Metamath Proof Explorer


Theorem hoidmvlelem2

Description: This is the contradiction proven in step (d) in the proof of Lemma 115B of Fremlin1 p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses hoidmvlelem2.l L = x Fin a x , b x if x = 0 k x vol a k b k
hoidmvlelem2.x φ X Fin
hoidmvlelem2.y φ Y X
hoidmvlelem2.z φ Z X Y
hoidmvlelem2.w W = Y Z
hoidmvlelem2.a φ A : W
hoidmvlelem2.b φ B : W
hoidmvlelem2.c φ C : W
hoidmvlelem2.f F = y Y 0
hoidmvlelem2.j J = j if S C j Z D j Z C j Y F
hoidmvlelem2.d φ D : W
hoidmvlelem2.k K = j if S C j Z D j Z D j Y F
hoidmvlelem2.r φ sum^ j C j L W D j
hoidmvlelem2.h H = x c W j W if j Y c j if c j x c j x
hoidmvlelem2.g G = A Y L Y B Y
hoidmvlelem2.e φ E +
hoidmvlelem2.u U = z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
hoidmvlelem2.su φ S U
hoidmvlelem2.sb φ S < B Z
hoidmvlelem2.p P = j J j L Y K j
hoidmvlelem2.m φ M
hoidmvlelem2.le φ G 1 + E j = 1 M P j
hoidmvlelem2.O O = ran i j 1 M | S C j Z D j Z D i Z
hoidmvlelem2.v V = B Z O
hoidmvlelem2.q Q = sup V <
Assertion hoidmvlelem2 φ u U S < u

Proof

Step Hyp Ref Expression
1 hoidmvlelem2.l L = x Fin a x , b x if x = 0 k x vol a k b k
2 hoidmvlelem2.x φ X Fin
3 hoidmvlelem2.y φ Y X
4 hoidmvlelem2.z φ Z X Y
5 hoidmvlelem2.w W = Y Z
6 hoidmvlelem2.a φ A : W
7 hoidmvlelem2.b φ B : W
8 hoidmvlelem2.c φ C : W
9 hoidmvlelem2.f F = y Y 0
10 hoidmvlelem2.j J = j if S C j Z D j Z C j Y F
11 hoidmvlelem2.d φ D : W
12 hoidmvlelem2.k K = j if S C j Z D j Z D j Y F
13 hoidmvlelem2.r φ sum^ j C j L W D j
14 hoidmvlelem2.h H = x c W j W if j Y c j if c j x c j x
15 hoidmvlelem2.g G = A Y L Y B Y
16 hoidmvlelem2.e φ E +
17 hoidmvlelem2.u U = z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
18 hoidmvlelem2.su φ S U
19 hoidmvlelem2.sb φ S < B Z
20 hoidmvlelem2.p P = j J j L Y K j
21 hoidmvlelem2.m φ M
22 hoidmvlelem2.le φ G 1 + E j = 1 M P j
23 hoidmvlelem2.O O = ran i j 1 M | S C j Z D j Z D i Z
24 hoidmvlelem2.v V = B Z O
25 hoidmvlelem2.q Q = sup V <
26 snidg Z X Y Z Z
27 4 26 syl φ Z Z
28 elun2 Z Z Z Y Z
29 27 28 syl φ Z Y Z
30 29 5 eleqtrrdi φ Z W
31 6 30 ffvelrnd φ A Z
32 7 30 ffvelrnd φ B Z
33 32 snssd φ B Z
34 nfv i φ
35 eqid i j 1 M | S C j Z D j Z D i Z = i j 1 M | S C j Z D j Z D i Z
36 simpl φ i j 1 M | S C j Z D j Z φ
37 fz1ssnn 1 M
38 elrabi i j 1 M | S C j Z D j Z i 1 M
39 37 38 sselid i j 1 M | S C j Z D j Z i
40 39 adantl φ i j 1 M | S C j Z D j Z i
41 eleq1w j = i j i
42 41 anbi2d j = i φ j φ i
43 fveq2 j = i D j = D i
44 43 fveq1d j = i D j Z = D i Z
45 44 eleq1d j = i D j Z D i Z
46 42 45 imbi12d j = i φ j D j Z φ i D i Z
47 11 ffvelrnda φ j D j W
48 elmapi D j W D j : W
49 47 48 syl φ j D j : W
50 30 adantr φ j Z W
51 49 50 ffvelrnd φ j D j Z
52 46 51 chvarvv φ i D i Z
53 36 40 52 syl2anc φ i j 1 M | S C j Z D j Z D i Z
54 34 35 53 rnmptssd φ ran i j 1 M | S C j Z D j Z D i Z
55 23 54 eqsstrid φ O
56 33 55 unssd φ B Z O
57 24 56 eqsstrid φ V
58 ltso < Or
59 58 a1i φ < Or
60 snfi B Z Fin
61 60 a1i φ B Z Fin
62 fzfi 1 M Fin
63 rabfi 1 M Fin j 1 M | S C j Z D j Z Fin
64 62 63 ax-mp j 1 M | S C j Z D j Z Fin
65 64 a1i φ j 1 M | S C j Z D j Z Fin
66 35 rnmptfi j 1 M | S C j Z D j Z Fin ran i j 1 M | S C j Z D j Z D i Z Fin
67 65 66 syl φ ran i j 1 M | S C j Z D j Z D i Z Fin
68 23 67 eqeltrid φ O Fin
69 unfi B Z Fin O Fin B Z O Fin
70 61 68 69 syl2anc φ B Z O Fin
71 24 70 eqeltrid φ V Fin
72 fvex B Z V
73 72 snid B Z B Z
74 elun1 B Z B Z B Z B Z O
75 73 74 ax-mp B Z B Z O
76 24 eqcomi B Z O = V
77 75 76 eleqtri B Z V
78 77 a1i φ B Z V
79 ne0i B Z V V
80 78 79 syl φ V
81 fiinfcl < Or V Fin V V sup V < V
82 59 71 80 57 81 syl13anc φ sup V < V
83 25 82 eqeltrid φ Q V
84 57 83 sseldd φ Q
85 ssrab2 z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j A Z B Z
86 17 85 eqsstri U A Z B Z
87 86 a1i φ U A Z B Z
88 31 32 iccssred φ A Z B Z
89 87 88 sstrd φ U
90 89 18 sseldd φ S
91 31 rexrd φ A Z *
92 32 rexrd φ B Z *
93 86 18 sselid φ S A Z B Z
94 iccgelb A Z * B Z * S A Z B Z A Z S
95 91 92 93 94 syl3anc φ A Z S
96 19 adantr φ x = B Z S < B Z
97 id x = B Z x = B Z
98 97 eqcomd x = B Z B Z = x
99 98 adantl φ x = B Z B Z = x
100 96 99 breqtrd φ x = B Z S < x
101 100 adantlr φ x V x = B Z S < x
102 simpll φ x V ¬ x = B Z φ
103 id x V x V
104 103 24 eleqtrdi x V x B Z O
105 104 adantr x V ¬ x = B Z x B Z O
106 elsni x B Z x = B Z
107 106 con3i ¬ x = B Z ¬ x B Z
108 107 adantl x V ¬ x = B Z ¬ x B Z
109 elunnel1 x B Z O ¬ x B Z x O
110 105 108 109 syl2anc x V ¬ x = B Z x O
111 110 adantll φ x V ¬ x = B Z x O
112 id x O x O
113 112 23 eleqtrdi x O x ran i j 1 M | S C j Z D j Z D i Z
114 vex x V
115 35 elrnmpt x V x ran i j 1 M | S C j Z D j Z D i Z i j 1 M | S C j Z D j Z x = D i Z
116 114 115 ax-mp x ran i j 1 M | S C j Z D j Z D i Z i j 1 M | S C j Z D j Z x = D i Z
117 113 116 sylib x O i j 1 M | S C j Z D j Z x = D i Z
118 117 adantl φ x O i j 1 M | S C j Z D j Z x = D i Z
119 fveq2 j = i C j = C i
120 119 fveq1d j = i C j Z = C i Z
121 120 eleq1d j = i C j Z C i Z
122 42 121 imbi12d j = i φ j C j Z φ i C i Z
123 8 ffvelrnda φ j C j W
124 elmapi C j W C j : W
125 123 124 syl φ j C j : W
126 125 50 ffvelrnd φ j C j Z
127 122 126 chvarvv φ i C i Z
128 127 rexrd φ i C i Z *
129 36 40 128 syl2anc φ i j 1 M | S C j Z D j Z C i Z *
130 52 rexrd φ i D i Z *
131 36 40 130 syl2anc φ i j 1 M | S C j Z D j Z D i Z *
132 120 44 oveq12d j = i C j Z D j Z = C i Z D i Z
133 132 eleq2d j = i S C j Z D j Z S C i Z D i Z
134 133 elrab i j 1 M | S C j Z D j Z i 1 M S C i Z D i Z
135 134 biimpi i j 1 M | S C j Z D j Z i 1 M S C i Z D i Z
136 135 simprd i j 1 M | S C j Z D j Z S C i Z D i Z
137 136 adantl φ i j 1 M | S C j Z D j Z S C i Z D i Z
138 icoltub C i Z * D i Z * S C i Z D i Z S < D i Z
139 129 131 137 138 syl3anc φ i j 1 M | S C j Z D j Z S < D i Z
140 139 3adant3 φ i j 1 M | S C j Z D j Z x = D i Z S < D i Z
141 id x = D i Z x = D i Z
142 141 eqcomd x = D i Z D i Z = x
143 142 3ad2ant3 φ i j 1 M | S C j Z D j Z x = D i Z D i Z = x
144 140 143 breqtrd φ i j 1 M | S C j Z D j Z x = D i Z S < x
145 144 3exp φ i j 1 M | S C j Z D j Z x = D i Z S < x
146 145 adantr φ x O i j 1 M | S C j Z D j Z x = D i Z S < x
147 146 rexlimdv φ x O i j 1 M | S C j Z D j Z x = D i Z S < x
148 118 147 mpd φ x O S < x
149 102 111 148 syl2anc φ x V ¬ x = B Z S < x
150 101 149 pm2.61dan φ x V S < x
151 150 ralrimiva φ x V S < x
152 breq2 x = sup V < S < x S < sup V <
153 152 rspcva sup V < V x V S < x S < sup V <
154 82 151 153 syl2anc φ S < sup V <
155 25 eqcomi sup V < = Q
156 155 a1i φ sup V < = Q
157 154 156 breqtrd φ S < Q
158 31 90 84 95 157 lelttrd φ A Z < Q
159 31 84 158 ltled φ A Z Q
160 fiminre V V Fin V x V y V x y
161 57 71 80 160 syl3anc φ x V y V x y
162 lbinfle V x V y V x y B Z V sup V < B Z
163 57 161 78 162 syl3anc φ sup V < B Z
164 25 163 eqbrtrid φ Q B Z
165 31 32 84 159 164 eliccd φ Q A Z B Z
166 84 recnd φ Q
167 90 recnd φ S
168 31 recnd φ A Z
169 166 167 168 npncand φ Q S + S - A Z = Q A Z
170 169 eqcomd φ Q A Z = Q S + S - A Z
171 170 oveq2d φ G Q A Z = G Q S + S - A Z
172 rge0ssre 0 +∞
173 2 3 ssfid φ Y Fin
174 ssun1 Y Y Z
175 174 5 sseqtrri Y W
176 175 a1i φ Y W
177 6 176 fssresd φ A Y : Y
178 7 176 fssresd φ B Y : Y
179 1 173 177 178 hoidmvcl φ A Y L Y B Y 0 +∞
180 15 179 eqeltrid φ G 0 +∞
181 172 180 sselid φ G
182 181 recnd φ G
183 166 167 subcld φ Q S
184 167 168 subcld φ S A Z
185 182 183 184 adddid φ G Q S + S - A Z = G Q S + G S A Z
186 182 183 mulcld φ G Q S
187 182 184 mulcld φ G S A Z
188 186 187 addcomd φ G Q S + G S A Z = G S A Z + G Q S
189 171 185 188 3eqtrd φ G Q A Z = G S A Z + G Q S
190 84 90 jca φ Q S
191 resubcl Q S Q S
192 190 191 syl φ Q S
193 181 192 jca φ G Q S
194 remulcl G Q S G Q S
195 193 194 syl φ G Q S
196 90 31 jca φ S A Z
197 resubcl S A Z S A Z
198 196 197 syl φ S A Z
199 181 198 jca φ G S A Z
200 remulcl G S A Z G S A Z
201 199 200 syl φ G S A Z
202 195 201 jca φ G Q S G S A Z
203 readdcl G Q S G S A Z G Q S + G S A Z
204 202 203 syl φ G Q S + G S A Z
205 188 204 eqeltrrd φ G S A Z + G Q S
206 1red φ 1
207 16 rpred φ E
208 206 207 readdcld φ 1 + E
209 4 eldifbd φ ¬ Z Y
210 30 209 eldifd φ Z W Y
211 1 173 210 5 8 11 13 14 90 sge0hsphoire φ sum^ j C j L W H S D j
212 208 211 remulcld φ 1 + E sum^ j C j L W H S D j
213 fzfid φ 1 M Fin
214 192 adantr φ j 1 M Q S
215 simpl φ j 1 M φ
216 elfznn j 1 M j
217 216 adantl φ j 1 M j
218 id j j
219 ovexd j J j L Y K j V
220 20 fvmpt2 j J j L Y K j V P j = J j L Y K j
221 218 219 220 syl2anc j P j = J j L Y K j
222 221 adantl φ j P j = J j L Y K j
223 173 adantr φ j Y Fin
224 175 a1i φ j Y W
225 125 224 fssresd φ j C j Y : Y
226 225 adantr φ j S C j Z D j Z C j Y : Y
227 iftrue S C j Z D j Z if S C j Z D j Z C j Y F = C j Y
228 227 adantl φ j S C j Z D j Z if S C j Z D j Z C j Y F = C j Y
229 228 feq1d φ j S C j Z D j Z if S C j Z D j Z C j Y F : Y C j Y : Y
230 226 229 mpbird φ j S C j Z D j Z if S C j Z D j Z C j Y F : Y
231 0red φ y Y 0
232 231 9 fmptd φ F : Y
233 232 ad2antrr φ j ¬ S C j Z D j Z F : Y
234 iffalse ¬ S C j Z D j Z if S C j Z D j Z C j Y F = F
235 234 adantl φ j ¬ S C j Z D j Z if S C j Z D j Z C j Y F = F
236 235 feq1d φ j ¬ S C j Z D j Z if S C j Z D j Z C j Y F : Y F : Y
237 233 236 mpbird φ j ¬ S C j Z D j Z if S C j Z D j Z C j Y F : Y
238 230 237 pm2.61dan φ j if S C j Z D j Z C j Y F : Y
239 simpr φ j j
240 fvex C j V
241 240 resex C j Y V
242 241 a1i φ C j Y V
243 2 3 ssexd φ Y V
244 mptexg Y V y Y 0 V
245 243 244 syl φ y Y 0 V
246 9 245 eqeltrid φ F V
247 242 246 ifcld φ if S C j Z D j Z C j Y F V
248 247 adantr φ j if S C j Z D j Z C j Y F V
249 10 fvmpt2 j if S C j Z D j Z C j Y F V J j = if S C j Z D j Z C j Y F
250 239 248 249 syl2anc φ j J j = if S C j Z D j Z C j Y F
251 250 feq1d φ j J j : Y if S C j Z D j Z C j Y F : Y
252 238 251 mpbird φ j J j : Y
253 49 224 fssresd φ j D j Y : Y
254 253 adantr φ j S C j Z D j Z D j Y : Y
255 iftrue S C j Z D j Z if S C j Z D j Z D j Y F = D j Y
256 255 adantl φ j S C j Z D j Z if S C j Z D j Z D j Y F = D j Y
257 256 feq1d φ j S C j Z D j Z if S C j Z D j Z D j Y F : Y D j Y : Y
258 254 257 mpbird φ j S C j Z D j Z if S C j Z D j Z D j Y F : Y
259 iffalse ¬ S C j Z D j Z if S C j Z D j Z D j Y F = F
260 259 adantl φ j ¬ S C j Z D j Z if S C j Z D j Z D j Y F = F
261 260 feq1d φ j ¬ S C j Z D j Z if S C j Z D j Z D j Y F : Y F : Y
262 233 261 mpbird φ j ¬ S C j Z D j Z if S C j Z D j Z D j Y F : Y
263 258 262 pm2.61dan φ j if S C j Z D j Z D j Y F : Y
264 fvex D j V
265 264 resex D j Y V
266 265 a1i φ D j Y V
267 266 246 ifcld φ if S C j Z D j Z D j Y F V
268 267 adantr φ j if S C j Z D j Z D j Y F V
269 12 fvmpt2 j if S C j Z D j Z D j Y F V K j = if S C j Z D j Z D j Y F
270 239 268 269 syl2anc φ j K j = if S C j Z D j Z D j Y F
271 270 feq1d φ j K j : Y if S C j Z D j Z D j Y F : Y
272 263 271 mpbird φ j K j : Y
273 1 223 252 272 hoidmvcl φ j J j L Y K j 0 +∞
274 222 273 eqeltrd φ j P j 0 +∞
275 172 274 sselid φ j P j
276 215 217 275 syl2anc φ j 1 M P j
277 214 276 remulcld φ j 1 M Q S P j
278 213 277 fsumrecl φ j = 1 M Q S P j
279 208 278 remulcld φ 1 + E j = 1 M Q S P j
280 212 279 readdcld φ 1 + E sum^ j C j L W H S D j + 1 + E j = 1 M Q S P j
281 1 173 210 5 8 11 13 14 84 sge0hsphoire φ sum^ j C j L W H Q D j
282 208 281 remulcld φ 1 + E sum^ j C j L W H Q D j
283 18 17 eleqtrdi φ S z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
284 oveq1 z = S z A Z = S A Z
285 284 oveq2d z = S G z A Z = G S A Z
286 fveq2 z = S H z = H S
287 286 fveq1d z = S H z D j = H S D j
288 287 oveq2d z = S C j L W H z D j = C j L W H S D j
289 288 mpteq2dv z = S j C j L W H z D j = j C j L W H S D j
290 289 fveq2d z = S sum^ j C j L W H z D j = sum^ j C j L W H S D j
291 290 oveq2d z = S 1 + E sum^ j C j L W H z D j = 1 + E sum^ j C j L W H S D j
292 285 291 breq12d z = S G z A Z 1 + E sum^ j C j L W H z D j G S A Z 1 + E sum^ j C j L W H S D j
293 292 elrab S z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j S A Z B Z G S A Z 1 + E sum^ j C j L W H S D j
294 283 293 sylib φ S A Z B Z G S A Z 1 + E sum^ j C j L W H S D j
295 294 simprd φ G S A Z 1 + E sum^ j C j L W H S D j
296 213 276 fsumrecl φ j = 1 M P j
297 208 296 remulcld φ 1 + E j = 1 M P j
298 0red φ 0
299 90 84 posdifd φ S < Q 0 < Q S
300 157 299 mpbid φ 0 < Q S
301 298 192 300 ltled φ 0 Q S
302 181 297 192 301 22 lemul1ad φ G Q S 1 + E j = 1 M P j Q S
303 208 recnd φ 1 + E
304 296 recnd φ j = 1 M P j
305 303 304 183 mulassd φ 1 + E j = 1 M P j Q S = 1 + E j = 1 M P j Q S
306 276 recnd φ j 1 M P j
307 213 183 306 fsummulc1 φ j = 1 M P j Q S = j = 1 M P j Q S
308 183 adantr φ j 1 M Q S
309 306 308 mulcomd φ j 1 M P j Q S = Q S P j
310 309 sumeq2dv φ j = 1 M P j Q S = j = 1 M Q S P j
311 307 310 eqtrd φ j = 1 M P j Q S = j = 1 M Q S P j
312 311 oveq2d φ 1 + E j = 1 M P j Q S = 1 + E j = 1 M Q S P j
313 305 312 eqtrd φ 1 + E j = 1 M P j Q S = 1 + E j = 1 M Q S P j
314 302 313 breqtrd φ G Q S 1 + E j = 1 M Q S P j
315 201 195 212 279 295 314 leadd12dd φ G S A Z + G Q S 1 + E sum^ j C j L W H S D j + 1 + E j = 1 M Q S P j
316 nnsplit M = 1 M M + 1
317 21 316 syl φ = 1 M M + 1
318 uncom 1 M M + 1 = M + 1 1 M
319 318 a1i φ 1 M M + 1 = M + 1 1 M
320 317 319 eqtr2d φ M + 1 1 M =
321 320 eqcomd φ = M + 1 1 M
322 321 mpteq1d φ j C j L W H S D j = j M + 1 1 M C j L W H S D j
323 322 fveq2d φ sum^ j C j L W H S D j = sum^ j M + 1 1 M C j L W H S D j
324 nfv j φ
325 fvexd φ M + 1 V
326 ovexd φ 1 M V
327 incom M + 1 1 M = 1 M M + 1
328 nnuzdisj 1 M M + 1 =
329 327 328 eqtri M + 1 1 M =
330 329 a1i φ M + 1 1 M =
331 icossicc 0 +∞ 0 +∞
332 ssid 0 +∞ 0 +∞
333 simpl φ j M + 1 φ
334 21 peano2nnd φ M + 1
335 uznnssnn M + 1 M + 1
336 334 335 syl φ M + 1
337 336 adantr φ j M + 1 M + 1
338 simpr φ j M + 1 j M + 1
339 337 338 sseldd φ j M + 1 j
340 snfi Z Fin
341 340 a1i φ Z Fin
342 unfi Y Fin Z Fin Y Z Fin
343 173 341 342 syl2anc φ Y Z Fin
344 5 343 eqeltrid φ W Fin
345 344 adantr φ j W Fin
346 eleq1w j = l j Y l Y
347 fveq2 j = l c j = c l
348 347 breq1d j = l c j x c l x
349 348 347 ifbieq1d j = l if c j x c j x = if c l x c l x
350 346 347 349 ifbieq12d j = l if j Y c j if c j x c j x = if l Y c l if c l x c l x
351 350 cbvmptv j W if j Y c j if c j x c j x = l W if l Y c l if c l x c l x
352 351 mpteq2i c W j W if j Y c j if c j x c j x = c W l W if l Y c l if c l x c l x
353 352 mpteq2i x c W j W if j Y c j if c j x c j x = x c W l W if l Y c l if c l x c l x
354 14 353 eqtri H = x c W l W if l Y c l if c l x c l x
355 90 adantr φ j S
356 354 355 345 49 hsphoif φ j H S D j : W
357 1 345 125 356 hoidmvcl φ j C j L W H S D j 0 +∞
358 333 339 357 syl2anc φ j M + 1 C j L W H S D j 0 +∞
359 332 358 sselid φ j M + 1 C j L W H S D j 0 +∞
360 331 359 sselid φ j M + 1 C j L W H S D j 0 +∞
361 215 217 357 syl2anc φ j 1 M C j L W H S D j 0 +∞
362 331 361 sselid φ j 1 M C j L W H S D j 0 +∞
363 324 325 326 330 360 362 sge0splitmpt φ sum^ j M + 1 1 M C j L W H S D j = sum^ j M + 1 C j L W H S D j + 𝑒 sum^ j 1 M C j L W H S D j
364 nnex V
365 364 a1i φ V
366 331 357 sselid φ j C j L W H S D j 0 +∞
367 324 365 366 211 336 sge0ssrempt φ sum^ j M + 1 C j L W H S D j
368 37 a1i φ 1 M
369 324 365 366 211 368 sge0ssrempt φ sum^ j 1 M C j L W H S D j
370 rexadd sum^ j M + 1 C j L W H S D j sum^ j 1 M C j L W H S D j sum^ j M + 1 C j L W H S D j + 𝑒 sum^ j 1 M C j L W H S D j = sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j
371 367 369 370 syl2anc φ sum^ j M + 1 C j L W H S D j + 𝑒 sum^ j 1 M C j L W H S D j = sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j
372 323 363 371 3eqtrd φ sum^ j C j L W H S D j = sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j
373 372 oveq2d φ 1 + E sum^ j C j L W H S D j = 1 + E sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j
374 373 oveq1d φ 1 + E sum^ j C j L W H S D j + 1 + E j = 1 M Q S P j = 1 + E sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + 1 + E j = 1 M Q S P j
375 372 211 eqeltrrd φ sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j
376 375 recnd φ sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j
377 278 recnd φ j = 1 M Q S P j
378 303 376 377 adddid φ 1 + E sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + j = 1 M Q S P j = 1 + E sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + 1 + E j = 1 M Q S P j
379 378 eqcomd φ 1 + E sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + 1 + E j = 1 M Q S P j = 1 + E sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + j = 1 M Q S P j
380 367 recnd φ sum^ j M + 1 C j L W H S D j
381 369 recnd φ sum^ j 1 M C j L W H S D j
382 380 381 377 addassd φ sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + j = 1 M Q S P j = sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + j = 1 M Q S P j
383 213 361 sge0fsummpt φ sum^ j 1 M C j L W H S D j = j = 1 M C j L W H S D j
384 383 oveq1d φ sum^ j 1 M C j L W H S D j + j = 1 M Q S P j = j = 1 M C j L W H S D j + j = 1 M Q S P j
385 ax-resscn
386 172 385 sstri 0 +∞
387 386 357 sselid φ j C j L W H S D j
388 215 217 387 syl2anc φ j 1 M C j L W H S D j
389 192 adantr φ j Q S
390 389 275 remulcld φ j Q S P j
391 390 recnd φ j Q S P j
392 217 391 syldan φ j 1 M Q S P j
393 213 388 392 fsumadd φ j = 1 M C j L W H S D j + Q S P j = j = 1 M C j L W H S D j + j = 1 M Q S P j
394 393 eqcomd φ j = 1 M C j L W H S D j + j = 1 M Q S P j = j = 1 M C j L W H S D j + Q S P j
395 384 394 eqtrd φ sum^ j 1 M C j L W H S D j + j = 1 M Q S P j = j = 1 M C j L W H S D j + Q S P j
396 395 oveq2d φ sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + j = 1 M Q S P j = sum^ j M + 1 C j L W H S D j + j = 1 M C j L W H S D j + Q S P j
397 382 396 eqtrd φ sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + j = 1 M Q S P j = sum^ j M + 1 C j L W H S D j + j = 1 M C j L W H S D j + Q S P j
398 397 oveq2d φ 1 + E sum^ j M + 1 C j L W H S D j + sum^ j 1 M C j L W H S D j + j = 1 M Q S P j = 1 + E sum^ j M + 1 C j L W H S D j + j = 1 M C j L W H S D j + Q S P j
399 374 379 398 3eqtrd φ 1 + E sum^ j C j L W H S D j + 1 + E j = 1 M Q S P j = 1 + E sum^ j M + 1 C j L W H S D j + j = 1 M C j L W H S D j + Q S P j
400 172 357 sselid φ j C j L W H S D j
401 400 390 readdcld φ j C j L W H S D j + Q S P j
402 215 217 401 syl2anc φ j 1 M C j L W H S D j + Q S P j
403 213 402 fsumrecl φ j = 1 M C j L W H S D j + Q S P j
404 367 403 readdcld φ sum^ j M + 1 C j L W H S D j + j = 1 M C j L W H S D j + Q S P j
405 0le1 0 1
406 405 a1i φ 0 1
407 16 rpge0d φ 0 E
408 206 207 406 407 addge0d φ 0 1 + E
409 84 adantr φ j Q
410 354 409 345 49 hsphoif φ j H Q D j : W
411 1 345 125 410 hoidmvcl φ j C j L W H Q D j 0 +∞
412 331 411 sselid φ j C j L W H Q D j 0 +∞
413 324 365 412 281 336 sge0ssrempt φ sum^ j M + 1 C j L W H Q D j
414 172 411 sselid φ j C j L W H Q D j
415 215 217 414 syl2anc φ j 1 M C j L W H Q D j
416 213 415 fsumrecl φ j = 1 M C j L W H Q D j
417 333 339 412 syl2anc φ j M + 1 C j L W H Q D j 0 +∞
418 210 adantr φ j Z W Y
419 90 84 157 ltled φ S Q
420 419 adantr φ j S Q
421 1 345 418 5 355 409 420 354 125 49 hsphoidmvle2 φ j C j L W H S D j C j L W H Q D j
422 333 339 421 syl2anc φ j M + 1 C j L W H S D j C j L W H Q D j
423 324 325 360 417 422 sge0lempt φ sum^ j M + 1 C j L W H S D j sum^ j M + 1 C j L W H Q D j
424 215 adantr φ j 1 M P j = 0 φ
425 217 adantr φ j 1 M P j = 0 j
426 simpr φ j 1 M P j = 0 P j = 0
427 oveq2 P j = 0 Q S P j = Q S 0
428 427 adantl φ j P j = 0 Q S P j = Q S 0
429 183 mul01d φ Q S 0 = 0
430 429 ad2antrr φ j P j = 0 Q S 0 = 0
431 428 430 eqtrd φ j P j = 0 Q S P j = 0
432 431 oveq2d φ j P j = 0 C j L W H S D j + Q S P j = C j L W H S D j + 0
433 387 addid1d φ j C j L W H S D j + 0 = C j L W H S D j
434 433 adantr φ j P j = 0 C j L W H S D j + 0 = C j L W H S D j
435 432 434 eqtrd φ j P j = 0 C j L W H S D j + Q S P j = C j L W H S D j
436 421 adantr φ j P j = 0 C j L W H S D j C j L W H Q D j
437 435 436 eqbrtrd φ j P j = 0 C j L W H S D j + Q S P j C j L W H Q D j
438 424 425 426 437 syl21anc φ j 1 M P j = 0 C j L W H S D j + Q S P j C j L W H Q D j
439 simpl φ j 1 M ¬ P j = 0 φ j 1 M
440 neqne ¬ P j = 0 P j 0
441 440 adantl φ j 1 M ¬ P j = 0 P j 0
442 402 adantr φ j 1 M P j 0 C j L W H S D j + Q S P j
443 215 adantr φ j 1 M P j 0 φ
444 217 adantr φ j 1 M P j 0 j
445 simpr φ j 1 M P j 0 P j 0
446 4 adantr φ j Z X Y
447 209 adantr φ j ¬ Z Y
448 eqid k Y vol C j k H S D j k = k Y vol C j k H S D j k
449 1 223 446 447 5 125 356 448 hoiprodp1 φ j C j L W H S D j = k Y vol C j k H S D j k vol C j Z H S D j Z
450 449 adantr φ j P j 0 C j L W H S D j = k Y vol C j k H S D j k vol C j Z H S D j Z
451 222 adantr φ j P j 0 P j = J j L Y K j
452 223 adantr φ j P j 0 Y Fin
453 222 adantr φ j Y = P j = J j L Y K j
454 fveq2 Y = L Y = L
455 454 oveqd Y = J j L Y K j = J j L K j
456 455 adantl φ j Y = J j L Y K j = J j L K j
457 252 adantr φ j Y = J j : Y
458 id Y = Y =
459 458 eqcomd Y = = Y
460 459 adantl φ j Y = = Y
461 460 feq2d φ j Y = J j : J j : Y
462 457 461 mpbird φ j Y = J j :
463 272 adantr φ j Y = K j : Y
464 460 feq2d φ j Y = K j : K j : Y
465 463 464 mpbird φ j Y = K j :
466 1 462 465 hoidmv0val φ j Y = J j L K j = 0
467 453 456 466 3eqtrd φ j Y = P j = 0
468 467 adantlr φ j P j 0 Y = P j = 0
469 neneq P j 0 ¬ P j = 0
470 469 ad2antlr φ j P j 0 Y = ¬ P j = 0
471 468 470 pm2.65da φ j P j 0 ¬ Y =
472 471 neqned φ j P j 0 Y
473 252 adantr φ j P j 0 J j : Y
474 272 adantr φ j P j 0 K j : Y
475 1 452 472 473 474 hoidmvn0val φ j P j 0 J j L Y K j = k Y vol J j k K j k
476 250 adantr φ j P j 0 J j = if S C j Z D j Z C j Y F
477 222 adantr φ j ¬ S C j Z D j Z P j = J j L Y K j
478 250 adantr φ j ¬ S C j Z D j Z J j = if S C j Z D j Z C j Y F
479 478 235 eqtrd φ j ¬ S C j Z D j Z J j = F
480 270 adantr φ j ¬ S C j Z D j Z K j = if S C j Z D j Z D j Y F
481 480 260 eqtrd φ j ¬ S C j Z D j Z K j = F
482 479 481 oveq12d φ j ¬ S C j Z D j Z J j L Y K j = F L Y F
483 1 173 232 hoidmvval0b φ F L Y F = 0
484 483 ad2antrr φ j ¬ S C j Z D j Z F L Y F = 0
485 477 482 484 3eqtrd φ j ¬ S C j Z D j Z P j = 0
486 485 adantlr φ j P j 0 ¬ S C j Z D j Z P j = 0
487 469 ad2antlr φ j P j 0 ¬ S C j Z D j Z ¬ P j = 0
488 486 487 condan φ j P j 0 S C j Z D j Z
489 488 iftrued φ j P j 0 if S C j Z D j Z C j Y F = C j Y
490 476 489 eqtrd φ j P j 0 J j = C j Y
491 490 fveq1d φ j P j 0 J j k = C j Y k
492 491 adantr φ j P j 0 k Y J j k = C j Y k
493 fvres k Y C j Y k = C j k
494 493 adantl φ j P j 0 k Y C j Y k = C j k
495 492 494 eqtrd φ j P j 0 k Y J j k = C j k
496 270 adantr φ j P j 0 K j = if S C j Z D j Z D j Y F
497 488 255 syl φ j P j 0 if S C j Z D j Z D j Y F = D j Y
498 496 497 eqtrd φ j P j 0 K j = D j Y
499 498 fveq1d φ j P j 0 K j k = D j Y k
500 499 adantr φ j P j 0 k Y K j k = D j Y k
501 fvres k Y D j Y k = D j k
502 501 adantl φ j P j 0 k Y D j Y k = D j k
503 500 502 eqtrd φ j P j 0 k Y K j k = D j k
504 495 503 oveq12d φ j P j 0 k Y J j k K j k = C j k D j k
505 504 fveq2d φ j P j 0 k Y vol J j k K j k = vol C j k D j k
506 505 prodeq2dv φ j P j 0 k Y vol J j k K j k = k Y vol C j k D j k
507 475 506 eqtrd φ j P j 0 J j L Y K j = k Y vol C j k D j k
508 355 adantr φ j k Y S
509 345 adantr φ j k Y W Fin
510 49 adantr φ j k Y D j : W
511 elun1 k Y k Y Z
512 511 5 eleqtrrdi k Y k W
513 512 adantl φ j k Y k W
514 354 508 509 510 513 hsphoival φ j k Y H S D j k = if k Y D j k if D j k S D j k S
515 iftrue k Y if k Y D j k if D j k S D j k S = D j k
516 515 adantl φ j k Y if k Y D j k if D j k S D j k S = D j k
517 514 516 eqtrd φ j k Y H S D j k = D j k
518 517 oveq2d φ j k Y C j k H S D j k = C j k D j k
519 518 fveq2d φ j k Y vol C j k H S D j k = vol C j k D j k
520 519 prodeq2dv φ j k Y vol C j k H S D j k = k Y vol C j k D j k
521 520 eqcomd φ j k Y vol C j k D j k = k Y vol C j k H S D j k
522 521 adantr φ j P j 0 k Y vol C j k D j k = k Y vol C j k H S D j k
523 451 507 522 3eqtrrd φ j P j 0 k Y vol C j k H S D j k = P j
524 354 355 345 49 50 hsphoival φ j H S D j Z = if Z Y D j Z if D j Z S D j Z S
525 209 iffalsed φ if Z Y D j Z if D j Z S D j Z S = if D j Z S D j Z S
526 525 adantr φ j if Z Y D j Z if D j Z S D j Z S = if D j Z S D j Z S
527 524 526 eqtrd φ j H S D j Z = if D j Z S D j Z S
528 527 oveq2d φ j C j Z H S D j Z = C j Z if D j Z S D j Z S
529 528 adantr φ j P j 0 C j Z H S D j Z = C j Z if D j Z S D j Z S
530 126 rexrd φ j C j Z *
531 530 adantr φ j P j 0 C j Z *
532 51 rexrd φ j D j Z *
533 532 adantr φ j P j 0 D j Z *
534 icoltub C j Z * D j Z * S C j Z D j Z S < D j Z
535 531 533 488 534 syl3anc φ j P j 0 S < D j Z
536 355 adantr φ j P j 0 S
537 51 adantr φ j P j 0 D j Z
538 536 537 ltnled φ j P j 0 S < D j Z ¬ D j Z S
539 535 538 mpbid φ j P j 0 ¬ D j Z S
540 539 iffalsed φ j P j 0 if D j Z S D j Z S = S
541 540 oveq2d φ j P j 0 C j Z if D j Z S D j Z S = C j Z S
542 529 541 eqtrd φ j P j 0 C j Z H S D j Z = C j Z S
543 542 fveq2d φ j P j 0 vol C j Z H S D j Z = vol C j Z S
544 volico C j Z S vol C j Z S = if C j Z < S S C j Z 0
545 126 536 544 syl2an φ j φ j P j 0 vol C j Z S = if C j Z < S S C j Z 0
546 545 anabss5 φ j P j 0 vol C j Z S = if C j Z < S S C j Z 0
547 iftrue C j Z < S if C j Z < S S C j Z 0 = S C j Z
548 547 adantl φ j P j 0 C j Z < S if C j Z < S S C j Z 0 = S C j Z
549 iffalse ¬ C j Z < S if C j Z < S S C j Z 0 = 0
550 549 adantl φ j P j 0 ¬ C j Z < S if C j Z < S S C j Z 0 = 0
551 simpll φ j P j 0 ¬ C j Z < S φ j
552 icogelb C j Z * D j Z * S C j Z D j Z C j Z S
553 531 533 488 552 syl3anc φ j P j 0 C j Z S
554 553 adantr φ j P j 0 ¬ C j Z < S C j Z S
555 simpr φ j P j 0 ¬ C j Z < S ¬ C j Z < S
556 554 555 jca φ j P j 0 ¬ C j Z < S C j Z S ¬ C j Z < S
557 551 126 syl φ j P j 0 ¬ C j Z < S C j Z
558 551 355 syl φ j P j 0 ¬ C j Z < S S
559 557 558 eqleltd φ j P j 0 ¬ C j Z < S C j Z = S C j Z S ¬ C j Z < S
560 556 559 mpbird φ j P j 0 ¬ C j Z < S C j Z = S
561 id C j Z = S C j Z = S
562 561 eqcomd C j Z = S S = C j Z
563 562 oveq1d C j Z = S S C j Z = C j Z C j Z
564 563 adantl φ j C j Z = S S C j Z = C j Z C j Z
565 385 126 sselid φ j C j Z
566 565 subidd φ j C j Z C j Z = 0
567 566 adantr φ j C j Z = S C j Z C j Z = 0
568 564 567 eqtr2d φ j C j Z = S 0 = S C j Z
569 551 560 568 syl2anc φ j P j 0 ¬ C j Z < S 0 = S C j Z
570 550 569 eqtrd φ j P j 0 ¬ C j Z < S if C j Z < S S C j Z 0 = S C j Z
571 548 570 pm2.61dan φ j P j 0 if C j Z < S S C j Z 0 = S C j Z
572 543 546 571 3eqtrd φ j P j 0 vol C j Z H S D j Z = S C j Z
573 523 572 oveq12d φ j P j 0 k Y vol C j k H S D j k vol C j Z H S D j Z = P j S C j Z
574 386 274 sselid φ j P j
575 355 126 resubcld φ j S C j Z
576 575 recnd φ j S C j Z
577 574 576 mulcomd φ j P j S C j Z = S C j Z P j
578 577 adantr φ j P j 0 P j S C j Z = S C j Z P j
579 450 573 578 3eqtrd φ j P j 0 C j L W H S D j = S C j Z P j
580 579 oveq1d φ j P j 0 C j L W H S D j + Q S P j = S C j Z P j + Q S P j
581 183 adantr φ j Q S
582 576 581 574 adddird φ j S C j Z + Q - S P j = S C j Z P j + Q S P j
583 582 eqcomd φ j S C j Z P j + Q S P j = S C j Z + Q - S P j
584 583 adantr φ j P j 0 S C j Z P j + Q S P j = S C j Z + Q - S P j
585 576 581 addcomd φ j S C j Z + Q - S = Q S + S - C j Z
586 166 adantr φ j Q
587 167 adantr φ j S
588 586 587 565 npncand φ j Q S + S - C j Z = Q C j Z
589 585 588 eqtrd φ j S C j Z + Q - S = Q C j Z
590 589 oveq1d φ j S C j Z + Q - S P j = Q C j Z P j
591 590 adantr φ j P j 0 S C j Z + Q - S P j = Q C j Z P j
592 580 584 591 3eqtrd φ j P j 0 C j L W H S D j + Q S P j = Q C j Z P j
593 443 444 445 592 syl21anc φ j 1 M P j 0 C j L W H S D j + Q S P j = Q C j Z P j
594 eqid k Y vol C j k H Q D j k = k Y vol C j k H Q D j k
595 1 223 50 447 5 125 410 594 hoiprodp1 φ j C j L W H Q D j = k Y vol C j k H Q D j k vol C j Z H Q D j Z
596 215 217 595 syl2anc φ j 1 M C j L W H Q D j = k Y vol C j k H Q D j k vol C j Z H Q D j Z
597 596 adantr φ j 1 M P j 0 C j L W H Q D j = k Y vol C j k H Q D j k vol C j Z H Q D j Z
598 507 eqcomd φ j P j 0 k Y vol C j k D j k = J j L Y K j
599 409 adantr φ j k Y Q
600 354 599 509 510 513 hsphoival φ j k Y H Q D j k = if k Y D j k if D j k Q D j k Q
601 iftrue k Y if k Y D j k if D j k Q D j k Q = D j k
602 601 adantl φ j k Y if k Y D j k if D j k Q D j k Q = D j k
603 600 602 eqtrd φ j k Y H Q D j k = D j k
604 603 oveq2d φ j k Y C j k H Q D j k = C j k D j k
605 604 fveq2d φ j k Y vol C j k H Q D j k = vol C j k D j k
606 605 prodeq2dv φ j k Y vol C j k H Q D j k = k Y vol C j k D j k
607 606 adantr φ j P j 0 k Y vol C j k H Q D j k = k Y vol C j k D j k
608 598 607 451 3eqtr4d φ j P j 0 k Y vol C j k H Q D j k = P j
609 443 444 445 608 syl21anc φ j 1 M P j 0 k Y vol C j k H Q D j k = P j
610 354 409 345 49 50 hsphoival φ j H Q D j Z = if Z Y D j Z if D j Z Q D j Z Q
611 217 610 syldan φ j 1 M H Q D j Z = if Z Y D j Z if D j Z Q D j Z Q
612 611 adantr φ j 1 M P j 0 H Q D j Z = if Z Y D j Z if D j Z Q D j Z Q
613 209 iffalsed φ if Z Y D j Z if D j Z Q D j Z Q = if D j Z Q D j Z Q
614 613 ad2antrr φ j 1 M P j 0 if Z Y D j Z if D j Z Q D j Z Q = if D j Z Q D j Z Q
615 217 51 syldan φ j 1 M D j Z
616 615 adantr φ j 1 M D j Z = Q D j Z
617 simpr φ j 1 M D j Z = Q D j Z = Q
618 616 617 eqled φ j 1 M D j Z = Q D j Z Q
619 618 iftrued φ j 1 M D j Z = Q if D j Z Q D j Z Q = D j Z
620 619 617 eqtrd φ j 1 M D j Z = Q if D j Z Q D j Z Q = Q
621 620 adantlr φ j 1 M P j 0 D j Z = Q if D j Z Q D j Z Q = Q
622 84 adantr φ j 1 M Q
623 622 adantr φ j 1 M ¬ D j Z = Q Q
624 623 adantlr φ j 1 M P j 0 ¬ D j Z = Q Q
625 615 adantr φ j 1 M ¬ D j Z = Q D j Z
626 625 adantlr φ j 1 M P j 0 ¬ D j Z = Q D j Z
627 25 a1i φ j 1 M P j 0 Q = sup V <
628 443 57 syl φ j 1 M P j 0 V
629 161 ad2antrr φ j 1 M P j 0 x V y V x y
630 simplr φ j 1 M P j 0 j 1 M
631 216 488 sylanl2 φ j 1 M P j 0 S C j Z D j Z
632 630 631 jca φ j 1 M P j 0 j 1 M S C j Z D j Z
633 rabid j j 1 M | S C j Z D j Z j 1 M S C j Z D j Z
634 632 633 sylibr φ j 1 M P j 0 j j 1 M | S C j Z D j Z
635 eqidd φ j 1 M P j 0 D j Z = D j Z
636 fveq2 i = j D i = D j
637 636 fveq1d i = j D i Z = D j Z
638 637 eqeq2d i = j D j Z = D i Z D j Z = D j Z
639 638 rspcev j j 1 M | S C j Z D j Z D j Z = D j Z i j 1 M | S C j Z D j Z D j Z = D i Z
640 634 635 639 syl2anc φ j 1 M P j 0 i j 1 M | S C j Z D j Z D j Z = D i Z
641 fvexd φ j 1 M P j 0 D j Z V
642 35 640 641 elrnmptd φ j 1 M P j 0 D j Z ran i j 1 M | S C j Z D j Z D i Z
643 642 23 eleqtrrdi φ j 1 M P j 0 D j Z O
644 elun2 D j Z O D j Z B Z O
645 643 644 syl φ j 1 M P j 0 D j Z B Z O
646 76 a1i φ j 1 M P j 0 B Z O = V
647 645 646 eleqtrd φ j 1 M P j 0 D j Z V
648 lbinfle V x V y V x y D j Z V sup V < D j Z
649 628 629 647 648 syl3anc φ j 1 M P j 0 sup V < D j Z
650 627 649 eqbrtrd φ j 1 M P j 0 Q D j Z
651 650 adantr φ j 1 M P j 0 ¬ D j Z = Q Q D j Z
652 neqne ¬ D j Z = Q D j Z Q
653 652 adantl φ j 1 M P j 0 ¬ D j Z = Q D j Z Q
654 624 626 651 653 leneltd φ j 1 M P j 0 ¬ D j Z = Q Q < D j Z
655 624 626 ltnled φ j 1 M P j 0 ¬ D j Z = Q Q < D j Z ¬ D j Z Q
656 654 655 mpbid φ j 1 M P j 0 ¬ D j Z = Q ¬ D j Z Q
657 656 iffalsed φ j 1 M P j 0 ¬ D j Z = Q if D j Z Q D j Z Q = Q
658 621 657 pm2.61dan φ j 1 M P j 0 if D j Z Q D j Z Q = Q
659 612 614 658 3eqtrd φ j 1 M P j 0 H Q D j Z = Q
660 659 oveq2d φ j 1 M P j 0 C j Z H Q D j Z = C j Z Q
661 660 fveq2d φ j 1 M P j 0 vol C j Z H Q D j Z = vol C j Z Q
662 215 217 126 syl2anc φ j 1 M C j Z
663 662 adantr φ j 1 M P j 0 C j Z
664 443 84 syl φ j 1 M P j 0 Q
665 volico C j Z Q vol C j Z Q = if C j Z < Q Q C j Z 0
666 663 664 665 syl2anc φ j 1 M P j 0 vol C j Z Q = if C j Z < Q Q C j Z 0
667 443 90 syl φ j 1 M P j 0 S
668 443 444 445 553 syl21anc φ j 1 M P j 0 C j Z S
669 443 157 syl φ j 1 M P j 0 S < Q
670 663 667 664 668 669 lelttrd φ j 1 M P j 0 C j Z < Q
671 670 iftrued φ j 1 M P j 0 if C j Z < Q Q C j Z 0 = Q C j Z
672 661 666 671 3eqtrd φ j 1 M P j 0 vol C j Z H Q D j Z = Q C j Z
673 609 672 oveq12d φ j 1 M P j 0 k Y vol C j k H Q D j k vol C j Z H Q D j Z = P j Q C j Z
674 215 166 syl φ j 1 M Q
675 385 662 sselid φ j 1 M C j Z
676 674 675 subcld φ j 1 M Q C j Z
677 306 676 mulcomd φ j 1 M P j Q C j Z = Q C j Z P j
678 677 adantr φ j 1 M P j 0 P j Q C j Z = Q C j Z P j
679 597 673 678 3eqtrd φ j 1 M P j 0 C j L W H Q D j = Q C j Z P j
680 593 679 eqtr4d φ j 1 M P j 0 C j L W H S D j + Q S P j = C j L W H Q D j
681 442 680 eqled φ j 1 M P j 0 C j L W H S D j + Q S P j C j L W H Q D j
682 439 441 681 syl2anc φ j 1 M ¬ P j = 0 C j L W H S D j + Q S P j C j L W H Q D j
683 438 682 pm2.61dan φ j 1 M C j L W H S D j + Q S P j C j L W H Q D j
684 213 402 415 683 fsumle φ j = 1 M C j L W H S D j + Q S P j j = 1 M C j L W H Q D j
685 367 403 413 416 423 684 leadd12dd φ sum^ j M + 1 C j L W H S D j + j = 1 M C j L W H S D j + Q S P j sum^ j M + 1 C j L W H Q D j + j = 1 M C j L W H Q D j
686 321 mpteq1d φ j C j L W H Q D j = j M + 1 1 M C j L W H Q D j
687 686 fveq2d φ sum^ j C j L W H Q D j = sum^ j M + 1 1 M C j L W H Q D j
688 217 412 syldan φ j 1 M C j L W H Q D j 0 +∞
689 324 325 326 330 417 688 sge0splitmpt φ sum^ j M + 1 1 M C j L W H Q D j = sum^ j M + 1 C j L W H Q D j + 𝑒 sum^ j 1 M C j L W H Q D j
690 687 689 eqtrd φ sum^ j C j L W H Q D j = sum^ j M + 1 C j L W H Q D j + 𝑒 sum^ j 1 M C j L W H Q D j
691 215 217 411 syl2anc φ j 1 M C j L W H Q D j 0 +∞
692 213 691 sge0fsummpt φ sum^ j 1 M C j L W H Q D j = j = 1 M C j L W H Q D j
693 692 416 eqeltrd φ sum^ j 1 M C j L W H Q D j
694 rexadd sum^ j M + 1 C j L W H Q D j sum^ j 1 M C j L W H Q D j sum^ j M + 1 C j L W H Q D j + 𝑒 sum^ j 1 M C j L W H Q D j = sum^ j M + 1 C j L W H Q D j + sum^ j 1 M C j L W H Q D j
695 413 693 694 syl2anc φ sum^ j M + 1 C j L W H Q D j + 𝑒 sum^ j 1 M C j L W H Q D j = sum^ j M + 1 C j L W H Q D j + sum^ j 1 M C j L W H Q D j
696 692 oveq2d φ sum^ j M + 1 C j L W H Q D j + sum^ j 1 M C j L W H Q D j = sum^ j M + 1 C j L W H Q D j + j = 1 M C j L W H Q D j
697 690 695 696 3eqtrrd φ sum^ j M + 1 C j L W H Q D j + j = 1 M C j L W H Q D j = sum^ j C j L W H Q D j
698 685 697 breqtrd φ sum^ j M + 1 C j L W H S D j + j = 1 M C j L W H S D j + Q S P j sum^ j C j L W H Q D j
699 404 281 208 408 698 lemul2ad φ 1 + E sum^ j M + 1 C j L W H S D j + j = 1 M C j L W H S D j + Q S P j 1 + E sum^ j C j L W H Q D j
700 399 699 eqbrtrd φ 1 + E sum^ j C j L W H S D j + 1 + E j = 1 M Q S P j 1 + E sum^ j C j L W H Q D j
701 205 280 282 315 700 letrd φ G S A Z + G Q S 1 + E sum^ j C j L W H Q D j
702 189 701 eqbrtrd φ G Q A Z 1 + E sum^ j C j L W H Q D j
703 165 702 jca φ Q A Z B Z G Q A Z 1 + E sum^ j C j L W H Q D j
704 oveq1 z = Q z A Z = Q A Z
705 704 oveq2d z = Q G z A Z = G Q A Z
706 fveq2 z = Q H z = H Q
707 706 fveq1d z = Q H z D j = H Q D j
708 707 oveq2d z = Q C j L W H z D j = C j L W H Q D j
709 708 mpteq2dv z = Q j C j L W H z D j = j C j L W H Q D j
710 709 fveq2d z = Q sum^ j C j L W H z D j = sum^ j C j L W H Q D j
711 710 oveq2d z = Q 1 + E sum^ j C j L W H z D j = 1 + E sum^ j C j L W H Q D j
712 705 711 breq12d z = Q G z A Z 1 + E sum^ j C j L W H z D j G Q A Z 1 + E sum^ j C j L W H Q D j
713 712 elrab Q z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j Q A Z B Z G Q A Z 1 + E sum^ j C j L W H Q D j
714 703 713 sylibr φ Q z A Z B Z | G z A Z 1 + E sum^ j C j L W H z D j
715 714 17 eleqtrrdi φ Q U
716 breq2 u = Q S < u S < Q
717 716 rspcev Q U S < Q u U S < u
718 715 157 717 syl2anc φ u U S < u