m2ndgp1j×12ndgpj+1N×0=2ndgp1m×12ndgpm+1N×0
400 399 oveq2d j=m1stgp+f2ndgp1j×12ndgpj+1N×0=1stgp+f2ndgp1m×12ndgpm+1N×0
401 400 fvoveq1d j=mF1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×p=F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×p
402 401 fveq1d j=mF1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb=F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb
403 402 breq2d j=m0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb
404 400 fveq1d j=m1stgp+f2ndgp1j×12ndgpj+1N×0b=1stgp+f2ndgp1m×12ndgpm+1N×0b
405 404 neeq1d j=m1stgp+f2ndgp1j×12ndgpj+1N×0b01stgp+f2ndgp1m×12ndgpm+1N×0b0
406 403 405 anbi12d j=m0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b00F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0
407 406 ralbidv j=mb1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0b1a0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0
408 407 rabbidv j=ma1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0=a1N|b1a0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0
409 408 uneq2d j=m0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0=0a1N|b1a0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0
410 409 supeq1d j=msup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<=sup0a1N|b1a0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0<
411 410 eqeq2d j=mq=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<q=sup0a1N|b1a0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0<
412 411 cbvrexvw j0Nq=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<m0Nq=sup0a1N|b1a0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0<
413 391 412 bitrdi i=qj0Ni=sup0a1N|b1a0F1stgp+f2ndgp1j×12ndgpj+1N×0÷f1N×pb1stgp+f2ndgp1j×12ndgpj+1N×0b0<m0Nq=sup0a1N|b1a0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0<
414 389 413 rspc2v pq0Nki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<m0Nq=sup0a1N|b1a0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0<
415 367 414 mpan9 φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<pq0Nm0Nq=sup0a1N|b1a0F1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pb1stgp+f2ndgp1m×12ndgpm+1N×0b0<
416 349 2 3 350 363 364 352 361 415 poimirlem31 φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<pn1Nr-1m0N0rF1stgp+f2ndgp1m×12ndgpm+1N×0÷f1N×pn
417 349 2 3 350 351 352 361 416 poimirlem30 φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<cIn1NvR𝑡Icvr-1zv0rFzn
418 417 anasss φg:01N×f|f:1N1-1 onto1Nkran1stgk0..^ki0Nj0Ni=sup0a1N|b1a0F1stgk+f2ndgk1j×12ndgkj+1N×0÷f1N×kb1stgk+f2ndgk1j×12ndgkj+1N×0b0<cIn1NvR𝑡Icvr-1zv0rFzn
419 348 418 exlimddv φcIn1NvR𝑡Icvr-1zv0rFzn