Metamath Proof Explorer


Theorem aacllem

Description: Lemma for other theorems about AA . (Contributed by Brendan Leahy, 3-Jan-2020) (Revised by Alexander van der Vekens and David A. Wheeler, 25-Apr-2020)

Ref Expression
Hypotheses aacllem.0 φA
aacllem.1 φN0
aacllem.2 φn1NX
aacllem.3 φk0Nn1NC
aacllem.4 φk0NAk=n=1NCX
Assertion aacllem φA𝔸

Proof

Step Hyp Ref Expression
1 aacllem.0 φA
2 aacllem.1 φN0
3 aacllem.2 φn1NX
4 aacllem.3 φk0Nn1NC
5 aacllem.4 φk0NAk=n=1NCX
6 2 nn0red φN
7 6 ltp1d φN<N+1
8 peano2nn0 N0N+10
9 2 8 syl φN+10
10 9 nn0red φN+1
11 6 10 ltnled φN<N+1¬N+1N
12 7 11 mpbid φ¬N+1N
13 4 3expa φk0Nn1NC
14 13 fmpttd φk0Nn1NC:1N
15 qex V
16 ovex 1NV
17 15 16 elmap n1NC1Nn1NC:1N
18 14 17 sylibr φk0Nn1NC1N
19 18 fmpttd φk0Nn1NC:0N1N
20 eqid fld𝑠=fld𝑠
21 20 qdrng fld𝑠DivRing
22 drngring fld𝑠DivRingfld𝑠Ring
23 21 22 ax-mp fld𝑠Ring
24 fzfi 1NFin
25 eqid fld𝑠freeLMod1N=fld𝑠freeLMod1N
26 25 frlmlmod fld𝑠Ring1NFinfld𝑠freeLMod1NLMod
27 23 24 26 mp2an fld𝑠freeLMod1NLMod
28 fzfi 0NFin
29 20 qrngbas =Basefld𝑠
30 25 29 frlmfibas fld𝑠DivRing1NFin1N=Basefld𝑠freeLMod1N
31 21 24 30 mp2an 1N=Basefld𝑠freeLMod1N
32 25 frlmsca fld𝑠DivRing1NFinfld𝑠=Scalarfld𝑠freeLMod1N
33 21 24 32 mp2an fld𝑠=Scalarfld𝑠freeLMod1N
34 eqid fld𝑠freeLMod1N=fld𝑠freeLMod1N
35 20 qrng0 0=0fld𝑠
36 25 35 frlm0 fld𝑠Ring1NFin1N×0=0fld𝑠freeLMod1N
37 23 24 36 mp2an 1N×0=0fld𝑠freeLMod1N
38 eqid fld𝑠freeLMod0N=fld𝑠freeLMod0N
39 38 29 frlmfibas fld𝑠DivRing0NFin0N=Basefld𝑠freeLMod0N
40 21 28 39 mp2an 0N=Basefld𝑠freeLMod0N
41 31 33 34 37 35 40 islindf4 fld𝑠freeLMod1NLMod0NFink0Nn1NC:0N1Nk0Nn1NCLIndFfld𝑠freeLMod1Nw0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=1N×0w=0N×0
42 27 28 41 mp3an12 k0Nn1NC:0N1Nk0Nn1NCLIndFfld𝑠freeLMod1Nw0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=1N×0w=0N×0
43 19 42 syl φk0Nn1NCLIndFfld𝑠freeLMod1Nw0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=1N×0w=0N×0
44 elmapi w0Nw:0N
45 fzfid φw:0N0NFin
46 fvexd φw:0Nk0NwkV
47 16 mptex n1NCV
48 47 a1i φw:0Nk0Nn1NCV
49 simpr φw:0Nw:0N
50 49 feqmptd φw:0Nw=k0Nwk
51 eqidd φw:0Nk0Nn1NC=k0Nn1NC
52 45 46 48 50 51 offval2 φw:0Nwfld𝑠freeLMod1Nfk0Nn1NC=k0Nwkfld𝑠freeLMod1Nn1NC
53 fzfid φw:0Nk0N1NFin
54 ffvelcdm w:0Nk0Nwk
55 54 adantll φw:0Nk0Nwk
56 18 adantlr φw:0Nk0Nn1NC1N
57 cnfldmul ×=fld
58 20 57 ressmulr V×=fld𝑠
59 15 58 ax-mp ×=fld𝑠
60 25 31 29 53 55 56 34 59 frlmvscafval φw:0Nk0Nwkfld𝑠freeLMod1Nn1NC=1N×wk×fn1NC
61 fvexd φw:0Nk0Nn1NwkV
62 13 adantllr φw:0Nk0Nn1NC
63 fconstmpt 1N×wk=n1Nwk
64 63 a1i φw:0Nk0N1N×wk=n1Nwk
65 eqidd φw:0Nk0Nn1NC=n1NC
66 53 61 62 64 65 offval2 φw:0Nk0N1N×wk×fn1NC=n1NwkC
67 60 66 eqtrd φw:0Nk0Nwkfld𝑠freeLMod1Nn1NC=n1NwkC
68 67 mpteq2dva φw:0Nk0Nwkfld𝑠freeLMod1Nn1NC=k0Nn1NwkC
69 52 68 eqtrd φw:0Nwfld𝑠freeLMod1Nfk0Nn1NC=k0Nn1NwkC
70 69 oveq2d φw:0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=fld𝑠freeLMod1Nk=0Nn1NwkC
71 fzfid φw:0N1NFin
72 23 a1i φw:0Nfld𝑠Ring
73 55 adantlr φw:0Nn1Nk0Nwk
74 13 an32s φn1Nk0NC
75 74 adantllr φw:0Nn1Nk0NC
76 qmulcl wkCwkC
77 73 75 76 syl2anc φw:0Nn1Nk0NwkC
78 77 an32s φw:0Nk0Nn1NwkC
79 78 fmpttd φw:0Nk0Nn1NwkC:1N
80 15 16 elmap n1NwkC1Nn1NwkC:1N
81 79 80 sylibr φw:0Nk0Nn1NwkC1N
82 eqid k0Nn1NwkC=k0Nn1NwkC
83 16 mptex n1NwkCV
84 83 a1i φw:0Nk0Nn1NwkCV
85 snex 0V
86 16 85 xpex 1N×0V
87 86 a1i φw:0N1N×0V
88 82 45 84 87 fsuppmptdm φw:0NfinSupp1N×0k0Nn1NwkC
89 25 31 37 71 45 72 81 88 frlmgsum φw:0Nfld𝑠freeLMod1Nk=0Nn1NwkC=n1Nfld𝑠k=0NwkC
90 cnfldbas =Basefld
91 cnfldadd +=+fld
92 cnfldex fldV
93 92 a1i φw:0Nn1NfldV
94 fzfid φw:0Nn1N0NFin
95 qsscn
96 95 a1i φw:0Nn1N
97 77 fmpttd φw:0Nn1Nk0NwkC:0N
98 0z 0
99 zq 00
100 98 99 ax-mp 0
101 100 a1i φw:0Nn1N0
102 addlid x0+x=x
103 addrid xx+0=x
104 102 103 jca x0+x=xx+0=x
105 104 adantl φw:0Nn1Nx0+x=xx+0=x
106 90 91 20 93 94 96 97 101 105 gsumress φw:0Nn1Nfldk=0NwkC=fld𝑠k=0NwkC
107 simplr φw:0Nn1Nw:0N
108 qcn wkwk
109 54 108 syl w:0Nk0Nwk
110 107 109 sylan φw:0Nn1Nk0Nwk
111 qcn CC
112 13 111 syl φk0Nn1NC
113 112 an32s φn1Nk0NC
114 113 adantllr φw:0Nn1Nk0NC
115 110 114 mulcld φw:0Nn1Nk0NwkC
116 94 115 gsumfsum φw:0Nn1Nfldk=0NwkC=k=0NwkC
117 106 116 eqtr3d φw:0Nn1Nfld𝑠k=0NwkC=k=0NwkC
118 117 mpteq2dva φw:0Nn1Nfld𝑠k=0NwkC=n1Nk=0NwkC
119 70 89 118 3eqtrd φw:0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=n1Nk=0NwkC
120 qaddcl xyx+y
121 120 adantl φw:0Nn1Nxyx+y
122 96 121 94 77 101 fsumcllem φw:0Nn1Nk=0NwkC
123 122 fmpttd φw:0Nn1Nk=0NwkC:1N
124 15 16 elmap n1Nk=0NwkC1Nn1Nk=0NwkC:1N
125 123 124 sylibr φw:0Nn1Nk=0NwkC1N
126 119 125 eqeltrd φw:0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC1N
127 elmapi fld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC1Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC:1N
128 ffn fld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC:1Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NCFn1N
129 126 127 128 3syl φw:0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NCFn1N
130 c0ex 0V
131 fnconstg 0V1N×0Fn1N
132 130 131 ax-mp 1N×0Fn1N
133 nfcv _nfld𝑠freeLMod1N
134 nfcv _nΣ𝑔
135 nfcv _nw
136 nfcv _nffld𝑠freeLMod1N
137 nfcv _n0N
138 nfmpt1 _nn1NC
139 137 138 nfmpt _nk0Nn1NC
140 135 136 139 nfov _nwfld𝑠freeLMod1Nfk0Nn1NC
141 133 134 140 nfov _nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC
142 nfcv _n1N×0
143 141 142 eqfnfv2f fld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NCFn1N1N×0Fn1Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=1N×0n1Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NCn=1N×0n
144 129 132 143 sylancl φw:0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=1N×0n1Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NCn=1N×0n
145 119 fveq1d φw:0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NCn=n1Nk=0NwkCn
146 sumex k=0NwkCV
147 eqid n1Nk=0NwkC=n1Nk=0NwkC
148 147 fvmpt2 n1Nk=0NwkCVn1Nk=0NwkCn=k=0NwkC
149 146 148 mpan2 n1Nn1Nk=0NwkCn=k=0NwkC
150 145 149 sylan9eq φw:0Nn1Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NCn=k=0NwkC
151 130 fvconst2 n1N1N×0n=0
152 151 adantl φw:0Nn1N1N×0n=0
153 150 152 eqeq12d φw:0Nn1Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NCn=1N×0nk=0NwkC=0
154 153 ralbidva φw:0Nn1Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NCn=1N×0nn1Nk=0NwkC=0
155 144 154 bitrd φw:0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=1N×0n1Nk=0NwkC=0
156 155 imbi1d φw:0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=1N×0w=0N×0n1Nk=0NwkC=0w=0N×0
157 44 156 sylan2 φw0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=1N×0w=0N×0n1Nk=0NwkC=0w=0N×0
158 157 ralbidva φw0Nfld𝑠freeLMod1Nwfld𝑠freeLMod1Nfk0Nn1NC=1N×0w=0N×0w0Nn1Nk=0NwkC=0w=0N×0
159 43 158 bitrd φk0Nn1NCLIndFfld𝑠freeLMod1Nw0Nn1Nk=0NwkC=0w=0N×0
160 drngnzr fld𝑠DivRingfld𝑠NzRing
161 21 160 ax-mp fld𝑠NzRing
162 33 islindf3 fld𝑠freeLMod1NLModfld𝑠NzRingk0Nn1NCLIndFfld𝑠freeLMod1Nk0Nn1NC:domk0Nn1NC1-1Vrank0Nn1NCLIndSfld𝑠freeLMod1N
163 27 161 162 mp2an k0Nn1NCLIndFfld𝑠freeLMod1Nk0Nn1NC:domk0Nn1NC1-1Vrank0Nn1NCLIndSfld𝑠freeLMod1N
164 eqid k0Nn1NC=k0Nn1NC
165 47 164 dmmpti domk0Nn1NC=0N
166 f1eq2 domk0Nn1NC=0Nk0Nn1NC:domk0Nn1NC1-1Vk0Nn1NC:0N1-1V
167 165 166 ax-mp k0Nn1NC:domk0Nn1NC1-1Vk0Nn1NC:0N1-1V
168 167 anbi1i k0Nn1NC:domk0Nn1NC1-1Vrank0Nn1NCLIndSfld𝑠freeLMod1Nk0Nn1NC:0N1-1Vrank0Nn1NCLIndSfld𝑠freeLMod1N
169 163 168 bitri k0Nn1NCLIndFfld𝑠freeLMod1Nk0Nn1NC:0N1-1Vrank0Nn1NCLIndSfld𝑠freeLMod1N
170 con34b n1Nk=0NwkC=0w=0N×0¬w=0N×0¬n1Nk=0NwkC=0
171 df-nel w0N×0¬w0N×0
172 velsn w0N×0w=0N×0
173 171 172 xchbinx w0N×0¬w=0N×0
174 173 imbi1i w0N×0¬n1Nk=0NwkC=0¬w=0N×0¬n1Nk=0NwkC=0
175 170 174 bitr4i n1Nk=0NwkC=0w=0N×0w0N×0¬n1Nk=0NwkC=0
176 175 ralbii w0Nn1Nk=0NwkC=0w=0N×0w0Nw0N×0¬n1Nk=0NwkC=0
177 raldifb w0Nw0N×0¬n1Nk=0NwkC=0w0N0N×0¬n1Nk=0NwkC=0
178 ralnex w0N0N×0¬n1Nk=0NwkC=0¬w0N0N×0n1Nk=0NwkC=0
179 176 177 178 3bitri w0Nn1Nk=0NwkC=0w=0N×0¬w0N0N×0n1Nk=0NwkC=0
180 159 169 179 3bitr3g φk0Nn1NC:0N1-1Vrank0Nn1NCLIndSfld𝑠freeLMod1N¬w0N0N×0n1Nk=0NwkC=0
181 eqid LSubSpfld𝑠freeLMod1N=LSubSpfld𝑠freeLMod1N
182 31 181 lssmre fld𝑠freeLMod1NLModLSubSpfld𝑠freeLMod1NMoore1N
183 27 182 ax-mp LSubSpfld𝑠freeLMod1NMoore1N
184 183 a1i φrank0Nn1NCLIndSfld𝑠freeLMod1NLSubSpfld𝑠freeLMod1NMoore1N
185 eqid LSpanfld𝑠freeLMod1N=LSpanfld𝑠freeLMod1N
186 eqid mrClsLSubSpfld𝑠freeLMod1N=mrClsLSubSpfld𝑠freeLMod1N
187 181 185 186 mrclsp fld𝑠freeLMod1NLModLSpanfld𝑠freeLMod1N=mrClsLSubSpfld𝑠freeLMod1N
188 27 187 ax-mp LSpanfld𝑠freeLMod1N=mrClsLSubSpfld𝑠freeLMod1N
189 eqid mrIndLSubSpfld𝑠freeLMod1N=mrIndLSubSpfld𝑠freeLMod1N
190 33 islvec fld𝑠freeLMod1NLVecfld𝑠freeLMod1NLModfld𝑠DivRing
191 27 21 190 mpbir2an fld𝑠freeLMod1NLVec
192 181 188 31 lssacsex fld𝑠freeLMod1NLVecLSubSpfld𝑠freeLMod1NACS1Nz𝒫1Nx1NyLSpanfld𝑠freeLMod1NzxLSpanfld𝑠freeLMod1NzxLSpanfld𝑠freeLMod1Nzy
193 192 simprd fld𝑠freeLMod1NLVecz𝒫1Nx1NyLSpanfld𝑠freeLMod1NzxLSpanfld𝑠freeLMod1NzxLSpanfld𝑠freeLMod1Nzy
194 191 193 ax-mp z𝒫1Nx1NyLSpanfld𝑠freeLMod1NzxLSpanfld𝑠freeLMod1NzxLSpanfld𝑠freeLMod1Nzy
195 194 a1i φrank0Nn1NCLIndSfld𝑠freeLMod1Nz𝒫1Nx1NyLSpanfld𝑠freeLMod1NzxLSpanfld𝑠freeLMod1NzxLSpanfld𝑠freeLMod1Nzy
196 19 frnd φrank0Nn1NC1N
197 dif0 1N=1N
198 196 197 sseqtrrdi φrank0Nn1NC1N
199 198 adantr φrank0Nn1NCLIndSfld𝑠freeLMod1Nrank0Nn1NC1N
200 eqid fld𝑠unitVec1N=fld𝑠unitVec1N
201 200 25 31 uvcff fld𝑠Ring1NFinfld𝑠unitVec1N:1N1N
202 23 24 201 mp2an fld𝑠unitVec1N:1N1N
203 frn fld𝑠unitVec1N:1N1Nranfld𝑠unitVec1N1N
204 202 203 ax-mp ranfld𝑠unitVec1N1N
205 204 197 sseqtrri ranfld𝑠unitVec1N1N
206 205 a1i φrank0Nn1NCLIndSfld𝑠freeLMod1Nranfld𝑠unitVec1N1N
207 un0 ranfld𝑠unitVec1N=ranfld𝑠unitVec1N
208 207 fveq2i LSpanfld𝑠freeLMod1Nranfld𝑠unitVec1N=LSpanfld𝑠freeLMod1Nranfld𝑠unitVec1N
209 eqid LBasisfld𝑠freeLMod1N=LBasisfld𝑠freeLMod1N
210 25 200 209 frlmlbs fld𝑠Ring1NFinranfld𝑠unitVec1NLBasisfld𝑠freeLMod1N
211 23 24 210 mp2an ranfld𝑠unitVec1NLBasisfld𝑠freeLMod1N
212 31 209 185 lbssp ranfld𝑠unitVec1NLBasisfld𝑠freeLMod1NLSpanfld𝑠freeLMod1Nranfld𝑠unitVec1N=1N
213 211 212 ax-mp LSpanfld𝑠freeLMod1Nranfld𝑠unitVec1N=1N
214 208 213 eqtri LSpanfld𝑠freeLMod1Nranfld𝑠unitVec1N=1N
215 196 214 sseqtrrdi φrank0Nn1NCLSpanfld𝑠freeLMod1Nranfld𝑠unitVec1N
216 215 adantr φrank0Nn1NCLIndSfld𝑠freeLMod1Nrank0Nn1NCLSpanfld𝑠freeLMod1Nranfld𝑠unitVec1N
217 un0 rank0Nn1NC=rank0Nn1NC
218 27 161 pm3.2i fld𝑠freeLMod1NLModfld𝑠NzRing
219 185 33 lindsind2 fld𝑠freeLMod1NLModfld𝑠NzRingrank0Nn1NCLIndSfld𝑠freeLMod1Nxrank0Nn1NC¬xLSpanfld𝑠freeLMod1Nrank0Nn1NCx
220 218 219 mp3an1 rank0Nn1NCLIndSfld𝑠freeLMod1Nxrank0Nn1NC¬xLSpanfld𝑠freeLMod1Nrank0Nn1NCx
221 220 ralrimiva rank0Nn1NCLIndSfld𝑠freeLMod1Nxrank0Nn1NC¬xLSpanfld𝑠freeLMod1Nrank0Nn1NCx
222 188 189 ismri2 LSubSpfld𝑠freeLMod1NMoore1Nrank0Nn1NC1Nrank0Nn1NCmrIndLSubSpfld𝑠freeLMod1Nxrank0Nn1NC¬xLSpanfld𝑠freeLMod1Nrank0Nn1NCx
223 183 196 222 sylancr φrank0Nn1NCmrIndLSubSpfld𝑠freeLMod1Nxrank0Nn1NC¬xLSpanfld𝑠freeLMod1Nrank0Nn1NCx
224 223 biimpar φxrank0Nn1NC¬xLSpanfld𝑠freeLMod1Nrank0Nn1NCxrank0Nn1NCmrIndLSubSpfld𝑠freeLMod1N
225 221 224 sylan2 φrank0Nn1NCLIndSfld𝑠freeLMod1Nrank0Nn1NCmrIndLSubSpfld𝑠freeLMod1N
226 217 225 eqeltrid φrank0Nn1NCLIndSfld𝑠freeLMod1Nrank0Nn1NCmrIndLSubSpfld𝑠freeLMod1N
227 mptfi 0NFink0Nn1NCFin
228 rnfi k0Nn1NCFinrank0Nn1NCFin
229 28 227 228 mp2b rank0Nn1NCFin
230 229 orci rank0Nn1NCFinranfld𝑠unitVec1NFin
231 230 a1i φrank0Nn1NCLIndSfld𝑠freeLMod1Nrank0Nn1NCFinranfld𝑠unitVec1NFin
232 184 188 189 195 199 206 216 226 231 mreexexd φrank0Nn1NCLIndSfld𝑠freeLMod1Nv𝒫ranfld𝑠unitVec1Nrank0Nn1NCvvmrIndLSubSpfld𝑠freeLMod1N
233 232 ex φrank0Nn1NCLIndSfld𝑠freeLMod1Nv𝒫ranfld𝑠unitVec1Nrank0Nn1NCvvmrIndLSubSpfld𝑠freeLMod1N
234 ovex fld𝑠unitVec1NV
235 234 rnex ranfld𝑠unitVec1NV
236 elpwi v𝒫ranfld𝑠unitVec1Nvranfld𝑠unitVec1N
237 ssdomg ranfld𝑠unitVec1NVvranfld𝑠unitVec1Nvranfld𝑠unitVec1N
238 235 236 237 mpsyl v𝒫ranfld𝑠unitVec1Nvranfld𝑠unitVec1N
239 endomtr rank0Nn1NCvvranfld𝑠unitVec1Nrank0Nn1NCranfld𝑠unitVec1N
240 239 ancoms vranfld𝑠unitVec1Nrank0Nn1NCvrank0Nn1NCranfld𝑠unitVec1N
241 f1f1orn k0Nn1NC:0N1-1Vk0Nn1NC:0N1-1 ontorank0Nn1NC
242 ovex 0NV
243 242 f1oen k0Nn1NC:0N1-1 ontorank0Nn1NC0Nrank0Nn1NC
244 241 243 syl k0Nn1NC:0N1-1V0Nrank0Nn1NC
245 endomtr 0Nrank0Nn1NCrank0Nn1NCranfld𝑠unitVec1N0Nranfld𝑠unitVec1N
246 200 uvcendim fld𝑠NzRing1NFin1Nranfld𝑠unitVec1N
247 161 24 246 mp2an 1Nranfld𝑠unitVec1N
248 247 ensymi ranfld𝑠unitVec1N1N
249 domentr 0Nranfld𝑠unitVec1Nranfld𝑠unitVec1N1N0N1N
250 hashdom 0NFin1NFin0N1N0N1N
251 28 24 250 mp2an 0N1N0N1N
252 hashfz0 N00N=N+1
253 2 252 syl φ0N=N+1
254 hashfz1 N01N=N
255 2 254 syl φ1N=N
256 253 255 breq12d φ0N1NN+1N
257 251 256 bitr3id φ0N1NN+1N
258 249 257 imbitrid φ0Nranfld𝑠unitVec1Nranfld𝑠unitVec1N1NN+1N
259 248 258 mpan2i φ0Nranfld𝑠unitVec1NN+1N
260 245 259 syl5 φ0Nrank0Nn1NCrank0Nn1NCranfld𝑠unitVec1NN+1N
261 260 expd φ0Nrank0Nn1NCrank0Nn1NCranfld𝑠unitVec1NN+1N
262 244 261 syl5 φk0Nn1NC:0N1-1Vrank0Nn1NCranfld𝑠unitVec1NN+1N
263 262 com23 φrank0Nn1NCranfld𝑠unitVec1Nk0Nn1NC:0N1-1VN+1N
264 240 263 syl5 φvranfld𝑠unitVec1Nrank0Nn1NCvk0Nn1NC:0N1-1VN+1N
265 264 expdimp φvranfld𝑠unitVec1Nrank0Nn1NCvk0Nn1NC:0N1-1VN+1N
266 238 265 sylan2 φv𝒫ranfld𝑠unitVec1Nrank0Nn1NCvk0Nn1NC:0N1-1VN+1N
267 266 adantrd φv𝒫ranfld𝑠unitVec1Nrank0Nn1NCvvmrIndLSubSpfld𝑠freeLMod1Nk0Nn1NC:0N1-1VN+1N
268 267 rexlimdva φv𝒫ranfld𝑠unitVec1Nrank0Nn1NCvvmrIndLSubSpfld𝑠freeLMod1Nk0Nn1NC:0N1-1VN+1N
269 233 268 syld φrank0Nn1NCLIndSfld𝑠freeLMod1Nk0Nn1NC:0N1-1VN+1N
270 269 impd φrank0Nn1NCLIndSfld𝑠freeLMod1Nk0Nn1NC:0N1-1VN+1N
271 270 ancomsd φk0Nn1NC:0N1-1Vrank0Nn1NCLIndSfld𝑠freeLMod1NN+1N
272 180 271 sylbird φ¬w0N0N×0n1Nk=0NwkC=0N+1N
273 12 272 mt3d φw0N0N×0n1Nk=0NwkC=0
274 eldifsn w0N0N×0w0Nw0N×0
275 44 anim1i w0Nw0N×0w:0Nw0N×0
276 274 275 sylbi w0N0N×0w:0Nw0N×0
277 95 a1i φw:0N
278 2 adantr φw:0NN0
279 277 278 55 elplyd φw:0Nyk=0NwkykPoly
280 279 adantrr φw:0Nw0N×0yk=0NwkykPoly
281 uzdisj 0N+1-1N+1=
282 2 nn0cnd φN
283 pncan1 NN+1-1=N
284 282 283 syl φN+1-1=N
285 284 oveq2d φ0N+1-1=0N
286 285 ineq1d φ0N+1-1N+1=0NN+1
287 281 286 eqtr3id φ=0NN+1
288 287 eqcomd φ0NN+1=
289 130 fconst N+1×0:N+10
290 snssi 00
291 98 99 290 mp2b 0
292 291 95 sstri 0
293 fss N+1×0:N+100N+1×0:N+1
294 289 292 293 mp2an N+1×0:N+1
295 fun w:0NN+1×0:N+10NN+1=wN+1×0:0NN+1
296 294 295 mpanl2 w:0N0NN+1=wN+1×0:0NN+1
297 288 296 sylan2 w:0NφwN+1×0:0NN+1
298 297 ancoms φw:0NwN+1×0:0NN+1
299 nn0uz 0=0
300 9 299 eleqtrdi φN+10
301 uzsplit N+100=0N+1-1N+1
302 300 301 syl φ0=0N+1-1N+1
303 299 302 eqtrid φ0=0N+1-1N+1
304 285 uneq1d φ0N+1-1N+1=0NN+1
305 303 304 eqtr2d φ0NN+1=0
306 ssequn1 =
307 95 306 mpbi =
308 307 a1i φ=
309 305 308 feq23d φwN+1×0:0NN+1wN+1×0:0
310 309 adantr φw:0NwN+1×0:0NN+1wN+1×0:0
311 298 310 mpbid φw:0NwN+1×0:0
312 ffn w:0NwFn0N
313 fnimadisj wFn0N0NN+1=wN+1=
314 312 288 313 syl2anr φw:0NwN+1=
315 2 nn0zd φN
316 315 peano2zd φN+1
317 uzid N+1N+1N+1
318 ne0i N+1N+1N+1
319 316 317 318 3syl φN+1
320 inidm N+1N+1=N+1
321 320 neeq1i N+1N+1N+1
322 319 321 sylibr φN+1N+1
323 xpima2 N+1N+1N+1×0N+1=0
324 322 323 syl φN+1×0N+1=0
325 324 adantr φw:0NN+1×0N+1=0
326 314 325 uneq12d φw:0NwN+1N+1×0N+1=0
327 imaundir wN+1×0N+1=wN+1N+1×0N+1
328 uncom 0=0
329 un0 0=0
330 328 329 eqtr2i 0=0
331 326 327 330 3eqtr4g φw:0NwN+1×0N+1=0
332 288 312 anim12ci φw:0NwFn0N0NN+1=
333 fnconstg 0VN+1×0FnN+1
334 130 333 ax-mp N+1×0FnN+1
335 fvun1 wFn0NN+1×0FnN+10NN+1=k0NwN+1×0k=wk
336 334 335 mp3an2 wFn0N0NN+1=k0NwN+1×0k=wk
337 336 anassrs wFn0N0NN+1=k0NwN+1×0k=wk
338 332 337 sylan φw:0Nk0NwN+1×0k=wk
339 338 eqcomd φw:0Nk0Nwk=wN+1×0k
340 339 oveq1d φw:0Nk0Nwkyk=wN+1×0kyk
341 340 sumeq2dv φw:0Nk=0Nwkyk=k=0NwN+1×0kyk
342 341 mpteq2dv φw:0Nyk=0Nwkyk=yk=0NwN+1×0kyk
343 279 278 311 331 342 coeeq φw:0Ncoeffyk=0Nwkyk=wN+1×0
344 343 reseq1d φw:0Ncoeffyk=0Nwkyk0N=wN+1×00N
345 res0 w=
346 287 reseq2d φw=w0NN+1
347 res0 N+1×0=
348 287 reseq2d φN+1×0=N+1×00NN+1
349 347 348 eqtr3id φ=N+1×00NN+1
350 345 346 349 3eqtr3a φw0NN+1=N+1×00NN+1
351 fss N+1×0:N+100N+1×0:N+1
352 289 291 351 mp2an N+1×0:N+1
353 fresaunres1 w:0NN+1×0:N+1w0NN+1=N+1×00NN+1wN+1×00N=w
354 352 353 mp3an2 w:0Nw0NN+1=N+1×00NN+1wN+1×00N=w
355 350 354 sylan2 w:0NφwN+1×00N=w
356 355 ancoms φw:0NwN+1×00N=w
357 344 356 eqtrd φw:0Ncoeffyk=0Nwkyk0N=w
358 fveq2 yk=0Nwkyk=0𝑝coeffyk=0Nwkyk=coeff0𝑝
359 358 reseq1d yk=0Nwkyk=0𝑝coeffyk=0Nwkyk0N=coeff0𝑝0N
360 eqtr2 coeffyk=0Nwkyk0N=wcoeffyk=0Nwkyk0N=coeff0𝑝0Nw=coeff0𝑝0N
361 coe0 coeff0𝑝=0×0
362 361 reseq1i coeff0𝑝0N=0×00N
363 elfznn0 x0Nx0
364 363 ssriv 0N0
365 xpssres 0N00×00N=0N×0
366 364 365 ax-mp 0×00N=0N×0
367 362 366 eqtri coeff0𝑝0N=0N×0
368 360 367 eqtrdi coeffyk=0Nwkyk0N=wcoeffyk=0Nwkyk0N=coeff0𝑝0Nw=0N×0
369 368 ex coeffyk=0Nwkyk0N=wcoeffyk=0Nwkyk0N=coeff0𝑝0Nw=0N×0
370 357 359 369 syl2im φw:0Nyk=0Nwkyk=0𝑝w=0N×0
371 370 necon3d φw:0Nw0N×0yk=0Nwkyk0𝑝
372 371 impr φw:0Nw0N×0yk=0Nwkyk0𝑝
373 eldifsn yk=0NwkykPoly0𝑝yk=0NwkykPolyyk=0Nwkyk0𝑝
374 280 372 373 sylanbrc φw:0Nw0N×0yk=0NwkykPoly0𝑝
375 374 adantrr φw:0Nw0N×0n1Nk=0NwkC=0yk=0NwkykPoly0𝑝
376 oveq1 y=Ayk=Ak
377 376 oveq2d y=Awkyk=wkAk
378 377 sumeq2sdv y=Ak=0Nwkyk=k=0NwkAk
379 eqid yk=0Nwkyk=yk=0Nwkyk
380 sumex k=0NwkAkV
381 378 379 380 fvmpt Ayk=0NwkykA=k=0NwkAk
382 1 381 syl φyk=0NwkykA=k=0NwkAk
383 382 adantr φw:0Nn1Nk=0NwkC=0yk=0NwkykA=k=0NwkAk
384 109 adantll φw:0Nk0Nwk
385 3 adantlr φk0Nn1NX
386 112 385 mulcld φk0Nn1NCX
387 386 adantllr φw:0Nk0Nn1NCX
388 53 384 387 fsummulc2 φw:0Nk0Nwkn=1NCX=n=1NwkCX
389 5 oveq2d φk0NwkAk=wkn=1NCX
390 389 adantlr φw:0Nk0NwkAk=wkn=1NCX
391 384 adantr φw:0Nk0Nn1Nwk
392 112 adantllr φw:0Nk0Nn1NC
393 simpll φw:0Nk0Nφ
394 393 3 sylan φw:0Nk0Nn1NX
395 391 392 394 mulassd φw:0Nk0Nn1NwkCX=wkCX
396 395 sumeq2dv φw:0Nk0Nn=1NwkCX=n=1NwkCX
397 388 390 396 3eqtr4d φw:0Nk0NwkAk=n=1NwkCX
398 397 sumeq2dv φw:0Nk=0NwkAk=k=0Nn=1NwkCX
399 109 ad2ant2lr φw:0Nk0Nn1Nwk
400 112 anasss φk0Nn1NC
401 400 adantlr φw:0Nk0Nn1NC
402 399 401 mulcld φw:0Nk0Nn1NwkC
403 3 ad2ant2rl φw:0Nk0Nn1NX
404 402 403 mulcld φw:0Nk0Nn1NwkCX
405 45 71 404 fsumcom φw:0Nk=0Nn=1NwkCX=n=1Nk=0NwkCX
406 398 405 eqtrd φw:0Nk=0NwkAk=n=1Nk=0NwkCX
407 406 adantrr φw:0Nn1Nk=0NwkC=0k=0NwkAk=n=1Nk=0NwkCX
408 nfv nφ
409 nfv nw:0N
410 nfra1 nn1Nk=0NwkC=0
411 409 410 nfan nw:0Nn1Nk=0NwkC=0
412 408 411 nfan nφw:0Nn1Nk=0NwkC=0
413 rspa n1Nk=0NwkC=0n1Nk=0NwkC=0
414 413 oveq1d n1Nk=0NwkC=0n1Nk=0NwkCX=0X
415 414 adantll w:0Nn1Nk=0NwkC=0n1Nk=0NwkCX=0X
416 415 adantll φw:0Nn1Nk=0NwkC=0n1Nk=0NwkCX=0X
417 3 adantlr φw:0Nn1NX
418 94 417 115 fsummulc1 φw:0Nn1Nk=0NwkCX=k=0NwkCX
419 418 adantlrr φw:0Nn1Nk=0NwkC=0n1Nk=0NwkCX=k=0NwkCX
420 3 mul02d φn1N0X=0
421 420 adantlr φw:0Nn1Nk=0NwkC=0n1N0X=0
422 416 419 421 3eqtr3d φw:0Nn1Nk=0NwkC=0n1Nk=0NwkCX=0
423 422 ex φw:0Nn1Nk=0NwkC=0n1Nk=0NwkCX=0
424 412 423 ralrimi φw:0Nn1Nk=0NwkC=0n1Nk=0NwkCX=0
425 424 sumeq2d φw:0Nn1Nk=0NwkC=0n=1Nk=0NwkCX=n=1N0
426 407 425 eqtrd φw:0Nn1Nk=0NwkC=0k=0NwkAk=n=1N0
427 24 olci 1NB1NFin
428 sumz 1NB1NFinn=1N0=0
429 427 428 ax-mp n=1N0=0
430 426 429 eqtrdi φw:0Nn1Nk=0NwkC=0k=0NwkAk=0
431 383 430 eqtrd φw:0Nn1Nk=0NwkC=0yk=0NwkykA=0
432 431 adantrlr φw:0Nw0N×0n1Nk=0NwkC=0yk=0NwkykA=0
433 fveq1 x=yk=0NwkykxA=yk=0NwkykA
434 433 eqeq1d x=yk=0NwkykxA=0yk=0NwkykA=0
435 434 rspcev yk=0NwkykPoly0𝑝yk=0NwkykA=0xPoly0𝑝xA=0
436 375 432 435 syl2anc φw:0Nw0N×0n1Nk=0NwkC=0xPoly0𝑝xA=0
437 276 436 sylanr1 φw0N0N×0n1Nk=0NwkC=0xPoly0𝑝xA=0
438 273 437 rexlimddv φxPoly0𝑝xA=0
439 elqaa A𝔸AxPoly0𝑝xA=0
440 1 438 439 sylanbrc φA𝔸