Metamath Proof Explorer


Theorem aacllem

Description: Lemma for other theorems about AA . (Contributed by Brendan Leahy, 3-Jan-2020) (Revised by Alexander van der Vekens and David A. Wheeler, 25-Apr-2020)

Ref Expression
Hypotheses aacllem.0 φ A
aacllem.1 φ N 0
aacllem.2 φ n 1 N X
aacllem.3 φ k 0 N n 1 N C
aacllem.4 φ k 0 N A k = n = 1 N C X
Assertion aacllem φ A 𝔸

Proof

Step Hyp Ref Expression
1 aacllem.0 φ A
2 aacllem.1 φ N 0
3 aacllem.2 φ n 1 N X
4 aacllem.3 φ k 0 N n 1 N C
5 aacllem.4 φ k 0 N A k = n = 1 N C X
6 2 nn0red φ N
7 6 ltp1d φ N < N + 1
8 peano2nn0 N 0 N + 1 0
9 2 8 syl φ N + 1 0
10 9 nn0red φ N + 1
11 6 10 ltnled φ N < N + 1 ¬ N + 1 N
12 7 11 mpbid φ ¬ N + 1 N
13 4 3expa φ k 0 N n 1 N C
14 13 fmpttd φ k 0 N n 1 N C : 1 N
15 qex V
16 ovex 1 N V
17 15 16 elmap n 1 N C 1 N n 1 N C : 1 N
18 14 17 sylibr φ k 0 N n 1 N C 1 N
19 18 fmpttd φ k 0 N n 1 N C : 0 N 1 N
20 eqid fld 𝑠 = fld 𝑠
21 20 qdrng fld 𝑠 DivRing
22 drngring fld 𝑠 DivRing fld 𝑠 Ring
23 21 22 ax-mp fld 𝑠 Ring
24 fzfi 1 N Fin
25 eqid fld 𝑠 freeLMod 1 N = fld 𝑠 freeLMod 1 N
26 25 frlmlmod fld 𝑠 Ring 1 N Fin fld 𝑠 freeLMod 1 N LMod
27 23 24 26 mp2an fld 𝑠 freeLMod 1 N LMod
28 fzfi 0 N Fin
29 20 qrngbas = Base fld 𝑠
30 25 29 frlmfibas fld 𝑠 DivRing 1 N Fin 1 N = Base fld 𝑠 freeLMod 1 N
31 21 24 30 mp2an 1 N = Base fld 𝑠 freeLMod 1 N
32 25 frlmsca fld 𝑠 DivRing 1 N Fin fld 𝑠 = Scalar fld 𝑠 freeLMod 1 N
33 21 24 32 mp2an fld 𝑠 = Scalar fld 𝑠 freeLMod 1 N
34 eqid fld 𝑠 freeLMod 1 N = fld 𝑠 freeLMod 1 N
35 20 qrng0 0 = 0 fld 𝑠
36 25 35 frlm0 fld 𝑠 Ring 1 N Fin 1 N × 0 = 0 fld 𝑠 freeLMod 1 N
37 23 24 36 mp2an 1 N × 0 = 0 fld 𝑠 freeLMod 1 N
38 eqid fld 𝑠 freeLMod 0 N = fld 𝑠 freeLMod 0 N
39 38 29 frlmfibas fld 𝑠 DivRing 0 N Fin 0 N = Base fld 𝑠 freeLMod 0 N
40 21 28 39 mp2an 0 N = Base fld 𝑠 freeLMod 0 N
41 31 33 34 37 35 40 islindf4 fld 𝑠 freeLMod 1 N LMod 0 N Fin k 0 N n 1 N C : 0 N 1 N k 0 N n 1 N C LIndF fld 𝑠 freeLMod 1 N w 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = 1 N × 0 w = 0 N × 0
42 27 28 41 mp3an12 k 0 N n 1 N C : 0 N 1 N k 0 N n 1 N C LIndF fld 𝑠 freeLMod 1 N w 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = 1 N × 0 w = 0 N × 0
43 19 42 syl φ k 0 N n 1 N C LIndF fld 𝑠 freeLMod 1 N w 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = 1 N × 0 w = 0 N × 0
44 elmapi w 0 N w : 0 N
45 fzfid φ w : 0 N 0 N Fin
46 fvexd φ w : 0 N k 0 N w k V
47 16 mptex n 1 N C V
48 47 a1i φ w : 0 N k 0 N n 1 N C V
49 simpr φ w : 0 N w : 0 N
50 49 feqmptd φ w : 0 N w = k 0 N w k
51 eqidd φ w : 0 N k 0 N n 1 N C = k 0 N n 1 N C
52 45 46 48 50 51 offval2 φ w : 0 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = k 0 N w k fld 𝑠 freeLMod 1 N n 1 N C
53 fzfid φ w : 0 N k 0 N 1 N Fin
54 ffvelrn w : 0 N k 0 N w k
55 54 adantll φ w : 0 N k 0 N w k
56 18 adantlr φ w : 0 N k 0 N n 1 N C 1 N
57 cnfldmul × = fld
58 20 57 ressmulr V × = fld 𝑠
59 15 58 ax-mp × = fld 𝑠
60 25 31 29 53 55 56 34 59 frlmvscafval φ w : 0 N k 0 N w k fld 𝑠 freeLMod 1 N n 1 N C = 1 N × w k × f n 1 N C
61 fvexd φ w : 0 N k 0 N n 1 N w k V
62 13 adantllr φ w : 0 N k 0 N n 1 N C
63 fconstmpt 1 N × w k = n 1 N w k
64 63 a1i φ w : 0 N k 0 N 1 N × w k = n 1 N w k
65 eqidd φ w : 0 N k 0 N n 1 N C = n 1 N C
66 53 61 62 64 65 offval2 φ w : 0 N k 0 N 1 N × w k × f n 1 N C = n 1 N w k C
67 60 66 eqtrd φ w : 0 N k 0 N w k fld 𝑠 freeLMod 1 N n 1 N C = n 1 N w k C
68 67 mpteq2dva φ w : 0 N k 0 N w k fld 𝑠 freeLMod 1 N n 1 N C = k 0 N n 1 N w k C
69 52 68 eqtrd φ w : 0 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = k 0 N n 1 N w k C
70 69 oveq2d φ w : 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = fld 𝑠 freeLMod 1 N k = 0 N n 1 N w k C
71 fzfid φ w : 0 N 1 N Fin
72 23 a1i φ w : 0 N fld 𝑠 Ring
73 55 adantlr φ w : 0 N n 1 N k 0 N w k
74 13 an32s φ n 1 N k 0 N C
75 74 adantllr φ w : 0 N n 1 N k 0 N C
76 qmulcl w k C w k C
77 73 75 76 syl2anc φ w : 0 N n 1 N k 0 N w k C
78 77 an32s φ w : 0 N k 0 N n 1 N w k C
79 78 fmpttd φ w : 0 N k 0 N n 1 N w k C : 1 N
80 15 16 elmap n 1 N w k C 1 N n 1 N w k C : 1 N
81 79 80 sylibr φ w : 0 N k 0 N n 1 N w k C 1 N
82 eqid k 0 N n 1 N w k C = k 0 N n 1 N w k C
83 16 mptex n 1 N w k C V
84 83 a1i φ w : 0 N k 0 N n 1 N w k C V
85 snex 0 V
86 16 85 xpex 1 N × 0 V
87 86 a1i φ w : 0 N 1 N × 0 V
88 82 45 84 87 fsuppmptdm φ w : 0 N finSupp 1 N × 0 k 0 N n 1 N w k C
89 25 31 37 71 45 72 81 88 frlmgsum φ w : 0 N fld 𝑠 freeLMod 1 N k = 0 N n 1 N w k C = n 1 N fld 𝑠 k = 0 N w k C
90 cnfldbas = Base fld
91 cnfldadd + = + fld
92 cnfldex fld V
93 92 a1i φ w : 0 N n 1 N fld V
94 fzfid φ w : 0 N n 1 N 0 N Fin
95 qsscn
96 95 a1i φ w : 0 N n 1 N
97 77 fmpttd φ w : 0 N n 1 N k 0 N w k C : 0 N
98 0z 0
99 zq 0 0
100 98 99 ax-mp 0
101 100 a1i φ w : 0 N n 1 N 0
102 addid2 x 0 + x = x
103 addid1 x x + 0 = x
104 102 103 jca x 0 + x = x x + 0 = x
105 104 adantl φ w : 0 N n 1 N x 0 + x = x x + 0 = x
106 90 91 20 93 94 96 97 101 105 gsumress φ w : 0 N n 1 N fld k = 0 N w k C = fld 𝑠 k = 0 N w k C
107 simplr φ w : 0 N n 1 N w : 0 N
108 qcn w k w k
109 54 108 syl w : 0 N k 0 N w k
110 107 109 sylan φ w : 0 N n 1 N k 0 N w k
111 qcn C C
112 13 111 syl φ k 0 N n 1 N C
113 112 an32s φ n 1 N k 0 N C
114 113 adantllr φ w : 0 N n 1 N k 0 N C
115 110 114 mulcld φ w : 0 N n 1 N k 0 N w k C
116 94 115 gsumfsum φ w : 0 N n 1 N fld k = 0 N w k C = k = 0 N w k C
117 106 116 eqtr3d φ w : 0 N n 1 N fld 𝑠 k = 0 N w k C = k = 0 N w k C
118 117 mpteq2dva φ w : 0 N n 1 N fld 𝑠 k = 0 N w k C = n 1 N k = 0 N w k C
119 70 89 118 3eqtrd φ w : 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = n 1 N k = 0 N w k C
120 qaddcl x y x + y
121 120 adantl φ w : 0 N n 1 N x y x + y
122 96 121 94 77 101 fsumcllem φ w : 0 N n 1 N k = 0 N w k C
123 122 fmpttd φ w : 0 N n 1 N k = 0 N w k C : 1 N
124 15 16 elmap n 1 N k = 0 N w k C 1 N n 1 N k = 0 N w k C : 1 N
125 123 124 sylibr φ w : 0 N n 1 N k = 0 N w k C 1 N
126 119 125 eqeltrd φ w : 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C 1 N
127 elmapi fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C 1 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C : 1 N
128 ffn fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C : 1 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C Fn 1 N
129 126 127 128 3syl φ w : 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C Fn 1 N
130 c0ex 0 V
131 fnconstg 0 V 1 N × 0 Fn 1 N
132 130 131 ax-mp 1 N × 0 Fn 1 N
133 nfcv _ n fld 𝑠 freeLMod 1 N
134 nfcv _ n Σ𝑔
135 nfcv _ n w
136 nfcv _ n f fld 𝑠 freeLMod 1 N
137 nfcv _ n 0 N
138 nfmpt1 _ n n 1 N C
139 137 138 nfmpt _ n k 0 N n 1 N C
140 135 136 139 nfov _ n w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C
141 133 134 140 nfov _ n fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C
142 nfcv _ n 1 N × 0
143 141 142 eqfnfv2f fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C Fn 1 N 1 N × 0 Fn 1 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = 1 N × 0 n 1 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C n = 1 N × 0 n
144 129 132 143 sylancl φ w : 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = 1 N × 0 n 1 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C n = 1 N × 0 n
145 119 fveq1d φ w : 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C n = n 1 N k = 0 N w k C n
146 sumex k = 0 N w k C V
147 eqid n 1 N k = 0 N w k C = n 1 N k = 0 N w k C
148 147 fvmpt2 n 1 N k = 0 N w k C V n 1 N k = 0 N w k C n = k = 0 N w k C
149 146 148 mpan2 n 1 N n 1 N k = 0 N w k C n = k = 0 N w k C
150 145 149 sylan9eq φ w : 0 N n 1 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C n = k = 0 N w k C
151 130 fvconst2 n 1 N 1 N × 0 n = 0
152 151 adantl φ w : 0 N n 1 N 1 N × 0 n = 0
153 150 152 eqeq12d φ w : 0 N n 1 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C n = 1 N × 0 n k = 0 N w k C = 0
154 153 ralbidva φ w : 0 N n 1 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C n = 1 N × 0 n n 1 N k = 0 N w k C = 0
155 144 154 bitrd φ w : 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = 1 N × 0 n 1 N k = 0 N w k C = 0
156 155 imbi1d φ w : 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = 1 N × 0 w = 0 N × 0 n 1 N k = 0 N w k C = 0 w = 0 N × 0
157 44 156 sylan2 φ w 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = 1 N × 0 w = 0 N × 0 n 1 N k = 0 N w k C = 0 w = 0 N × 0
158 157 ralbidva φ w 0 N fld 𝑠 freeLMod 1 N w fld 𝑠 freeLMod 1 N f k 0 N n 1 N C = 1 N × 0 w = 0 N × 0 w 0 N n 1 N k = 0 N w k C = 0 w = 0 N × 0
159 43 158 bitrd φ k 0 N n 1 N C LIndF fld 𝑠 freeLMod 1 N w 0 N n 1 N k = 0 N w k C = 0 w = 0 N × 0
160 drngnzr fld 𝑠 DivRing fld 𝑠 NzRing
161 21 160 ax-mp fld 𝑠 NzRing
162 33 islindf3 fld 𝑠 freeLMod 1 N LMod fld 𝑠 NzRing k 0 N n 1 N C LIndF fld 𝑠 freeLMod 1 N k 0 N n 1 N C : dom k 0 N n 1 N C 1-1 V ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N
163 27 161 162 mp2an k 0 N n 1 N C LIndF fld 𝑠 freeLMod 1 N k 0 N n 1 N C : dom k 0 N n 1 N C 1-1 V ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N
164 eqid k 0 N n 1 N C = k 0 N n 1 N C
165 47 164 dmmpti dom k 0 N n 1 N C = 0 N
166 f1eq2 dom k 0 N n 1 N C = 0 N k 0 N n 1 N C : dom k 0 N n 1 N C 1-1 V k 0 N n 1 N C : 0 N 1-1 V
167 165 166 ax-mp k 0 N n 1 N C : dom k 0 N n 1 N C 1-1 V k 0 N n 1 N C : 0 N 1-1 V
168 167 anbi1i k 0 N n 1 N C : dom k 0 N n 1 N C 1-1 V ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N k 0 N n 1 N C : 0 N 1-1 V ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N
169 163 168 bitri k 0 N n 1 N C LIndF fld 𝑠 freeLMod 1 N k 0 N n 1 N C : 0 N 1-1 V ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N
170 con34b n 1 N k = 0 N w k C = 0 w = 0 N × 0 ¬ w = 0 N × 0 ¬ n 1 N k = 0 N w k C = 0
171 df-nel w 0 N × 0 ¬ w 0 N × 0
172 velsn w 0 N × 0 w = 0 N × 0
173 171 172 xchbinx w 0 N × 0 ¬ w = 0 N × 0
174 173 imbi1i w 0 N × 0 ¬ n 1 N k = 0 N w k C = 0 ¬ w = 0 N × 0 ¬ n 1 N k = 0 N w k C = 0
175 170 174 bitr4i n 1 N k = 0 N w k C = 0 w = 0 N × 0 w 0 N × 0 ¬ n 1 N k = 0 N w k C = 0
176 175 ralbii w 0 N n 1 N k = 0 N w k C = 0 w = 0 N × 0 w 0 N w 0 N × 0 ¬ n 1 N k = 0 N w k C = 0
177 raldifb w 0 N w 0 N × 0 ¬ n 1 N k = 0 N w k C = 0 w 0 N 0 N × 0 ¬ n 1 N k = 0 N w k C = 0
178 ralnex w 0 N 0 N × 0 ¬ n 1 N k = 0 N w k C = 0 ¬ w 0 N 0 N × 0 n 1 N k = 0 N w k C = 0
179 176 177 178 3bitri w 0 N n 1 N k = 0 N w k C = 0 w = 0 N × 0 ¬ w 0 N 0 N × 0 n 1 N k = 0 N w k C = 0
180 159 169 179 3bitr3g φ k 0 N n 1 N C : 0 N 1-1 V ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N ¬ w 0 N 0 N × 0 n 1 N k = 0 N w k C = 0
181 eqid LSubSp fld 𝑠 freeLMod 1 N = LSubSp fld 𝑠 freeLMod 1 N
182 31 181 lssmre fld 𝑠 freeLMod 1 N LMod LSubSp fld 𝑠 freeLMod 1 N Moore 1 N
183 27 182 ax-mp LSubSp fld 𝑠 freeLMod 1 N Moore 1 N
184 183 a1i φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N LSubSp fld 𝑠 freeLMod 1 N Moore 1 N
185 eqid LSpan fld 𝑠 freeLMod 1 N = LSpan fld 𝑠 freeLMod 1 N
186 eqid mrCls LSubSp fld 𝑠 freeLMod 1 N = mrCls LSubSp fld 𝑠 freeLMod 1 N
187 181 185 186 mrclsp fld 𝑠 freeLMod 1 N LMod LSpan fld 𝑠 freeLMod 1 N = mrCls LSubSp fld 𝑠 freeLMod 1 N
188 27 187 ax-mp LSpan fld 𝑠 freeLMod 1 N = mrCls LSubSp fld 𝑠 freeLMod 1 N
189 eqid mrInd LSubSp fld 𝑠 freeLMod 1 N = mrInd LSubSp fld 𝑠 freeLMod 1 N
190 33 islvec fld 𝑠 freeLMod 1 N LVec fld 𝑠 freeLMod 1 N LMod fld 𝑠 DivRing
191 27 21 190 mpbir2an fld 𝑠 freeLMod 1 N LVec
192 181 188 31 lssacsex fld 𝑠 freeLMod 1 N LVec LSubSp fld 𝑠 freeLMod 1 N ACS 1 N z 𝒫 1 N x 1 N y LSpan fld 𝑠 freeLMod 1 N z x LSpan fld 𝑠 freeLMod 1 N z x LSpan fld 𝑠 freeLMod 1 N z y
193 192 simprd fld 𝑠 freeLMod 1 N LVec z 𝒫 1 N x 1 N y LSpan fld 𝑠 freeLMod 1 N z x LSpan fld 𝑠 freeLMod 1 N z x LSpan fld 𝑠 freeLMod 1 N z y
194 191 193 ax-mp z 𝒫 1 N x 1 N y LSpan fld 𝑠 freeLMod 1 N z x LSpan fld 𝑠 freeLMod 1 N z x LSpan fld 𝑠 freeLMod 1 N z y
195 194 a1i φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N z 𝒫 1 N x 1 N y LSpan fld 𝑠 freeLMod 1 N z x LSpan fld 𝑠 freeLMod 1 N z x LSpan fld 𝑠 freeLMod 1 N z y
196 19 frnd φ ran k 0 N n 1 N C 1 N
197 dif0 1 N = 1 N
198 196 197 sseqtrrdi φ ran k 0 N n 1 N C 1 N
199 198 adantr φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C 1 N
200 eqid fld 𝑠 unitVec 1 N = fld 𝑠 unitVec 1 N
201 200 25 31 uvcff fld 𝑠 Ring 1 N Fin fld 𝑠 unitVec 1 N : 1 N 1 N
202 23 24 201 mp2an fld 𝑠 unitVec 1 N : 1 N 1 N
203 frn fld 𝑠 unitVec 1 N : 1 N 1 N ran fld 𝑠 unitVec 1 N 1 N
204 202 203 ax-mp ran fld 𝑠 unitVec 1 N 1 N
205 204 197 sseqtrri ran fld 𝑠 unitVec 1 N 1 N
206 205 a1i φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N ran fld 𝑠 unitVec 1 N 1 N
207 un0 ran fld 𝑠 unitVec 1 N = ran fld 𝑠 unitVec 1 N
208 207 fveq2i LSpan fld 𝑠 freeLMod 1 N ran fld 𝑠 unitVec 1 N = LSpan fld 𝑠 freeLMod 1 N ran fld 𝑠 unitVec 1 N
209 eqid LBasis fld 𝑠 freeLMod 1 N = LBasis fld 𝑠 freeLMod 1 N
210 25 200 209 frlmlbs fld 𝑠 Ring 1 N Fin ran fld 𝑠 unitVec 1 N LBasis fld 𝑠 freeLMod 1 N
211 23 24 210 mp2an ran fld 𝑠 unitVec 1 N LBasis fld 𝑠 freeLMod 1 N
212 31 209 185 lbssp ran fld 𝑠 unitVec 1 N LBasis fld 𝑠 freeLMod 1 N LSpan fld 𝑠 freeLMod 1 N ran fld 𝑠 unitVec 1 N = 1 N
213 211 212 ax-mp LSpan fld 𝑠 freeLMod 1 N ran fld 𝑠 unitVec 1 N = 1 N
214 208 213 eqtri LSpan fld 𝑠 freeLMod 1 N ran fld 𝑠 unitVec 1 N = 1 N
215 196 214 sseqtrrdi φ ran k 0 N n 1 N C LSpan fld 𝑠 freeLMod 1 N ran fld 𝑠 unitVec 1 N
216 215 adantr φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C LSpan fld 𝑠 freeLMod 1 N ran fld 𝑠 unitVec 1 N
217 un0 ran k 0 N n 1 N C = ran k 0 N n 1 N C
218 27 161 pm3.2i fld 𝑠 freeLMod 1 N LMod fld 𝑠 NzRing
219 185 33 lindsind2 fld 𝑠 freeLMod 1 N LMod fld 𝑠 NzRing ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N x ran k 0 N n 1 N C ¬ x LSpan fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C x
220 218 219 mp3an1 ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N x ran k 0 N n 1 N C ¬ x LSpan fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C x
221 220 ralrimiva ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N x ran k 0 N n 1 N C ¬ x LSpan fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C x
222 188 189 ismri2 LSubSp fld 𝑠 freeLMod 1 N Moore 1 N ran k 0 N n 1 N C 1 N ran k 0 N n 1 N C mrInd LSubSp fld 𝑠 freeLMod 1 N x ran k 0 N n 1 N C ¬ x LSpan fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C x
223 183 196 222 sylancr φ ran k 0 N n 1 N C mrInd LSubSp fld 𝑠 freeLMod 1 N x ran k 0 N n 1 N C ¬ x LSpan fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C x
224 223 biimpar φ x ran k 0 N n 1 N C ¬ x LSpan fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C x ran k 0 N n 1 N C mrInd LSubSp fld 𝑠 freeLMod 1 N
225 221 224 sylan2 φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C mrInd LSubSp fld 𝑠 freeLMod 1 N
226 217 225 eqeltrid φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C mrInd LSubSp fld 𝑠 freeLMod 1 N
227 mptfi 0 N Fin k 0 N n 1 N C Fin
228 rnfi k 0 N n 1 N C Fin ran k 0 N n 1 N C Fin
229 28 227 228 mp2b ran k 0 N n 1 N C Fin
230 229 orci ran k 0 N n 1 N C Fin ran fld 𝑠 unitVec 1 N Fin
231 230 a1i φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N ran k 0 N n 1 N C Fin ran fld 𝑠 unitVec 1 N Fin
232 184 188 189 195 199 206 216 226 231 mreexexd φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N v 𝒫 ran fld 𝑠 unitVec 1 N ran k 0 N n 1 N C v v mrInd LSubSp fld 𝑠 freeLMod 1 N
233 232 ex φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N v 𝒫 ran fld 𝑠 unitVec 1 N ran k 0 N n 1 N C v v mrInd LSubSp fld 𝑠 freeLMod 1 N
234 ovex fld 𝑠 unitVec 1 N V
235 234 rnex ran fld 𝑠 unitVec 1 N V
236 elpwi v 𝒫 ran fld 𝑠 unitVec 1 N v ran fld 𝑠 unitVec 1 N
237 ssdomg ran fld 𝑠 unitVec 1 N V v ran fld 𝑠 unitVec 1 N v ran fld 𝑠 unitVec 1 N
238 235 236 237 mpsyl v 𝒫 ran fld 𝑠 unitVec 1 N v ran fld 𝑠 unitVec 1 N
239 endomtr ran k 0 N n 1 N C v v ran fld 𝑠 unitVec 1 N ran k 0 N n 1 N C ran fld 𝑠 unitVec 1 N
240 239 ancoms v ran fld 𝑠 unitVec 1 N ran k 0 N n 1 N C v ran k 0 N n 1 N C ran fld 𝑠 unitVec 1 N
241 f1f1orn k 0 N n 1 N C : 0 N 1-1 V k 0 N n 1 N C : 0 N 1-1 onto ran k 0 N n 1 N C
242 ovex 0 N V
243 242 f1oen k 0 N n 1 N C : 0 N 1-1 onto ran k 0 N n 1 N C 0 N ran k 0 N n 1 N C
244 241 243 syl k 0 N n 1 N C : 0 N 1-1 V 0 N ran k 0 N n 1 N C
245 endomtr 0 N ran k 0 N n 1 N C ran k 0 N n 1 N C ran fld 𝑠 unitVec 1 N 0 N ran fld 𝑠 unitVec 1 N
246 200 uvcendim fld 𝑠 NzRing 1 N Fin 1 N ran fld 𝑠 unitVec 1 N
247 161 24 246 mp2an 1 N ran fld 𝑠 unitVec 1 N
248 247 ensymi ran fld 𝑠 unitVec 1 N 1 N
249 domentr 0 N ran fld 𝑠 unitVec 1 N ran fld 𝑠 unitVec 1 N 1 N 0 N 1 N
250 hashdom 0 N Fin 1 N Fin 0 N 1 N 0 N 1 N
251 28 24 250 mp2an 0 N 1 N 0 N 1 N
252 hashfz0 N 0 0 N = N + 1
253 2 252 syl φ 0 N = N + 1
254 hashfz1 N 0 1 N = N
255 2 254 syl φ 1 N = N
256 253 255 breq12d φ 0 N 1 N N + 1 N
257 251 256 syl5bbr φ 0 N 1 N N + 1 N
258 249 257 syl5ib φ 0 N ran fld 𝑠 unitVec 1 N ran fld 𝑠 unitVec 1 N 1 N N + 1 N
259 248 258 mpan2i φ 0 N ran fld 𝑠 unitVec 1 N N + 1 N
260 245 259 syl5 φ 0 N ran k 0 N n 1 N C ran k 0 N n 1 N C ran fld 𝑠 unitVec 1 N N + 1 N
261 260 expd φ 0 N ran k 0 N n 1 N C ran k 0 N n 1 N C ran fld 𝑠 unitVec 1 N N + 1 N
262 244 261 syl5 φ k 0 N n 1 N C : 0 N 1-1 V ran k 0 N n 1 N C ran fld 𝑠 unitVec 1 N N + 1 N
263 262 com23 φ ran k 0 N n 1 N C ran fld 𝑠 unitVec 1 N k 0 N n 1 N C : 0 N 1-1 V N + 1 N
264 240 263 syl5 φ v ran fld 𝑠 unitVec 1 N ran k 0 N n 1 N C v k 0 N n 1 N C : 0 N 1-1 V N + 1 N
265 264 expdimp φ v ran fld 𝑠 unitVec 1 N ran k 0 N n 1 N C v k 0 N n 1 N C : 0 N 1-1 V N + 1 N
266 238 265 sylan2 φ v 𝒫 ran fld 𝑠 unitVec 1 N ran k 0 N n 1 N C v k 0 N n 1 N C : 0 N 1-1 V N + 1 N
267 266 adantrd φ v 𝒫 ran fld 𝑠 unitVec 1 N ran k 0 N n 1 N C v v mrInd LSubSp fld 𝑠 freeLMod 1 N k 0 N n 1 N C : 0 N 1-1 V N + 1 N
268 267 rexlimdva φ v 𝒫 ran fld 𝑠 unitVec 1 N ran k 0 N n 1 N C v v mrInd LSubSp fld 𝑠 freeLMod 1 N k 0 N n 1 N C : 0 N 1-1 V N + 1 N
269 233 268 syld φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N k 0 N n 1 N C : 0 N 1-1 V N + 1 N
270 269 impd φ ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N k 0 N n 1 N C : 0 N 1-1 V N + 1 N
271 270 ancomsd φ k 0 N n 1 N C : 0 N 1-1 V ran k 0 N n 1 N C LIndS fld 𝑠 freeLMod 1 N N + 1 N
272 180 271 sylbird φ ¬ w 0 N 0 N × 0 n 1 N k = 0 N w k C = 0 N + 1 N
273 12 272 mt3d φ w 0 N 0 N × 0 n 1 N k = 0 N w k C = 0
274 eldifsn w 0 N 0 N × 0 w 0 N w 0 N × 0
275 44 anim1i w 0 N w 0 N × 0 w : 0 N w 0 N × 0
276 274 275 sylbi w 0 N 0 N × 0 w : 0 N w 0 N × 0
277 95 a1i φ w : 0 N
278 2 adantr φ w : 0 N N 0
279 277 278 55 elplyd φ w : 0 N y k = 0 N w k y k Poly
280 279 adantrr φ w : 0 N w 0 N × 0 y k = 0 N w k y k Poly
281 uzdisj 0 N + 1 - 1 N + 1 =
282 2 nn0cnd φ N
283 pncan1 N N + 1 - 1 = N
284 282 283 syl φ N + 1 - 1 = N
285 284 oveq2d φ 0 N + 1 - 1 = 0 N
286 285 ineq1d φ 0 N + 1 - 1 N + 1 = 0 N N + 1
287 281 286 syl5eqr φ = 0 N N + 1
288 287 eqcomd φ 0 N N + 1 =
289 130 fconst N + 1 × 0 : N + 1 0
290 snssi 0 0
291 98 99 290 mp2b 0
292 291 95 sstri 0
293 fss N + 1 × 0 : N + 1 0 0 N + 1 × 0 : N + 1
294 289 292 293 mp2an N + 1 × 0 : N + 1
295 fun w : 0 N N + 1 × 0 : N + 1 0 N N + 1 = w N + 1 × 0 : 0 N N + 1
296 294 295 mpanl2 w : 0 N 0 N N + 1 = w N + 1 × 0 : 0 N N + 1
297 288 296 sylan2 w : 0 N φ w N + 1 × 0 : 0 N N + 1
298 297 ancoms φ w : 0 N w N + 1 × 0 : 0 N N + 1
299 nn0uz 0 = 0
300 9 299 eleqtrdi φ N + 1 0
301 uzsplit N + 1 0 0 = 0 N + 1 - 1 N + 1
302 300 301 syl φ 0 = 0 N + 1 - 1 N + 1
303 299 302 syl5eq φ 0 = 0 N + 1 - 1 N + 1
304 285 uneq1d φ 0 N + 1 - 1 N + 1 = 0 N N + 1
305 303 304 eqtr2d φ 0 N N + 1 = 0
306 ssequn1 =
307 95 306 mpbi =
308 307 a1i φ =
309 305 308 feq23d φ w N + 1 × 0 : 0 N N + 1 w N + 1 × 0 : 0
310 309 adantr φ w : 0 N w N + 1 × 0 : 0 N N + 1 w N + 1 × 0 : 0
311 298 310 mpbid φ w : 0 N w N + 1 × 0 : 0
312 ffn w : 0 N w Fn 0 N
313 fnimadisj w Fn 0 N 0 N N + 1 = w N + 1 =
314 312 288 313 syl2anr φ w : 0 N w N + 1 =
315 2 nn0zd φ N
316 315 peano2zd φ N + 1
317 uzid N + 1 N + 1 N + 1
318 ne0i N + 1 N + 1 N + 1
319 316 317 318 3syl φ N + 1
320 inidm N + 1 N + 1 = N + 1
321 320 neeq1i N + 1 N + 1 N + 1
322 319 321 sylibr φ N + 1 N + 1
323 xpima2 N + 1 N + 1 N + 1 × 0 N + 1 = 0
324 322 323 syl φ N + 1 × 0 N + 1 = 0
325 324 adantr φ w : 0 N N + 1 × 0 N + 1 = 0
326 314 325 uneq12d φ w : 0 N w N + 1 N + 1 × 0 N + 1 = 0
327 imaundir w N + 1 × 0 N + 1 = w N + 1 N + 1 × 0 N + 1
328 uncom 0 = 0
329 un0 0 = 0
330 328 329 eqtr2i 0 = 0
331 326 327 330 3eqtr4g φ w : 0 N w N + 1 × 0 N + 1 = 0
332 288 312 anim12ci φ w : 0 N w Fn 0 N 0 N N + 1 =
333 fnconstg 0 V N + 1 × 0 Fn N + 1
334 130 333 ax-mp N + 1 × 0 Fn N + 1
335 fvun1 w Fn 0 N N + 1 × 0 Fn N + 1 0 N N + 1 = k 0 N w N + 1 × 0 k = w k
336 334 335 mp3an2 w Fn 0 N 0 N N + 1 = k 0 N w N + 1 × 0 k = w k
337 336 anassrs w Fn 0 N 0 N N + 1 = k 0 N w N + 1 × 0 k = w k
338 332 337 sylan φ w : 0 N k 0 N w N + 1 × 0 k = w k
339 338 eqcomd φ w : 0 N k 0 N w k = w N + 1 × 0 k
340 339 oveq1d φ w : 0 N k 0 N w k y k = w N + 1 × 0 k y k
341 340 sumeq2dv φ w : 0 N k = 0 N w k y k = k = 0 N w N + 1 × 0 k y k
342 341 mpteq2dv φ w : 0 N y k = 0 N w k y k = y k = 0 N w N + 1 × 0 k y k
343 279 278 311 331 342 coeeq φ w : 0 N coeff y k = 0 N w k y k = w N + 1 × 0
344 343 reseq1d φ w : 0 N coeff y k = 0 N w k y k 0 N = w N + 1 × 0 0 N
345 res0 w =
346 287 reseq2d φ w = w 0 N N + 1
347 res0 N + 1 × 0 =
348 287 reseq2d φ N + 1 × 0 = N + 1 × 0 0 N N + 1
349 347 348 syl5eqr φ = N + 1 × 0 0 N N + 1
350 345 346 349 3eqtr3a φ w 0 N N + 1 = N + 1 × 0 0 N N + 1
351 fss N + 1 × 0 : N + 1 0 0 N + 1 × 0 : N + 1
352 289 291 351 mp2an N + 1 × 0 : N + 1
353 fresaunres1 w : 0 N N + 1 × 0 : N + 1 w 0 N N + 1 = N + 1 × 0 0 N N + 1 w N + 1 × 0 0 N = w
354 352 353 mp3an2 w : 0 N w 0 N N + 1 = N + 1 × 0 0 N N + 1 w N + 1 × 0 0 N = w
355 350 354 sylan2 w : 0 N φ w N + 1 × 0 0 N = w
356 355 ancoms φ w : 0 N w N + 1 × 0 0 N = w
357 344 356 eqtrd φ w : 0 N coeff y k = 0 N w k y k 0 N = w
358 fveq2 y k = 0 N w k y k = 0 𝑝 coeff y k = 0 N w k y k = coeff 0 𝑝
359 358 reseq1d y k = 0 N w k y k = 0 𝑝 coeff y k = 0 N w k y k 0 N = coeff 0 𝑝 0 N
360 eqtr2 coeff y k = 0 N w k y k 0 N = w coeff y k = 0 N w k y k 0 N = coeff 0 𝑝 0 N w = coeff 0 𝑝 0 N
361 coe0 coeff 0 𝑝 = 0 × 0
362 361 reseq1i coeff 0 𝑝 0 N = 0 × 0 0 N
363 elfznn0 x 0 N x 0
364 363 ssriv 0 N 0
365 xpssres 0 N 0 0 × 0 0 N = 0 N × 0
366 364 365 ax-mp 0 × 0 0 N = 0 N × 0
367 362 366 eqtri coeff 0 𝑝 0 N = 0 N × 0
368 360 367 syl6eq coeff y k = 0 N w k y k 0 N = w coeff y k = 0 N w k y k 0 N = coeff 0 𝑝 0 N w = 0 N × 0
369 368 ex coeff y k = 0 N w k y k 0 N = w coeff y k = 0 N w k y k 0 N = coeff 0 𝑝 0 N w = 0 N × 0
370 357 359 369 syl2im φ w : 0 N y k = 0 N w k y k = 0 𝑝 w = 0 N × 0
371 370 necon3d φ w : 0 N w 0 N × 0 y k = 0 N w k y k 0 𝑝
372 371 impr φ w : 0 N w 0 N × 0 y k = 0 N w k y k 0 𝑝
373 eldifsn y k = 0 N w k y k Poly 0 𝑝 y k = 0 N w k y k Poly y k = 0 N w k y k 0 𝑝
374 280 372 373 sylanbrc φ w : 0 N w 0 N × 0 y k = 0 N w k y k Poly 0 𝑝
375 374 adantrr φ w : 0 N w 0 N × 0 n 1 N k = 0 N w k C = 0 y k = 0 N w k y k Poly 0 𝑝
376 oveq1 y = A y k = A k
377 376 oveq2d y = A w k y k = w k A k
378 377 sumeq2sdv y = A k = 0 N w k y k = k = 0 N w k A k
379 eqid y k = 0 N w k y k = y k = 0 N w k y k
380 sumex k = 0 N w k A k V
381 378 379 380 fvmpt A y k = 0 N w k y k A = k = 0 N w k A k
382 1 381 syl φ y k = 0 N w k y k A = k = 0 N w k A k
383 382 adantr φ w : 0 N n 1 N k = 0 N w k C = 0 y k = 0 N w k y k A = k = 0 N w k A k
384 109 adantll φ w : 0 N k 0 N w k
385 3 adantlr φ k 0 N n 1 N X
386 112 385 mulcld φ k 0 N n 1 N C X
387 386 adantllr φ w : 0 N k 0 N n 1 N C X
388 53 384 387 fsummulc2 φ w : 0 N k 0 N w k n = 1 N C X = n = 1 N w k C X
389 5 oveq2d φ k 0 N w k A k = w k n = 1 N C X
390 389 adantlr φ w : 0 N k 0 N w k A k = w k n = 1 N C X
391 384 adantr φ w : 0 N k 0 N n 1 N w k
392 112 adantllr φ w : 0 N k 0 N n 1 N C
393 simpll φ w : 0 N k 0 N φ
394 393 3 sylan φ w : 0 N k 0 N n 1 N X
395 391 392 394 mulassd φ w : 0 N k 0 N n 1 N w k C X = w k C X
396 395 sumeq2dv φ w : 0 N k 0 N n = 1 N w k C X = n = 1 N w k C X
397 388 390 396 3eqtr4d φ w : 0 N k 0 N w k A k = n = 1 N w k C X
398 397 sumeq2dv φ w : 0 N k = 0 N w k A k = k = 0 N n = 1 N w k C X
399 109 ad2ant2lr φ w : 0 N k 0 N n 1 N w k
400 112 anasss φ k 0 N n 1 N C
401 400 adantlr φ w : 0 N k 0 N n 1 N C
402 399 401 mulcld φ w : 0 N k 0 N n 1 N w k C
403 3 ad2ant2rl φ w : 0 N k 0 N n 1 N X
404 402 403 mulcld φ w : 0 N k 0 N n 1 N w k C X
405 45 71 404 fsumcom φ w : 0 N k = 0 N n = 1 N w k C X = n = 1 N k = 0 N w k C X
406 398 405 eqtrd φ w : 0 N k = 0 N w k A k = n = 1 N k = 0 N w k C X
407 406 adantrr φ w : 0 N n 1 N k = 0 N w k C = 0 k = 0 N w k A k = n = 1 N k = 0 N w k C X
408 nfv n φ
409 nfv n w : 0 N
410 nfra1 n n 1 N k = 0 N w k C = 0
411 409 410 nfan n w : 0 N n 1 N k = 0 N w k C = 0
412 408 411 nfan n φ w : 0 N n 1 N k = 0 N w k C = 0
413 rspa n 1 N k = 0 N w k C = 0 n 1 N k = 0 N w k C = 0
414 413 oveq1d n 1 N k = 0 N w k C = 0 n 1 N k = 0 N w k C X = 0 X
415 414 adantll w : 0 N n 1 N k = 0 N w k C = 0 n 1 N k = 0 N w k C X = 0 X
416 415 adantll φ w : 0 N n 1 N k = 0 N w k C = 0 n 1 N k = 0 N w k C X = 0 X
417 3 adantlr φ w : 0 N n 1 N X
418 94 417 115 fsummulc1 φ w : 0 N n 1 N k = 0 N w k C X = k = 0 N w k C X
419 418 adantlrr φ w : 0 N n 1 N k = 0 N w k C = 0 n 1 N k = 0 N w k C X = k = 0 N w k C X
420 3 mul02d φ n 1 N 0 X = 0
421 420 adantlr φ w : 0 N n 1 N k = 0 N w k C = 0 n 1 N 0 X = 0
422 416 419 421 3eqtr3d φ w : 0 N n 1 N k = 0 N w k C = 0 n 1 N k = 0 N w k C X = 0
423 422 ex φ w : 0 N n 1 N k = 0 N w k C = 0 n 1 N k = 0 N w k C X = 0
424 412 423 ralrimi φ w : 0 N n 1 N k = 0 N w k C = 0 n 1 N k = 0 N w k C X = 0
425 424 sumeq2d φ w : 0 N n 1 N k = 0 N w k C = 0 n = 1 N k = 0 N w k C X = n = 1 N 0
426 407 425 eqtrd φ w : 0 N n 1 N k = 0 N w k C = 0 k = 0 N w k A k = n = 1 N 0
427 24 olci 1 N B 1 N Fin
428 sumz 1 N B 1 N Fin n = 1 N 0 = 0
429 427 428 ax-mp n = 1 N 0 = 0
430 426 429 syl6eq φ w : 0 N n 1 N k = 0 N w k C = 0 k = 0 N w k A k = 0
431 383 430 eqtrd φ w : 0 N n 1 N k = 0 N w k C = 0 y k = 0 N w k y k A = 0
432 431 adantrlr φ w : 0 N w 0 N × 0 n 1 N k = 0 N w k C = 0 y k = 0 N w k y k A = 0
433 fveq1 x = y k = 0 N w k y k x A = y k = 0 N w k y k A
434 433 eqeq1d x = y k = 0 N w k y k x A = 0 y k = 0 N w k y k A = 0
435 434 rspcev y k = 0 N w k y k Poly 0 𝑝 y k = 0 N w k y k A = 0 x Poly 0 𝑝 x A = 0
436 375 432 435 syl2anc φ w : 0 N w 0 N × 0 n 1 N k = 0 N w k C = 0 x Poly 0 𝑝 x A = 0
437 276 436 sylanr1 φ w 0 N 0 N × 0 n 1 N k = 0 N w k C = 0 x Poly 0 𝑝 x A = 0
438 273 437 rexlimddv φ x Poly 0 𝑝 x A = 0
439 elqaa A 𝔸 A x Poly 0 𝑝 x A = 0
440 1 438 439 sylanbrc φ A 𝔸