Metamath Proof Explorer


Theorem poimirlem32

Description: Lemma for poimir , combining poimirlem28 , poimirlem30 , and poimirlem31 to get Equation (1) of Kulpa p. 547. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φ N
poimir.i I = 0 1 1 N
poimir.r R = 𝑡 1 N × topGen ran .
poimir.1 φ F R 𝑡 I Cn R
poimir.2 φ n 1 N z I z n = 0 F z n 0
poimir.3 φ n 1 N z I z n = 1 0 F z n
Assertion poimirlem32 φ c I n 1 N v R 𝑡 I c v r -1 z v 0 r F z n

Proof

Step Hyp Ref Expression
1 poimir.0 φ N
2 poimir.i I = 0 1 1 N
3 poimir.r R = 𝑡 1 N × topGen ran .
4 poimir.1 φ F R 𝑡 I Cn R
5 poimir.2 φ n 1 N z I z n = 0 F z n 0
6 poimir.3 φ n 1 N z I z n = 1 0 F z n
7 1 adantr φ k N
8 fvoveq1 p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 F p ÷ f 1 N × k = F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k
9 8 fveq1d p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 F p ÷ f 1 N × k b = F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b
10 9 breq2d p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 0 F p ÷ f 1 N × k b 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b
11 fveq1 p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 p b = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b
12 11 neeq1d p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 p b 0 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0
13 10 12 anbi12d p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 0 F p ÷ f 1 N × k b p b 0 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0
14 13 ralbidv p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 1 a 0 F p ÷ f 1 N × k b p b 0 b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0
15 14 rabbidv p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 = a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0
16 15 uneq2d p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 = 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0
17 16 supeq1d p = 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 <
18 1 nnnn0d φ N 0
19 0elfz N 0 0 0 N
20 18 19 syl φ 0 0 N
21 20 snssd φ 0 0 N
22 ssrab2 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 1 N
23 fz1ssfz0 1 N 0 N
24 22 23 sstri a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 0 N
25 24 a1i φ a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 0 N
26 21 25 unssd φ 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 0 N
27 ltso < Or
28 snfi 0 Fin
29 fzfi 1 N Fin
30 rabfi 1 N Fin a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 Fin
31 29 30 ax-mp a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 Fin
32 unfi 0 Fin a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 Fin 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 Fin
33 28 31 32 mp2an 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 Fin
34 c0ex 0 V
35 34 snid 0 0
36 elun1 0 0 0 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
37 ne0i 0 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
38 35 36 37 mp2b 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
39 0red φ N 0
40 39 snssd φ N 0
41 1 40 ax-mp 0
42 elfzelz n 1 N n
43 42 ssriv 1 N
44 zssre
45 43 44 sstri 1 N
46 22 45 sstri a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
47 41 46 unssi 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
48 33 38 47 3pm3.2i 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 Fin 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
49 fisupcl < Or 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 Fin 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
50 27 48 49 mp2an sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
51 ssel 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 0 N sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < 0 N
52 26 50 51 mpisyl φ sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < 0 N
53 52 ad2antrr φ k p : 1 N 0 k sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < 0 N
54 elfznn n 1 N n
55 nngt0 n 0 < n
56 55 adantr n p n = 0 0 < n
57 simpr 0 F p ÷ f 1 N × k b p b 0 p b 0
58 57 ralimi b 1 s 0 F p ÷ f 1 N × k b p b 0 b 1 s p b 0
59 elfznn s 1 N s
60 nnre n n
61 nnre s s
62 lenlt n s n s ¬ s < n
63 60 61 62 syl2an n s n s ¬ s < n
64 elfz1b n 1 s n s n s
65 64 biimpri n s n s n 1 s
66 65 3expia n s n s n 1 s
67 63 66 sylbird n s ¬ s < n n 1 s
68 fveq2 b = n p b = p n
69 68 eqeq1d b = n p b = 0 p n = 0
70 69 rspcev n 1 s p n = 0 b 1 s p b = 0
71 70 expcom p n = 0 n 1 s b 1 s p b = 0
72 67 71 sylan9 n s p n = 0 ¬ s < n b 1 s p b = 0
73 72 an32s n p n = 0 s ¬ s < n b 1 s p b = 0
74 nne ¬ p b 0 p b = 0
75 74 rexbii b 1 s ¬ p b 0 b 1 s p b = 0
76 rexnal b 1 s ¬ p b 0 ¬ b 1 s p b 0
77 75 76 bitr3i b 1 s p b = 0 ¬ b 1 s p b 0
78 73 77 syl6ib n p n = 0 s ¬ s < n ¬ b 1 s p b 0
79 78 con4d n p n = 0 s b 1 s p b 0 s < n
80 59 79 sylan2 n p n = 0 s 1 N b 1 s p b 0 s < n
81 58 80 syl5 n p n = 0 s 1 N b 1 s 0 F p ÷ f 1 N × k b p b 0 s < n
82 81 ralrimiva n p n = 0 s 1 N b 1 s 0 F p ÷ f 1 N × k b p b 0 s < n
83 ralunb s 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 s < n s 0 s < n s a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 s < n
84 breq1 s = 0 s < n 0 < n
85 34 84 ralsn s 0 s < n 0 < n
86 oveq2 a = s 1 a = 1 s
87 86 raleqdv a = s b 1 a 0 F p ÷ f 1 N × k b p b 0 b 1 s 0 F p ÷ f 1 N × k b p b 0
88 87 ralrab s a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 s < n s 1 N b 1 s 0 F p ÷ f 1 N × k b p b 0 s < n
89 85 88 anbi12i s 0 s < n s a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 s < n 0 < n s 1 N b 1 s 0 F p ÷ f 1 N × k b p b 0 s < n
90 83 89 bitri s 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 s < n 0 < n s 1 N b 1 s 0 F p ÷ f 1 N × k b p b 0 s < n
91 56 82 90 sylanbrc n p n = 0 s 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 s < n
92 breq1 s = sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < s < n sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < < n
93 92 rspcva sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 s 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 s < n sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < < n
94 50 91 93 sylancr n p n = 0 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < < n
95 54 94 sylan n 1 N p n = 0 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < < n
96 95 3adant2 n 1 N p : 1 N 0 k p n = 0 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < < n
97 96 adantl φ k n 1 N p : 1 N 0 k p n = 0 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < < n
98 42 zred n 1 N n
99 98 3ad2ant1 n 1 N p : 1 N 0 k p n = k n
100 99 adantl φ k n 1 N p : 1 N 0 k p n = k n
101 simpr1 φ k n 1 N p : 1 N 0 k p n = k n 1 N
102 simpll φ k n 1 N p : 1 N 0 k p n = k φ
103 simplr φ k n 1 N p : 1 N 0 k k
104 elfzelz i 0 k i
105 104 zred i 0 k i
106 nndivre i k i k
107 105 106 sylan i 0 k k i k
108 elfzle1 i 0 k 0 i
109 105 108 jca i 0 k i 0 i
110 nnrp k k +
111 110 rpregt0d k k 0 < k
112 divge0 i 0 i k 0 < k 0 i k
113 109 111 112 syl2an i 0 k k 0 i k
114 elfzle2 i 0 k i k
115 114 adantr i 0 k k i k
116 105 adantr i 0 k k i
117 1red i 0 k k 1
118 110 adantl i 0 k k k +
119 116 117 118 ledivmuld i 0 k k i k 1 i k 1
120 nncn k k
121 120 mulid1d k k 1 = k
122 121 breq2d k i k 1 i k
123 122 adantl i 0 k k i k 1 i k
124 119 123 bitrd i 0 k k i k 1 i k
125 115 124 mpbird i 0 k k i k 1
126 elicc01 i k 0 1 i k 0 i k i k 1
127 107 113 125 126 syl3anbrc i 0 k k i k 0 1
128 127 ancoms k i 0 k i k 0 1
129 elsni j k j = k
130 129 oveq2d j k i j = i k
131 130 eleq1d j k i j 0 1 i k 0 1
132 128 131 syl5ibrcom k i 0 k j k i j 0 1
133 132 impr k i 0 k j k i j 0 1
134 103 133 sylan φ k n 1 N p : 1 N 0 k i 0 k j k i j 0 1
135 simprr φ k n 1 N p : 1 N 0 k p : 1 N 0 k
136 vex k V
137 136 fconst 1 N × k : 1 N k
138 137 a1i φ k n 1 N p : 1 N 0 k 1 N × k : 1 N k
139 fzfid φ k n 1 N p : 1 N 0 k 1 N Fin
140 inidm 1 N 1 N = 1 N
141 134 135 138 139 139 140 off φ k n 1 N p : 1 N 0 k p ÷ f 1 N × k : 1 N 0 1
142 2 eleq2i p ÷ f 1 N × k I p ÷ f 1 N × k 0 1 1 N
143 ovex 0 1 V
144 ovex 1 N V
145 143 144 elmap p ÷ f 1 N × k 0 1 1 N p ÷ f 1 N × k : 1 N 0 1
146 142 145 bitri p ÷ f 1 N × k I p ÷ f 1 N × k : 1 N 0 1
147 141 146 sylibr φ k n 1 N p : 1 N 0 k p ÷ f 1 N × k I
148 147 3adantr3 φ k n 1 N p : 1 N 0 k p n = k p ÷ f 1 N × k I
149 3anass n 1 N p : 1 N 0 k p n = k n 1 N p : 1 N 0 k p n = k
150 ancom n 1 N p : 1 N 0 k p n = k p : 1 N 0 k p n = k n 1 N
151 149 150 bitri n 1 N p : 1 N 0 k p n = k p : 1 N 0 k p n = k n 1 N
152 ffn p : 1 N 0 k p Fn 1 N
153 152 ad2antrl φ k p : 1 N 0 k p n = k p Fn 1 N
154 fnconstg k V 1 N × k Fn 1 N
155 136 154 mp1i φ k p : 1 N 0 k p n = k 1 N × k Fn 1 N
156 fzfid φ k p : 1 N 0 k p n = k 1 N Fin
157 simplrr φ k p : 1 N 0 k p n = k n 1 N p n = k
158 136 fvconst2 n 1 N 1 N × k n = k
159 158 adantl φ k p : 1 N 0 k p n = k n 1 N 1 N × k n = k
160 153 155 156 156 140 157 159 ofval φ k p : 1 N 0 k p n = k n 1 N p ÷ f 1 N × k n = k k
161 160 anasss φ k p : 1 N 0 k p n = k n 1 N p ÷ f 1 N × k n = k k
162 151 161 sylan2b φ k n 1 N p : 1 N 0 k p n = k p ÷ f 1 N × k n = k k
163 nnne0 k k 0
164 120 163 dividd k k k = 1
165 164 ad2antlr φ k n 1 N p : 1 N 0 k p n = k k k = 1
166 162 165 eqtrd φ k n 1 N p : 1 N 0 k p n = k p ÷ f 1 N × k n = 1
167 ovex p ÷ f 1 N × k V
168 eleq1 z = p ÷ f 1 N × k z I p ÷ f 1 N × k I
169 fveq1 z = p ÷ f 1 N × k z n = p ÷ f 1 N × k n
170 169 eqeq1d z = p ÷ f 1 N × k z n = 1 p ÷ f 1 N × k n = 1
171 168 170 3anbi23d z = p ÷ f 1 N × k n 1 N z I z n = 1 n 1 N p ÷ f 1 N × k I p ÷ f 1 N × k n = 1
172 171 anbi2d z = p ÷ f 1 N × k φ n 1 N z I z n = 1 φ n 1 N p ÷ f 1 N × k I p ÷ f 1 N × k n = 1
173 fveq2 z = p ÷ f 1 N × k F z = F p ÷ f 1 N × k
174 173 fveq1d z = p ÷ f 1 N × k F z n = F p ÷ f 1 N × k n
175 174 breq2d z = p ÷ f 1 N × k 0 F z n 0 F p ÷ f 1 N × k n
176 172 175 imbi12d z = p ÷ f 1 N × k φ n 1 N z I z n = 1 0 F z n φ n 1 N p ÷ f 1 N × k I p ÷ f 1 N × k n = 1 0 F p ÷ f 1 N × k n
177 167 176 6 vtocl φ n 1 N p ÷ f 1 N × k I p ÷ f 1 N × k n = 1 0 F p ÷ f 1 N × k n
178 102 101 148 166 177 syl13anc φ k n 1 N p : 1 N 0 k p n = k 0 F p ÷ f 1 N × k n
179 simpr φ k k
180 simp3 n 1 N p : 1 N 0 k p n = k p n = k
181 neeq1 p n = k p n 0 k 0
182 163 181 syl5ibrcom k p n = k p n 0
183 182 imp k p n = k p n 0
184 179 180 183 syl2an φ k n 1 N p : 1 N 0 k p n = k p n 0
185 vex n V
186 fveq2 b = n F p ÷ f 1 N × k b = F p ÷ f 1 N × k n
187 186 breq2d b = n 0 F p ÷ f 1 N × k b 0 F p ÷ f 1 N × k n
188 68 neeq1d b = n p b 0 p n 0
189 187 188 anbi12d b = n 0 F p ÷ f 1 N × k b p b 0 0 F p ÷ f 1 N × k n p n 0
190 185 189 ralsn b n 0 F p ÷ f 1 N × k b p b 0 0 F p ÷ f 1 N × k n p n 0
191 178 184 190 sylanbrc φ k n 1 N p : 1 N 0 k p n = k b n 0 F p ÷ f 1 N × k b p b 0
192 42 zcnd n 1 N n
193 1cnd n 1 N 1
194 192 193 subeq0ad n 1 N n 1 = 0 n = 1
195 194 biimpcd n 1 = 0 n 1 N n = 1
196 1z 1
197 fzsn 1 1 1 = 1
198 196 197 ax-mp 1 1 = 1
199 oveq2 n = 1 1 n = 1 1
200 sneq n = 1 n = 1
201 198 199 200 3eqtr4a n = 1 1 n = n
202 201 raleqdv n = 1 b 1 n 0 F p ÷ f 1 N × k b p b 0 b n 0 F p ÷ f 1 N × k b p b 0
203 202 biimprd n = 1 b n 0 F p ÷ f 1 N × k b p b 0 b 1 n 0 F p ÷ f 1 N × k b p b 0
204 195 203 syl6 n 1 = 0 n 1 N b n 0 F p ÷ f 1 N × k b p b 0 b 1 n 0 F p ÷ f 1 N × k b p b 0
205 ralun b 1 n 1 0 F p ÷ f 1 N × k b p b 0 b n 0 F p ÷ f 1 N × k b p b 0 b 1 n 1 n 0 F p ÷ f 1 N × k b p b 0
206 npcan1 n n - 1 + 1 = n
207 192 206 syl n 1 N n - 1 + 1 = n
208 elfzuz n 1 N n 1
209 207 208 eqeltrd n 1 N n - 1 + 1 1
210 peano2zm n n 1
211 uzid n 1 n 1 n 1
212 peano2uz n 1 n 1 n - 1 + 1 n 1
213 42 210 211 212 4syl n 1 N n - 1 + 1 n 1
214 207 213 eqeltrrd n 1 N n n 1
215 fzsplit2 n - 1 + 1 1 n n 1 1 n = 1 n 1 n - 1 + 1 n
216 209 214 215 syl2anc n 1 N 1 n = 1 n 1 n - 1 + 1 n
217 207 oveq1d n 1 N n - 1 + 1 n = n n
218 fzsn n n n = n
219 42 218 syl n 1 N n n = n
220 217 219 eqtrd n 1 N n - 1 + 1 n = n
221 220 uneq2d n 1 N 1 n 1 n - 1 + 1 n = 1 n 1 n
222 216 221 eqtrd n 1 N 1 n = 1 n 1 n
223 222 raleqdv n 1 N b 1 n 0 F p ÷ f 1 N × k b p b 0 b 1 n 1 n 0 F p ÷ f 1 N × k b p b 0
224 205 223 syl5ibr n 1 N b 1 n 1 0 F p ÷ f 1 N × k b p b 0 b n 0 F p ÷ f 1 N × k b p b 0 b 1 n 0 F p ÷ f 1 N × k b p b 0
225 224 expd n 1 N b 1 n 1 0 F p ÷ f 1 N × k b p b 0 b n 0 F p ÷ f 1 N × k b p b 0 b 1 n 0 F p ÷ f 1 N × k b p b 0
226 225 com12 b 1 n 1 0 F p ÷ f 1 N × k b p b 0 n 1 N b n 0 F p ÷ f 1 N × k b p b 0 b 1 n 0 F p ÷ f 1 N × k b p b 0
227 226 adantl n 1 1 N b 1 n 1 0 F p ÷ f 1 N × k b p b 0 n 1 N b n 0 F p ÷ f 1 N × k b p b 0 b 1 n 0 F p ÷ f 1 N × k b p b 0
228 204 227 jaoi n 1 = 0 n 1 1 N b 1 n 1 0 F p ÷ f 1 N × k b p b 0 n 1 N b n 0 F p ÷ f 1 N × k b p b 0 b 1 n 0 F p ÷ f 1 N × k b p b 0
229 228 imdistand n 1 = 0 n 1 1 N b 1 n 1 0 F p ÷ f 1 N × k b p b 0 n 1 N b n 0 F p ÷ f 1 N × k b p b 0 n 1 N b 1 n 0 F p ÷ f 1 N × k b p b 0
230 229 com12 n 1 N b n 0 F p ÷ f 1 N × k b p b 0 n 1 = 0 n 1 1 N b 1 n 1 0 F p ÷ f 1 N × k b p b 0 n 1 N b 1 n 0 F p ÷ f 1 N × k b p b 0
231 elun n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 1 0 n 1 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
232 ovex n 1 V
233 232 elsn n 1 0 n 1 = 0
234 oveq2 a = n 1 1 a = 1 n 1
235 234 raleqdv a = n 1 b 1 a 0 F p ÷ f 1 N × k b p b 0 b 1 n 1 0 F p ÷ f 1 N × k b p b 0
236 235 elrab n 1 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 1 1 N b 1 n 1 0 F p ÷ f 1 N × k b p b 0
237 233 236 orbi12i n 1 0 n 1 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 1 = 0 n 1 1 N b 1 n 1 0 F p ÷ f 1 N × k b p b 0
238 231 237 bitri n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 1 = 0 n 1 1 N b 1 n 1 0 F p ÷ f 1 N × k b p b 0
239 oveq2 a = n 1 a = 1 n
240 239 raleqdv a = n b 1 a 0 F p ÷ f 1 N × k b p b 0 b 1 n 0 F p ÷ f 1 N × k b p b 0
241 240 elrab n a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 1 N b 1 n 0 F p ÷ f 1 N × k b p b 0
242 230 238 241 3imtr4g n 1 N b n 0 F p ÷ f 1 N × k b p b 0 n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
243 elun2 n a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
244 242 243 syl6 n 1 N b n 0 F p ÷ f 1 N × k b p b 0 n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
245 101 191 244 syl2anc φ k n 1 N p : 1 N 0 k p n = k n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
246 fimaxre2 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 Fin i j 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 j i
247 47 33 246 mp2an i j 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 j i
248 47 38 247 3pm3.2i 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 i j 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 j i
249 248 suprubii n 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
250 245 249 syl6 φ k n 1 N p : 1 N 0 k p n = k n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
251 ltm1 n n 1 < n
252 peano2rem n n 1
253 47 50 sselii sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
254 ltletr n 1 n sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1 < n n sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1 < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
255 253 254 mp3an3 n 1 n n 1 < n n sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1 < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
256 252 255 mpancom n n 1 < n n sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1 < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
257 251 256 mpand n n sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1 < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
258 100 250 257 sylsyld φ k n 1 N p : 1 N 0 k p n = k n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 1 < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
259 253 ltnri ¬ sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
260 breq1 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < = n 1 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1 < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
261 259 260 mtbii sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < = n 1 ¬ n 1 < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 <
262 261 necon2ai n 1 < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1
263 258 262 syl6 φ k n 1 N p : 1 N 0 k p n = k n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1
264 eleq1 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < = n 1 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
265 50 264 mpbii sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < = n 1 n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0
266 265 necon3bi ¬ n 1 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1
267 263 266 pm2.61d1 φ k n 1 N p : 1 N 0 k p n = k sup 0 a 1 N | b 1 a 0 F p ÷ f 1 N × k b p b 0 < n 1
268 7 17 53 97 267 179 poimirlem28 φ k s 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 <
269 nn0ex 0 V
270 fzo0ssnn0 0 ..^ k 0
271 mapss 0 V 0 ..^ k 0 0 ..^ k 1 N 0 1 N
272 269 270 271 mp2an 0 ..^ k 1 N 0 1 N
273 xpss1 0 ..^ k 1 N 0 1 N 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N 0 1 N × f | f : 1 N 1-1 onto 1 N
274 272 273 ax-mp 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N 0 1 N × f | f : 1 N 1-1 onto 1 N
275 274 sseli s 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N s 0 1 N × f | f : 1 N 1-1 onto 1 N
276 xp1st s 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N 1 st s 0 ..^ k 1 N
277 elmapi 1 st s 0 ..^ k 1 N 1 st s : 1 N 0 ..^ k
278 frn 1 st s : 1 N 0 ..^ k ran 1 st s 0 ..^ k
279 276 277 278 3syl s 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k
280 275 279 jca s 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k
281 280 anim1i s 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 <
282 anass s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 <
283 281 282 sylib s 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 <
284 283 reximi2 s 0 ..^ k 1 N × f | f : 1 N 1-1 onto 1 N i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 <
285 268 284 syl φ k s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 <
286 285 ralrimiva φ k s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 <
287 nnex V
288 144 269 ixpconst n = 1 N 0 = 0 1 N
289 omelon ω On
290 nn0ennn 0
291 nnenom ω
292 290 291 entr2i ω 0
293 isnumi ω On ω 0 0 dom card
294 289 292 293 mp2an 0 dom card
295 294 rgenw n 1 N 0 dom card
296 finixpnum 1 N Fin n 1 N 0 dom card n = 1 N 0 dom card
297 29 295 296 mp2an n = 1 N 0 dom card
298 288 297 eqeltrri 0 1 N dom card
299 144 144 mapval 1 N 1 N = f | f : 1 N 1 N
300 mapfi 1 N Fin 1 N Fin 1 N 1 N Fin
301 29 29 300 mp2an 1 N 1 N Fin
302 299 301 eqeltrri f | f : 1 N 1 N Fin
303 f1of f : 1 N 1-1 onto 1 N f : 1 N 1 N
304 303 ss2abi f | f : 1 N 1-1 onto 1 N f | f : 1 N 1 N
305 ssfi f | f : 1 N 1 N Fin f | f : 1 N 1-1 onto 1 N f | f : 1 N 1 N f | f : 1 N 1-1 onto 1 N Fin
306 302 304 305 mp2an f | f : 1 N 1-1 onto 1 N Fin
307 finnum f | f : 1 N 1-1 onto 1 N Fin f | f : 1 N 1-1 onto 1 N dom card
308 306 307 ax-mp f | f : 1 N 1-1 onto 1 N dom card
309 xpnum 0 1 N dom card f | f : 1 N 1-1 onto 1 N dom card 0 1 N × f | f : 1 N 1-1 onto 1 N dom card
310 298 308 309 mp2an 0 1 N × f | f : 1 N 1-1 onto 1 N dom card
311 ssrab2 s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < 0 1 N × f | f : 1 N 1-1 onto 1 N
312 311 rgenw k s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < 0 1 N × f | f : 1 N 1-1 onto 1 N
313 ss2iun k s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < 0 1 N × f | f : 1 N 1-1 onto 1 N k s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < k 0 1 N × f | f : 1 N 1-1 onto 1 N
314 312 313 ax-mp k s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < k 0 1 N × f | f : 1 N 1-1 onto 1 N
315 1nn 1
316 ne0i 1
317 iunconst k 0 1 N × f | f : 1 N 1-1 onto 1 N = 0 1 N × f | f : 1 N 1-1 onto 1 N
318 315 316 317 mp2b k 0 1 N × f | f : 1 N 1-1 onto 1 N = 0 1 N × f | f : 1 N 1-1 onto 1 N
319 314 318 sseqtri k s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < 0 1 N × f | f : 1 N 1-1 onto 1 N
320 ssnum 0 1 N × f | f : 1 N 1-1 onto 1 N dom card k s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < 0 1 N × f | f : 1 N 1-1 onto 1 N k s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < dom card
321 310 319 320 mp2an k s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < dom card
322 fveq2 s = g k 1 st s = 1 st g k
323 322 rneqd s = g k ran 1 st s = ran 1 st g k
324 323 sseq1d s = g k ran 1 st s 0 ..^ k ran 1 st g k 0 ..^ k
325 fveq2 s = g k 2 nd s = 2 nd g k
326 325 imaeq1d s = g k 2 nd s 1 j = 2 nd g k 1 j
327 326 xpeq1d s = g k 2 nd s 1 j × 1 = 2 nd g k 1 j × 1
328 325 imaeq1d s = g k 2 nd s j + 1 N = 2 nd g k j + 1 N
329 328 xpeq1d s = g k 2 nd s j + 1 N × 0 = 2 nd g k j + 1 N × 0
330 327 329 uneq12d s = g k 2 nd s 1 j × 1 2 nd s j + 1 N × 0 = 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0
331 322 330 oveq12d s = g k 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 = 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0
332 331 fvoveq1d s = g k F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k = F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k
333 332 fveq1d s = g k F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b = F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b
334 333 breq2d s = g k 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b
335 331 fveq1d s = g k 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b = 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b
336 335 neeq1d s = g k 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0
337 334 336 anbi12d s = g k 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0
338 337 ralbidv s = g k b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0
339 338 rabbidv s = g k a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 = a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0
340 339 uneq2d s = g k 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 = 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0
341 340 supeq1d s = g k sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
342 341 eqeq2d s = g k i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
343 342 rexbidv s = g k j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
344 343 ralbidv s = g k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
345 324 344 anbi12d s = g k ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
346 345 ac6num V k s 0 1 N × f | f : 1 N 1-1 onto 1 N | ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < dom card k s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < g g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
347 287 321 346 mp3an12 k s 0 1 N × f | f : 1 N 1-1 onto 1 N ran 1 st s 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 ÷ f 1 N × k b 1 st s + f 2 nd s 1 j × 1 2 nd s j + 1 N × 0 b 0 < g g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
348 286 347 syl φ g g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
349 1 ad2antrr φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < N
350 4 ad2antrr φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < F R 𝑡 I Cn R
351 eqid F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p n = F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p n
352 simplr φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < g : 0 1 N × f | f : 1 N 1-1 onto 1 N
353 simpl ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < ran 1 st g k 0 ..^ k
354 353 ralimi k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < k ran 1 st g k 0 ..^ k
355 354 adantl φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < k ran 1 st g k 0 ..^ k
356 2fveq3 k = p 1 st g k = 1 st g p
357 356 rneqd k = p ran 1 st g k = ran 1 st g p
358 oveq2 k = p 0 ..^ k = 0 ..^ p
359 357 358 sseq12d k = p ran 1 st g k 0 ..^ k ran 1 st g p 0 ..^ p
360 359 rspccva k ran 1 st g k 0 ..^ k p ran 1 st g p 0 ..^ p
361 355 360 sylan φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < p ran 1 st g p 0 ..^ p
362 simpll φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < φ
363 362 5 sylan φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < n 1 N z I z n = 0 F z n 0
364 eqid 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 = 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0
365 simpr ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
366 365 ralimi k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
367 366 adantl φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 <
368 2fveq3 k = p 2 nd g k = 2 nd g p
369 368 imaeq1d k = p 2 nd g k 1 j = 2 nd g p 1 j
370 369 xpeq1d k = p 2 nd g k 1 j × 1 = 2 nd g p 1 j × 1
371 368 imaeq1d k = p 2 nd g k j + 1 N = 2 nd g p j + 1 N
372 371 xpeq1d k = p 2 nd g k j + 1 N × 0 = 2 nd g p j + 1 N × 0
373 370 372 uneq12d k = p 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 = 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0
374 356 373 oveq12d k = p 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 = 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0
375 sneq k = p k = p
376 375 xpeq2d k = p 1 N × k = 1 N × p
377 374 376 oveq12d k = p 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k = 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p
378 377 fveq2d k = p F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k = F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p
379 378 fveq1d k = p F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b = F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b
380 379 breq2d k = p 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b
381 374 fveq1d k = p 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b = 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b
382 381 neeq1d k = p 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0
383 380 382 anbi12d k = p 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0
384 383 ralbidv k = p b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0
385 384 rabbidv k = p a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 = a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0
386 385 uneq2d k = p 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 = 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0
387 386 supeq1d k = p sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 <
388 387 eqeq2d k = p i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < i = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 <
389 388 rexbidv k = p j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 <
390 eqeq1 i = q i = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 < q = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 <
391 390 rexbidv i = q j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 < j 0 N q = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 <
392 oveq2 j = m 1 j = 1 m
393 392 imaeq2d j = m 2 nd g p 1 j = 2 nd g p 1 m
394 393 xpeq1d j = m 2 nd g p 1 j × 1 = 2 nd g p 1 m × 1
395 oveq1 j = m j + 1 = m + 1
396 395 oveq1d j = m j + 1 N = m + 1 N
397 396 imaeq2d j = m 2 nd g p j + 1 N = 2 nd g p m + 1 N
398 397 xpeq1d j = m 2 nd g p j + 1 N × 0 = 2 nd g p m + 1 N × 0
399 394 398 uneq12d j = m 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 = 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0
400 399 oveq2d j = m 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 = 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0
401 400 fvoveq1d j = m F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p = F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p
402 401 fveq1d j = m F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b = F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b
403 402 breq2d j = m 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b
404 400 fveq1d j = m 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b = 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b
405 404 neeq1d j = m 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0
406 403 405 anbi12d j = m 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0
407 406 ralbidv j = m b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 b 1 a 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0
408 407 rabbidv j = m a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 = a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0
409 408 uneq2d j = m 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 = 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0
410 409 supeq1d j = m sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 < = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0 <
411 410 eqeq2d j = m q = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 < q = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0 <
412 411 cbvrexvw j 0 N q = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 < m 0 N q = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0 <
413 391 412 bitrdi i = q j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 j × 1 2 nd g p j + 1 N × 0 b 0 < m 0 N q = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0 <
414 389 413 rspc2v p q 0 N k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < m 0 N q = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0 <
415 367 414 mpan9 φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < p q 0 N m 0 N q = sup 0 a 1 N | b 1 a 0 F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p b 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 b 0 <
416 349 2 3 350 363 364 352 361 415 poimirlem31 φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < p n 1 N r -1 m 0 N 0 r F 1 st g p + f 2 nd g p 1 m × 1 2 nd g p m + 1 N × 0 ÷ f 1 N × p n
417 349 2 3 350 351 352 361 416 poimirlem30 φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < c I n 1 N v R 𝑡 I c v r -1 z v 0 r F z n
418 417 anasss φ g : 0 1 N × f | f : 1 N 1-1 onto 1 N k ran 1 st g k 0 ..^ k i 0 N j 0 N i = sup 0 a 1 N | b 1 a 0 F 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 ÷ f 1 N × k b 1 st g k + f 2 nd g k 1 j × 1 2 nd g k j + 1 N × 0 b 0 < c I n 1 N v R 𝑡 I c v r -1 z v 0 r F z n
419 348 418 exlimddv φ c I n 1 N v R 𝑡 I c v r -1 z v 0 r F z n