Metamath Proof Explorer


Theorem ftc1anc

Description: ftc1a holds for functions that obey the triangle inequality in the absence of ax-cc . Theorem 565Ma of Fremlin5 p. 220. (Contributed by Brendan Leahy, 11-May-2018)

Ref Expression
Hypotheses ftc1anc.g G = x A B A x F t dt
ftc1anc.a φ A
ftc1anc.b φ B
ftc1anc.le φ A B
ftc1anc.s φ A B D
ftc1anc.d φ D
ftc1anc.i φ F 𝐿 1
ftc1anc.f φ F : D
ftc1anc.t φ s . A B × A B s F t dt 2 t if t s F t 0
Assertion ftc1anc φ G : A B cn

Proof

Step Hyp Ref Expression
1 ftc1anc.g G = x A B A x F t dt
2 ftc1anc.a φ A
3 ftc1anc.b φ B
4 ftc1anc.le φ A B
5 ftc1anc.s φ A B D
6 ftc1anc.d φ D
7 ftc1anc.i φ F 𝐿 1
8 ftc1anc.f φ F : D
9 ftc1anc.t φ s . A B × A B s F t dt 2 t if t s F t 0
10 1 2 3 4 5 6 7 8 ftc1lem2 φ G : A B
11 rphalfcl y + y 2 +
12 1 2 3 4 5 6 7 8 ftc1anclem6 φ y 2 + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2
13 11 12 sylan2 φ y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2
14 13 adantrl φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2
15 11 ad2antll φ u A B y + y 2 +
16 2rp 2 +
17 i1ff f dom 1 f :
18 17 frnd f dom 1 ran f
19 18 adantr f dom 1 g dom 1 ran f
20 i1ff g dom 1 g :
21 20 frnd g dom 1 ran g
22 21 adantl f dom 1 g dom 1 ran g
23 19 22 unssd f dom 1 g dom 1 ran f ran g
24 ax-resscn
25 23 24 sstrdi f dom 1 g dom 1 ran f ran g
26 i1f0rn f dom 1 0 ran f
27 elun1 0 ran f 0 ran f ran g
28 26 27 syl f dom 1 0 ran f ran g
29 28 adantr f dom 1 g dom 1 0 ran f ran g
30 absf abs :
31 ffn abs : abs Fn
32 30 31 ax-mp abs Fn
33 fnfvima abs Fn ran f ran g 0 ran f ran g 0 abs ran f ran g
34 32 33 mp3an1 ran f ran g 0 ran f ran g 0 abs ran f ran g
35 25 29 34 syl2anc f dom 1 g dom 1 0 abs ran f ran g
36 35 ne0d f dom 1 g dom 1 abs ran f ran g
37 imassrn abs ran f ran g ran abs
38 frn abs : ran abs
39 30 38 ax-mp ran abs
40 37 39 sstri abs ran f ran g
41 ffun abs : Fun abs
42 30 41 ax-mp Fun abs
43 i1frn f dom 1 ran f Fin
44 i1frn g dom 1 ran g Fin
45 unfi ran f Fin ran g Fin ran f ran g Fin
46 43 44 45 syl2an f dom 1 g dom 1 ran f ran g Fin
47 imafi Fun abs ran f ran g Fin abs ran f ran g Fin
48 42 46 47 sylancr f dom 1 g dom 1 abs ran f ran g Fin
49 fimaxre2 abs ran f ran g abs ran f ran g Fin x y abs ran f ran g y x
50 40 48 49 sylancr f dom 1 g dom 1 x y abs ran f ran g y x
51 suprcl abs ran f ran g abs ran f ran g x y abs ran f ran g y x sup abs ran f ran g <
52 40 51 mp3an1 abs ran f ran g x y abs ran f ran g y x sup abs ran f ran g <
53 36 50 52 syl2anc f dom 1 g dom 1 sup abs ran f ran g <
54 53 adantr f dom 1 g dom 1 r ran f ran g r 0 sup abs ran f ran g <
55 0red f dom 1 g dom 1 r ran f ran g r 0 0
56 25 sselda f dom 1 g dom 1 r ran f ran g r
57 56 abscld f dom 1 g dom 1 r ran f ran g r
58 57 adantrr f dom 1 g dom 1 r ran f ran g r 0 r
59 53 adantr f dom 1 g dom 1 r ran f ran g r 0 sup abs ran f ran g <
60 absgt0 r r 0 0 < r
61 56 60 syl f dom 1 g dom 1 r ran f ran g r 0 0 < r
62 61 biimpd f dom 1 g dom 1 r ran f ran g r 0 0 < r
63 62 impr f dom 1 g dom 1 r ran f ran g r 0 0 < r
64 40 a1i f dom 1 g dom 1 abs ran f ran g
65 64 36 50 3jca f dom 1 g dom 1 abs ran f ran g abs ran f ran g x y abs ran f ran g y x
66 65 adantr f dom 1 g dom 1 r ran f ran g abs ran f ran g abs ran f ran g x y abs ran f ran g y x
67 fnfvima abs Fn ran f ran g r ran f ran g r abs ran f ran g
68 32 67 mp3an1 ran f ran g r ran f ran g r abs ran f ran g
69 25 68 sylan f dom 1 g dom 1 r ran f ran g r abs ran f ran g
70 suprub abs ran f ran g abs ran f ran g x y abs ran f ran g y x r abs ran f ran g r sup abs ran f ran g <
71 66 69 70 syl2anc f dom 1 g dom 1 r ran f ran g r sup abs ran f ran g <
72 71 adantrr f dom 1 g dom 1 r ran f ran g r 0 r sup abs ran f ran g <
73 55 58 59 63 72 ltletrd f dom 1 g dom 1 r ran f ran g r 0 0 < sup abs ran f ran g <
74 73 rexlimdvaa f dom 1 g dom 1 r ran f ran g r 0 0 < sup abs ran f ran g <
75 74 imp f dom 1 g dom 1 r ran f ran g r 0 0 < sup abs ran f ran g <
76 54 75 elrpd f dom 1 g dom 1 r ran f ran g r 0 sup abs ran f ran g < +
77 rpmulcl 2 + sup abs ran f ran g < + 2 sup abs ran f ran g < +
78 16 76 77 sylancr f dom 1 g dom 1 r ran f ran g r 0 2 sup abs ran f ran g < +
79 rpdivcl y 2 + 2 sup abs ran f ran g < + y 2 2 sup abs ran f ran g < +
80 15 78 79 syl2an φ u A B y + f dom 1 g dom 1 r ran f ran g r 0 y 2 2 sup abs ran f ran g < +
81 80 anassrs φ u A B y + f dom 1 g dom 1 r ran f ran g r 0 y 2 2 sup abs ran f ran g < +
82 81 adantlr φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y 2 2 sup abs ran f ran g < +
83 ancom u A B y + y + u A B
84 83 anbi2i φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 u A B y + φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B
85 an32 φ u A B y + f dom 1 g dom 1 φ f dom 1 g dom 1 u A B y +
86 85 anbi1i φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 φ f dom 1 g dom 1 u A B y + 2 t if t D F t 0 f t + i g t < y 2
87 an32 φ f dom 1 g dom 1 u A B y + 2 t if t D F t 0 f t + i g t < y 2 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 u A B y +
88 86 87 bitri φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 u A B y +
89 88 anbi1i φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 u A B y + r ran f ran g r 0
90 an32 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 u A B y + r ran f ran g r 0 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 u A B y +
91 89 90 bitri φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 u A B y +
92 anass φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B
93 84 91 92 3bitr4i φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B
94 oveq12 b = w a = u b a = w u
95 94 ancoms a = u b = w b a = w u
96 95 fveq2d a = u b = w b a = w u
97 96 breq1d a = u b = w b a < y 2 2 sup abs ran f ran g < w u < y 2 2 sup abs ran f ran g <
98 fveq2 b = w G b = G w
99 fveq2 a = u G a = G u
100 98 99 oveqan12rd a = u b = w G b G a = G w G u
101 100 fveq2d a = u b = w G b G a = G w G u
102 101 breq1d a = u b = w G b G a < y G w G u < y
103 97 102 imbi12d a = u b = w b a < y 2 2 sup abs ran f ran g < G b G a < y w u < y 2 2 sup abs ran f ran g < G w G u < y
104 oveq12 b = u a = w b a = u w
105 104 ancoms a = w b = u b a = u w
106 105 fveq2d a = w b = u b a = u w
107 106 breq1d a = w b = u b a < y 2 2 sup abs ran f ran g < u w < y 2 2 sup abs ran f ran g <
108 fveq2 b = u G b = G u
109 fveq2 a = w G a = G w
110 108 109 oveqan12rd a = w b = u G b G a = G u G w
111 110 fveq2d a = w b = u G b G a = G u G w
112 111 breq1d a = w b = u G b G a < y G u G w < y
113 107 112 imbi12d a = w b = u b a < y 2 2 sup abs ran f ran g < G b G a < y u w < y 2 2 sup abs ran f ran g < G u G w < y
114 iccssre A B A B
115 2 3 114 syl2anc φ A B
116 115 ad4antr φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + A B
117 simp-4l φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + φ
118 115 24 sstrdi φ A B
119 118 sselda φ w A B w
120 118 sselda φ u A B u
121 abssub w u w u = u w
122 119 120 121 syl2anr φ u A B φ w A B w u = u w
123 122 anandis φ u A B w A B w u = u w
124 123 breq1d φ u A B w A B w u < y 2 2 sup abs ran f ran g < u w < y 2 2 sup abs ran f ran g <
125 10 ffvelrnda φ w A B G w
126 10 ffvelrnda φ u A B G u
127 abssub G w G u G w G u = G u G w
128 125 126 127 syl2anr φ u A B φ w A B G w G u = G u G w
129 128 anandis φ u A B w A B G w G u = G u G w
130 129 breq1d φ u A B w A B G w G u < y G u G w < y
131 124 130 imbi12d φ u A B w A B w u < y 2 2 sup abs ran f ran g < G w G u < y u w < y 2 2 sup abs ran f ran g < G u G w < y
132 117 131 sylan φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B w u < y 2 2 sup abs ran f ran g < G w G u < y u w < y 2 2 sup abs ran f ran g < G u G w < y
133 2 rexrd φ A *
134 3 rexrd φ B *
135 133 134 jca φ A * B *
136 df-icc . = x * , y * t * | x t t y
137 136 elixx3g u A B A * B * u * A u u B
138 137 simprbi u A B A u u B
139 138 simpld u A B A u
140 136 elixx3g w A B A * B * w * A w w B
141 140 simprbi w A B A w w B
142 141 simprd w A B w B
143 139 142 anim12i u A B w A B A u w B
144 ioossioo A * B * A u w B u w A B
145 135 143 144 syl2an φ u A B w A B u w A B
146 5 adantr φ u A B w A B A B D
147 145 146 sstrd φ u A B w A B u w D
148 147 sselda φ u A B w A B t u w t D
149 8 ffvelrnda φ t D F t
150 149 abscld φ t D F t
151 150 rexrd φ t D F t *
152 149 absge0d φ t D 0 F t
153 elxrge0 F t 0 +∞ F t * 0 F t
154 151 152 153 sylanbrc φ t D F t 0 +∞
155 154 adantlr φ u A B w A B t D F t 0 +∞
156 148 155 syldan φ u A B w A B t u w F t 0 +∞
157 0e0iccpnf 0 0 +∞
158 157 a1i φ u A B w A B ¬ t u w 0 0 +∞
159 156 158 ifclda φ u A B w A B if t u w F t 0 0 +∞
160 159 adantr φ u A B w A B t if t u w F t 0 0 +∞
161 160 fmpttd φ u A B w A B t if t u w F t 0 : 0 +∞
162 itg2cl t if t u w F t 0 : 0 +∞ 2 t if t u w F t 0 *
163 161 162 syl φ u A B w A B 2 t if t u w F t 0 *
164 163 3adantr3 φ u A B w A B u w 2 t if t u w F t 0 *
165 117 164 sylan φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w 2 t if t u w F t 0 *
166 165 adantr φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w w u < y 2 2 sup abs ran f ran g < 2 t if t u w F t 0 *
167 simplll φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + φ f dom 1 g dom 1
168 149 adantlr φ u A B w A B t D F t
169 148 168 syldan φ u A B w A B t u w F t
170 169 adantllr φ f dom 1 g dom 1 u A B w A B t u w F t
171 elioore t u w t
172 17 ffvelrnda f dom 1 t f t
173 172 recnd f dom 1 t f t
174 ax-icn i
175 20 ffvelrnda g dom 1 t g t
176 175 recnd g dom 1 t g t
177 mulcl i g t i g t
178 174 176 177 sylancr g dom 1 t i g t
179 addcl f t i g t f t + i g t
180 173 178 179 syl2an f dom 1 t g dom 1 t f t + i g t
181 180 anandirs f dom 1 g dom 1 t f t + i g t
182 171 181 sylan2 f dom 1 g dom 1 t u w f t + i g t
183 182 adantll φ f dom 1 g dom 1 t u w f t + i g t
184 183 adantlr φ f dom 1 g dom 1 u A B w A B t u w f t + i g t
185 170 184 subcld φ f dom 1 g dom 1 u A B w A B t u w F t f t + i g t
186 185 abscld φ f dom 1 g dom 1 u A B w A B t u w F t f t + i g t
187 182 abscld f dom 1 g dom 1 t u w f t + i g t
188 187 adantll φ f dom 1 g dom 1 t u w f t + i g t
189 188 adantlr φ f dom 1 g dom 1 u A B w A B t u w f t + i g t
190 186 189 readdcld φ f dom 1 g dom 1 u A B w A B t u w F t f t + i g t + f t + i g t
191 190 rexrd φ f dom 1 g dom 1 u A B w A B t u w F t f t + i g t + f t + i g t *
192 185 absge0d φ f dom 1 g dom 1 u A B w A B t u w 0 F t f t + i g t
193 181 absge0d f dom 1 g dom 1 t 0 f t + i g t
194 171 193 sylan2 f dom 1 g dom 1 t u w 0 f t + i g t
195 194 adantll φ f dom 1 g dom 1 t u w 0 f t + i g t
196 195 adantlr φ f dom 1 g dom 1 u A B w A B t u w 0 f t + i g t
197 186 189 192 196 addge0d φ f dom 1 g dom 1 u A B w A B t u w 0 F t f t + i g t + f t + i g t
198 elxrge0 F t f t + i g t + f t + i g t 0 +∞ F t f t + i g t + f t + i g t * 0 F t f t + i g t + f t + i g t
199 191 197 198 sylanbrc φ f dom 1 g dom 1 u A B w A B t u w F t f t + i g t + f t + i g t 0 +∞
200 157 a1i φ f dom 1 g dom 1 u A B w A B ¬ t u w 0 0 +∞
201 199 200 ifclda φ f dom 1 g dom 1 u A B w A B if t u w F t f t + i g t + f t + i g t 0 0 +∞
202 201 adantr φ f dom 1 g dom 1 u A B w A B t if t u w F t f t + i g t + f t + i g t 0 0 +∞
203 202 fmpttd φ f dom 1 g dom 1 u A B w A B t if t u w F t f t + i g t + f t + i g t 0 : 0 +∞
204 itg2cl t if t u w F t f t + i g t + f t + i g t 0 : 0 +∞ 2 t if t u w F t f t + i g t + f t + i g t 0 *
205 203 204 syl φ f dom 1 g dom 1 u A B w A B 2 t if t u w F t f t + i g t + f t + i g t 0 *
206 205 3adantr3 φ f dom 1 g dom 1 u A B w A B u w 2 t if t u w F t f t + i g t + f t + i g t 0 *
207 167 206 sylan φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w 2 t if t u w F t f t + i g t + f t + i g t 0 *
208 207 adantr φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w w u < y 2 2 sup abs ran f ran g < 2 t if t u w F t f t + i g t + f t + i g t 0 *
209 rpxr y + y *
210 209 ad3antlr φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w w u < y 2 2 sup abs ran f ran g < y *
211 159 adantlr φ f dom 1 g dom 1 u A B w A B if t u w F t 0 0 +∞
212 211 adantr φ f dom 1 g dom 1 u A B w A B t if t u w F t 0 0 +∞
213 212 fmpttd φ f dom 1 g dom 1 u A B w A B t if t u w F t 0 : 0 +∞
214 170 184 npcand φ f dom 1 g dom 1 u A B w A B t u w F t f t + i g t + f t + i g t = F t
215 214 fveq2d φ f dom 1 g dom 1 u A B w A B t u w F t f t + i g t + f t + i g t = F t
216 185 184 abstrid φ f dom 1 g dom 1 u A B w A B t u w F t f t + i g t + f t + i g t F t f t + i g t + f t + i g t
217 215 216 eqbrtrrd φ f dom 1 g dom 1 u A B w A B t u w F t F t f t + i g t + f t + i g t
218 iftrue t u w if t u w F t 0 = F t
219 218 adantl φ f dom 1 g dom 1 u A B w A B t u w if t u w F t 0 = F t
220 iftrue t u w if t u w F t f t + i g t + f t + i g t 0 = F t f t + i g t + f t + i g t
221 220 adantl φ f dom 1 g dom 1 u A B w A B t u w if t u w F t f t + i g t + f t + i g t 0 = F t f t + i g t + f t + i g t
222 217 219 221 3brtr4d φ f dom 1 g dom 1 u A B w A B t u w if t u w F t 0 if t u w F t f t + i g t + f t + i g t 0
223 222 ex φ f dom 1 g dom 1 u A B w A B t u w if t u w F t 0 if t u w F t f t + i g t + f t + i g t 0
224 0le0 0 0
225 224 a1i ¬ t u w 0 0
226 iffalse ¬ t u w if t u w F t 0 = 0
227 iffalse ¬ t u w if t u w F t f t + i g t + f t + i g t 0 = 0
228 225 226 227 3brtr4d ¬ t u w if t u w F t 0 if t u w F t f t + i g t + f t + i g t 0
229 223 228 pm2.61d1 φ f dom 1 g dom 1 u A B w A B if t u w F t 0 if t u w F t f t + i g t + f t + i g t 0
230 229 ralrimivw φ f dom 1 g dom 1 u A B w A B t if t u w F t 0 if t u w F t f t + i g t + f t + i g t 0
231 reex V
232 231 a1i φ V
233 fvex F t V
234 c0ex 0 V
235 233 234 ifex if t u w F t 0 V
236 235 a1i φ t if t u w F t 0 V
237 ovex F t f t + i g t + f t + i g t V
238 237 234 ifex if t u w F t f t + i g t + f t + i g t 0 V
239 238 a1i φ t if t u w F t f t + i g t + f t + i g t 0 V
240 eqidd φ t if t u w F t 0 = t if t u w F t 0
241 eqidd φ t if t u w F t f t + i g t + f t + i g t 0 = t if t u w F t f t + i g t + f t + i g t 0
242 232 236 239 240 241 ofrfval2 φ t if t u w F t 0 f t if t u w F t f t + i g t + f t + i g t 0 t if t u w F t 0 if t u w F t f t + i g t + f t + i g t 0
243 242 ad2antrr φ f dom 1 g dom 1 u A B w A B t if t u w F t 0 f t if t u w F t f t + i g t + f t + i g t 0 t if t u w F t 0 if t u w F t f t + i g t + f t + i g t 0
244 230 243 mpbird φ f dom 1 g dom 1 u A B w A B t if t u w F t 0 f t if t u w F t f t + i g t + f t + i g t 0
245 itg2le t if t u w F t 0 : 0 +∞ t if t u w F t f t + i g t + f t + i g t 0 : 0 +∞ t if t u w F t 0 f t if t u w F t f t + i g t + f t + i g t 0 2 t if t u w F t 0 2 t if t u w F t f t + i g t + f t + i g t 0
246 213 203 244 245 syl3anc φ f dom 1 g dom 1 u A B w A B 2 t if t u w F t 0 2 t if t u w F t f t + i g t + f t + i g t 0
247 246 3adantr3 φ f dom 1 g dom 1 u A B w A B u w 2 t if t u w F t 0 2 t if t u w F t f t + i g t + f t + i g t 0
248 167 247 sylan φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w 2 t if t u w F t 0 2 t if t u w F t f t + i g t + f t + i g t 0
249 248 adantr φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w w u < y 2 2 sup abs ran f ran g < 2 t if t u w F t 0 2 t if t u w F t f t + i g t + f t + i g t 0
250 1 2 3 4 5 6 7 8 ftc1anclem8 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w w u < y 2 2 sup abs ran f ran g < 2 t if t u w F t f t + i g t + f t + i g t 0 < y
251 166 208 210 249 250 xrlelttrd φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w w u < y 2 2 sup abs ran f ran g < 2 t if t u w F t 0 < y
252 simplll φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 φ
253 simpr2 φ u A B w A B u w w A B
254 oveq2 x = w A x = A w
255 itgeq1 A x = A w A x F t dt = A w F t dt
256 254 255 syl x = w A x F t dt = A w F t dt
257 itgex A w F t dt V
258 256 1 257 fvmpt w A B G w = A w F t dt
259 253 258 syl φ u A B w A B u w G w = A w F t dt
260 2 adantr φ u A B w A B u w A
261 115 sselda φ w A B w
262 261 3ad2antr2 φ u A B w A B u w w
263 115 sselda φ u A B u
264 263 rexrd φ u A B u *
265 264 3ad2antr1 φ u A B w A B u w u *
266 elicc1 A * B * u A B u * A u u B
267 133 134 266 syl2anc φ u A B u * A u u B
268 267 biimpa φ u A B u * A u u B
269 268 simp2d φ u A B A u
270 269 3ad2antr1 φ u A B w A B u w A u
271 simpr3 φ u A B w A B u w u w
272 133 adantr φ w A B A *
273 261 rexrd φ w A B w *
274 elicc1 A * w * u A w u * A u u w
275 272 273 274 syl2anc φ w A B u A w u * A u u w
276 275 3ad2antr2 φ u A B w A B u w u A w u * A u u w
277 265 270 271 276 mpbir3and φ u A B w A B u w u A w
278 iooss2 B * w B A w A B
279 134 142 278 syl2an φ w A B A w A B
280 5 adantr φ w A B A B D
281 279 280 sstrd φ w A B A w D
282 281 3ad2antr2 φ u A B w A B u w A w D
283 282 sselda φ u A B w A B u w t A w t D
284 149 adantlr φ u A B w A B u w t D F t
285 283 284 syldan φ u A B w A B u w t A w F t
286 eleq1w w = u w A B u A B
287 286 anbi2d w = u φ w A B φ u A B
288 oveq2 w = u A w = A u
289 288 mpteq1d w = u t A w F t = t A u F t
290 289 eleq1d w = u t A w F t 𝐿 1 t A u F t 𝐿 1
291 287 290 imbi12d w = u φ w A B t A w F t 𝐿 1 φ u A B t A u F t 𝐿 1
292 ioombl A w dom vol
293 292 a1i φ w A B A w dom vol
294 149 adantlr φ w A B t D F t
295 8 feqmptd φ F = t D F t
296 295 7 eqeltrrd φ t D F t 𝐿 1
297 296 adantr φ w A B t D F t 𝐿 1
298 281 293 294 297 iblss φ w A B t A w F t 𝐿 1
299 291 298 chvarvv φ u A B t A u F t 𝐿 1
300 299 3ad2antr1 φ u A B w A B u w t A u F t 𝐿 1
301 ioombl u w dom vol
302 301 a1i φ u A B w A B u w dom vol
303 fvexd φ u A B w A B t D F t V
304 296 adantr φ u A B w A B t D F t 𝐿 1
305 147 302 303 304 iblss φ u A B w A B t u w F t 𝐿 1
306 305 3adantr3 φ u A B w A B u w t u w F t 𝐿 1
307 260 262 277 285 300 306 itgsplitioo φ u A B w A B u w A w F t dt = A u F t dt + u w F t dt
308 259 307 eqtrd φ u A B w A B u w G w = A u F t dt + u w F t dt
309 simpr1 φ u A B w A B u w u A B
310 oveq2 x = u A x = A u
311 itgeq1 A x = A u A x F t dt = A u F t dt
312 310 311 syl x = u A x F t dt = A u F t dt
313 itgex A u F t dt V
314 312 1 313 fvmpt u A B G u = A u F t dt
315 309 314 syl φ u A B w A B u w G u = A u F t dt
316 308 315 oveq12d φ u A B w A B u w G w G u = A u F t dt + u w F t dt - A u F t dt
317 fvexd φ u A B t A u F t V
318 317 299 itgcl φ u A B A u F t dt
319 318 adantrr φ u A B w A B A u F t dt
320 fvexd φ u A B w A B t u w F t V
321 320 305 itgcl φ u A B w A B u w F t dt
322 319 321 pncan2d φ u A B w A B A u F t dt + u w F t dt - A u F t dt = u w F t dt
323 322 3adantr3 φ u A B w A B u w A u F t dt + u w F t dt - A u F t dt = u w F t dt
324 316 323 eqtrd φ u A B w A B u w G w G u = u w F t dt
325 324 fveq2d φ u A B w A B u w G w G u = u w F t dt
326 df-ov u w = . u w
327 opelxpi u A B w A B u w A B × A B
328 ioof . : * × * 𝒫
329 ffn . : * × * 𝒫 . Fn * × *
330 328 329 ax-mp . Fn * × *
331 iccssxr A B *
332 xpss12 A B * A B * A B × A B * × *
333 331 331 332 mp2an A B × A B * × *
334 fnfvima . Fn * × * A B × A B * × * u w A B × A B . u w . A B × A B
335 330 333 334 mp3an12 u w A B × A B . u w . A B × A B
336 327 335 syl u A B w A B . u w . A B × A B
337 326 336 eqeltrid u A B w A B u w . A B × A B
338 itgeq1 s = u w s F t dt = u w F t dt
339 338 fveq2d s = u w s F t dt = u w F t dt
340 eleq2 s = u w t s t u w
341 340 ifbid s = u w if t s F t 0 = if t u w F t 0
342 341 mpteq2dv s = u w t if t s F t 0 = t if t u w F t 0
343 342 fveq2d s = u w 2 t if t s F t 0 = 2 t if t u w F t 0
344 339 343 breq12d s = u w s F t dt 2 t if t s F t 0 u w F t dt 2 t if t u w F t 0
345 344 rspccva s . A B × A B s F t dt 2 t if t s F t 0 u w . A B × A B u w F t dt 2 t if t u w F t 0
346 9 337 345 syl2an φ u A B w A B u w F t dt 2 t if t u w F t 0
347 346 3adantr3 φ u A B w A B u w u w F t dt 2 t if t u w F t 0
348 325 347 eqbrtrd φ u A B w A B u w G w G u 2 t if t u w F t 0
349 348 adantlr φ y + u A B w A B u w G w G u 2 t if t u w F t 0
350 subcl G w G u G w G u
351 125 126 350 syl2anr φ u A B φ w A B G w G u
352 351 anandis φ u A B w A B G w G u
353 352 abscld φ u A B w A B G w G u
354 353 rexrd φ u A B w A B G w G u *
355 354 3adantr3 φ u A B w A B u w G w G u *
356 355 adantlr φ y + u A B w A B u w G w G u *
357 164 adantlr φ y + u A B w A B u w 2 t if t u w F t 0 *
358 209 ad2antlr φ y + u A B w A B u w y *
359 xrlelttr G w G u * 2 t if t u w F t 0 * y * G w G u 2 t if t u w F t 0 2 t if t u w F t 0 < y G w G u < y
360 356 357 358 359 syl3anc φ y + u A B w A B u w G w G u 2 t if t u w F t 0 2 t if t u w F t 0 < y G w G u < y
361 349 360 mpand φ y + u A B w A B u w 2 t if t u w F t 0 < y G w G u < y
362 252 361 sylanl1 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w 2 t if t u w F t 0 < y G w G u < y
363 362 adantr φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w w u < y 2 2 sup abs ran f ran g < 2 t if t u w F t 0 < y G w G u < y
364 251 363 mpd φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w w u < y 2 2 sup abs ran f ran g < G w G u < y
365 364 ex φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B u w w u < y 2 2 sup abs ran f ran g < G w G u < y
366 103 113 116 132 365 wlogle φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B w u < y 2 2 sup abs ran f ran g < G w G u < y
367 366 anassrs φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 y + u A B w A B w u < y 2 2 sup abs ran f ran g < G w G u < y
368 93 367 sylanb φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 w A B w u < y 2 2 sup abs ran f ran g < G w G u < y
369 368 ralrimiva φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 w A B w u < y 2 2 sup abs ran f ran g < G w G u < y
370 breq2 z = y 2 2 sup abs ran f ran g < w u < z w u < y 2 2 sup abs ran f ran g <
371 370 rspceaimv y 2 2 sup abs ran f ran g < + w A B w u < y 2 2 sup abs ran f ran g < G w G u < y z + w A B w u < z G w G u < y
372 82 369 371 syl2anc φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r 0 z + w A B w u < z G w G u < y
373 ralnex r ran f ran g ¬ r 0 ¬ r ran f ran g r 0
374 nne ¬ r 0 r = 0
375 374 ralbii r ran f ran g ¬ r 0 r ran f ran g r = 0
376 373 375 bitr3i ¬ r ran f ran g r 0 r ran f ran g r = 0
377 17 ffnd f dom 1 f Fn
378 fnfvelrn f Fn t f t ran f
379 377 378 sylan f dom 1 t f t ran f
380 elun1 f t ran f f t ran f ran g
381 379 380 syl f dom 1 t f t ran f ran g
382 eqeq1 r = f t r = 0 f t = 0
383 382 rspcva f t ran f ran g r ran f ran g r = 0 f t = 0
384 381 383 sylan f dom 1 t r ran f ran g r = 0 f t = 0
385 384 adantllr f dom 1 g dom 1 t r ran f ran g r = 0 f t = 0
386 20 ffnd g dom 1 g Fn
387 fnfvelrn g Fn t g t ran g
388 386 387 sylan g dom 1 t g t ran g
389 elun2 g t ran g g t ran f ran g
390 388 389 syl g dom 1 t g t ran f ran g
391 eqeq1 r = g t r = 0 g t = 0
392 391 rspcva g t ran f ran g r ran f ran g r = 0 g t = 0
393 392 oveq2d g t ran f ran g r ran f ran g r = 0 i g t = i 0
394 it0e0 i 0 = 0
395 393 394 eqtrdi g t ran f ran g r ran f ran g r = 0 i g t = 0
396 390 395 sylan g dom 1 t r ran f ran g r = 0 i g t = 0
397 396 adantlll f dom 1 g dom 1 t r ran f ran g r = 0 i g t = 0
398 385 397 oveq12d f dom 1 g dom 1 t r ran f ran g r = 0 f t + i g t = 0 + 0
399 398 an32s f dom 1 g dom 1 r ran f ran g r = 0 t f t + i g t = 0 + 0
400 00id 0 + 0 = 0
401 399 400 eqtrdi f dom 1 g dom 1 r ran f ran g r = 0 t f t + i g t = 0
402 401 adantlll φ f dom 1 g dom 1 r ran f ran g r = 0 t f t + i g t = 0
403 402 oveq2d φ f dom 1 g dom 1 r ran f ran g r = 0 t if t D F t 0 f t + i g t = if t D F t 0 0
404 0cnd φ ¬ t D 0
405 149 404 ifclda φ if t D F t 0
406 405 subid1d φ if t D F t 0 0 = if t D F t 0
407 406 ad3antrrr φ f dom 1 g dom 1 r ran f ran g r = 0 t if t D F t 0 0 = if t D F t 0
408 403 407 eqtrd φ f dom 1 g dom 1 r ran f ran g r = 0 t if t D F t 0 f t + i g t = if t D F t 0
409 408 fveq2d φ f dom 1 g dom 1 r ran f ran g r = 0 t if t D F t 0 f t + i g t = if t D F t 0
410 fvif if t D F t 0 = if t D F t 0
411 abs0 0 = 0
412 ifeq2 0 = 0 if t D F t 0 = if t D F t 0
413 411 412 ax-mp if t D F t 0 = if t D F t 0
414 410 413 eqtri if t D F t 0 = if t D F t 0
415 409 414 eqtrdi φ f dom 1 g dom 1 r ran f ran g r = 0 t if t D F t 0 f t + i g t = if t D F t 0
416 415 mpteq2dva φ f dom 1 g dom 1 r ran f ran g r = 0 t if t D F t 0 f t + i g t = t if t D F t 0
417 416 fveq2d φ f dom 1 g dom 1 r ran f ran g r = 0 2 t if t D F t 0 f t + i g t = 2 t if t D F t 0
418 417 breq1d φ f dom 1 g dom 1 r ran f ran g r = 0 2 t if t D F t 0 f t + i g t < y 2 2 t if t D F t 0 < y 2
419 418 biimpd φ f dom 1 g dom 1 r ran f ran g r = 0 2 t if t D F t 0 f t + i g t < y 2 2 t if t D F t 0 < y 2
420 419 ex φ f dom 1 g dom 1 r ran f ran g r = 0 2 t if t D F t 0 f t + i g t < y 2 2 t if t D F t 0 < y 2
421 420 com23 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r = 0 2 t if t D F t 0 < y 2
422 421 imp32 φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r = 0 2 t if t D F t 0 < y 2
423 422 anasss φ f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r = 0 2 t if t D F t 0 < y 2
424 423 adantlr φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r = 0 2 t if t D F t 0 < y 2
425 1rp 1 +
426 425 ne0ii +
427 352 anassrs φ u A B w A B G w G u
428 427 abscld φ u A B w A B G w G u
429 428 adantlrr φ u A B y + w A B G w G u
430 429 adantlr φ u A B y + 2 t if t D F t 0 < y 2 w A B G w G u
431 rpre y + y
432 431 rehalfcld y + y 2
433 432 adantl u A B y + y 2
434 433 ad3antlr φ u A B y + 2 t if t D F t 0 < y 2 w A B y 2
435 431 adantl u A B y + y
436 435 ad3antlr φ u A B y + 2 t if t D F t 0 < y 2 w A B y
437 430 rexrd φ u A B y + 2 t if t D F t 0 < y 2 w A B G w G u *
438 157 a1i φ ¬ t D 0 0 +∞
439 154 438 ifclda φ if t D F t 0 0 +∞
440 439 adantr φ t if t D F t 0 0 +∞
441 440 fmpttd φ t if t D F t 0 : 0 +∞
442 itg2cl t if t D F t 0 : 0 +∞ 2 t if t D F t 0 *
443 441 442 syl φ 2 t if t D F t 0 *
444 443 ad3antrrr φ u A B y + 2 t if t D F t 0 < y 2 w A B 2 t if t D F t 0 *
445 434 rexrd φ u A B y + 2 t if t D F t 0 < y 2 w A B y 2 *
446 109 108 oveqan12rd b = u a = w G a G b = G w G u
447 446 fveq2d b = u a = w G a G b = G w G u
448 447 breq1d b = u a = w G a G b 2 t if t D F t 0 G w G u 2 t if t D F t 0
449 99 98 oveqan12rd b = w a = u G a G b = G u G w
450 449 fveq2d b = w a = u G a G b = G u G w
451 450 breq1d b = w a = u G a G b 2 t if t D F t 0 G u G w 2 t if t D F t 0
452 129 breq1d φ u A B w A B G w G u 2 t if t D F t 0 G u G w 2 t if t D F t 0
453 321 abscld φ u A B w A B u w F t dt
454 453 rexrd φ u A B w A B u w F t dt *
455 443 adantr φ u A B w A B 2 t if t D F t 0 *
456 441 adantr φ u A B w A B t if t D F t 0 : 0 +∞
457 breq2 F t = if t D F t 0 if t u w F t 0 F t if t u w F t 0 if t D F t 0
458 breq2 0 = if t D F t 0 if t u w F t 0 0 if t u w F t 0 if t D F t 0
459 150 leidd φ t D F t F t
460 breq1 F t = if t u w F t 0 F t F t if t u w F t 0 F t
461 breq1 0 = if t u w F t 0 0 F t if t u w F t 0 F t
462 460 461 ifboth F t F t 0 F t if t u w F t 0 F t
463 459 152 462 syl2anc φ t D if t u w F t 0 F t
464 463 adantlr φ u A B w A B t D if t u w F t 0 F t
465 147 ssneld φ u A B w A B ¬ t D ¬ t u w
466 465 imp φ u A B w A B ¬ t D ¬ t u w
467 226 224 eqbrtrdi ¬ t u w if t u w F t 0 0
468 466 467 syl φ u A B w A B ¬ t D if t u w F t 0 0
469 457 458 464 468 ifbothda φ u A B w A B if t u w F t 0 if t D F t 0
470 469 ralrimivw φ u A B w A B t if t u w F t 0 if t D F t 0
471 233 234 ifex if t D F t 0 V
472 471 a1i φ t if t D F t 0 V
473 eqidd φ t if t D F t 0 = t if t D F t 0
474 232 236 472 240 473 ofrfval2 φ t if t u w F t 0 f t if t D F t 0 t if t u w F t 0 if t D F t 0
475 474 adantr φ u A B w A B t if t u w F t 0 f t if t D F t 0 t if t u w F t 0 if t D F t 0
476 470 475 mpbird φ u A B w A B t if t u w F t 0 f t if t D F t 0
477 itg2le t if t u w F t 0 : 0 +∞ t if t D F t 0 : 0 +∞ t if t u w F t 0 f t if t D F t 0 2 t if t u w F t 0 2 t if t D F t 0
478 161 456 476 477 syl3anc φ u A B w A B 2 t if t u w F t 0 2 t if t D F t 0
479 454 163 455 346 478 xrletrd φ u A B w A B u w F t dt 2 t if t D F t 0
480 479 3adantr3 φ u A B w A B u w u w F t dt 2 t if t D F t 0
481 325 480 eqbrtrd φ u A B w A B u w G w G u 2 t if t D F t 0
482 448 451 115 452 481 wlogle φ u A B w A B G w G u 2 t if t D F t 0
483 482 anassrs φ u A B w A B G w G u 2 t if t D F t 0
484 483 adantlrr φ u A B y + w A B G w G u 2 t if t D F t 0
485 484 adantlr φ u A B y + 2 t if t D F t 0 < y 2 w A B G w G u 2 t if t D F t 0
486 simplr φ u A B y + 2 t if t D F t 0 < y 2 w A B 2 t if t D F t 0 < y 2
487 437 444 445 485 486 xrlelttrd φ u A B y + 2 t if t D F t 0 < y 2 w A B G w G u < y 2
488 rphalflt y + y 2 < y
489 488 adantl u A B y + y 2 < y
490 489 ad3antlr φ u A B y + 2 t if t D F t 0 < y 2 w A B y 2 < y
491 430 434 436 487 490 lttrd φ u A B y + 2 t if t D F t 0 < y 2 w A B G w G u < y
492 491 a1d φ u A B y + 2 t if t D F t 0 < y 2 w A B w u < z G w G u < y
493 492 ralrimiva φ u A B y + 2 t if t D F t 0 < y 2 w A B w u < z G w G u < y
494 493 ralrimivw φ u A B y + 2 t if t D F t 0 < y 2 z + w A B w u < z G w G u < y
495 r19.2z + z + w A B w u < z G w G u < y z + w A B w u < z G w G u < y
496 426 494 495 sylancr φ u A B y + 2 t if t D F t 0 < y 2 z + w A B w u < z G w G u < y
497 424 496 syldan φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r = 0 z + w A B w u < z G w G u < y
498 497 anassrs φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r = 0 z + w A B w u < z G w G u < y
499 498 anassrs φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 r ran f ran g r = 0 z + w A B w u < z G w G u < y
500 376 499 sylan2b φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 ¬ r ran f ran g r 0 z + w A B w u < z G w G u < y
501 372 500 pm2.61dan φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 z + w A B w u < z G w G u < y
502 501 ex φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 z + w A B w u < z G w G u < y
503 502 rexlimdvva φ u A B y + f dom 1 g dom 1 2 t if t D F t 0 f t + i g t < y 2 z + w A B w u < z G w G u < y
504 14 503 mpd φ u A B y + z + w A B w u < z G w G u < y
505 504 ralrimivva φ u A B y + z + w A B w u < z G w G u < y
506 ssid
507 elcncf2 A B G : A B cn G : A B u A B y + z + w A B w u < z G w G u < y
508 118 506 507 sylancl φ G : A B cn G : A B u A B y + z + w A B w u < z G w G u < y
509 10 505 508 mpbir2and φ G : A B cn