Metamath Proof Explorer


Theorem poimirlem29

Description: Lemma for poimir connecting cubes of the tessellation to neighborhoods. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimir.i I=011N
poimir.r R=𝑡1N×topGenran.
poimir.1 φFR𝑡ICnR
poimirlem30.x X=F1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kn
poimirlem30.2 φG:01N×f|f:1N1-1 onto1N
poimirlem30.3 φkran1stGk0..^k
poimirlem30.4 φkn1Nr-1j0N0rX
Assertion poimirlem29 φikim1N1stGk÷f1N×kmCmballabs21in1NvR𝑡ICvr-1zv0rFzn

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimir.i I=011N
3 poimir.r R=𝑡1N×topGenran.
4 poimir.1 φFR𝑡ICnR
5 poimirlem30.x X=F1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kn
6 poimirlem30.2 φG:01N×f|f:1N1-1 onto1N
7 poimirlem30.3 φkran1stGk0..^k
8 poimirlem30.4 φkn1Nr-1j0N0rX
9 fzfi 1NFin
10 retop topGenran.Top
11 10 fconst6 1N×topGenran.:1NTop
12 pttop 1NFin1N×topGenran.:1NTop𝑡1N×topGenran.Top
13 9 11 12 mp2an 𝑡1N×topGenran.Top
14 3 13 eqeltri RTop
15 ovex 011NV
16 2 15 eqeltri IV
17 elrest RTopIVvR𝑡IzRv=zI
18 14 16 17 mp2an vR𝑡IzRv=zI
19 eqid abs2=abs2
20 3 19 ptrecube zRCzc+m=1NCmballabs2cz
21 20 ex zRCzc+m=1NCmballabs2cz
22 inss1 zIz
23 sseq1 v=zIvzzIz
24 22 23 mpbiri v=zIvz
25 24 sseld v=zICvCz
26 ssrin m=1NCmballabs2czm=1NCmballabs2cIzI
27 sseq2 v=zIm=1NCmballabs2cIvm=1NCmballabs2cIzI
28 26 27 imbitrrid v=zIm=1NCmballabs2czm=1NCmballabs2cIv
29 28 reximdv v=zIc+m=1NCmballabs2czc+m=1NCmballabs2cIv
30 25 29 imim12d v=zICzc+m=1NCmballabs2czCvc+m=1NCmballabs2cIv
31 21 30 syl5com zRv=zICvc+m=1NCmballabs2cIv
32 31 rexlimiv zRv=zICvc+m=1NCmballabs2cIv
33 18 32 sylbi vR𝑡ICvc+m=1NCmballabs2cIv
34 33 imp vR𝑡ICvc+m=1NCmballabs2cIv
35 34 adantl φvR𝑡ICvc+m=1NCmballabs2cIv
36 resttop RTopIVR𝑡ITop
37 14 16 36 mp2an R𝑡ITop
38 reex V
39 unitssre 01
40 mapss V01011N1N
41 38 39 40 mp2an 011N1N
42 2 41 eqsstri I1N
43 ovex 1NV
44 uniretop =topGenran.
45 3 44 ptuniconst 1NVtopGenran.Top1N=R
46 43 10 45 mp2an 1N=R
47 46 restuni RTopI1NI=R𝑡I
48 14 42 47 mp2an I=R𝑡I
49 48 eltopss R𝑡ITopvR𝑡IvI
50 37 49 mpan vR𝑡IvI
51 50 sselda vR𝑡ICvCI
52 2rp 2+
53 rpdivcl 2+c+2c+
54 52 53 mpan c+2c+
55 54 rpred c+2c
56 ceicl 2c2c
57 55 56 syl c+2c
58 0red c+0
59 57 zred c+2c
60 54 rpgt0d c+0<2c
61 ceige 2c2c2c
62 55 61 syl c+2c2c
63 58 55 59 60 62 ltletrd c+0<2c
64 elnnz 2c2c0<2c
65 57 63 64 sylanbrc c+2c
66 fveq2 i=2ci=2c
67 oveq2 i=2c1i=12c
68 67 oveq2d i=2cCmballabs21i=Cmballabs212c
69 68 eleq2d i=2c1stGk÷f1N×kmCmballabs21i1stGk÷f1N×kmCmballabs212c
70 69 ralbidv i=2cm1N1stGk÷f1N×kmCmballabs21im1N1stGk÷f1N×kmCmballabs212c
71 66 70 rexeqbidv i=2ckim1N1stGk÷f1N×kmCmballabs21ik2cm1N1stGk÷f1N×kmCmballabs212c
72 71 rspcv 2cikim1N1stGk÷f1N×kmCmballabs21ik2cm1N1stGk÷f1N×kmCmballabs212c
73 65 72 syl c+ikim1N1stGk÷f1N×kmCmballabs21ik2cm1N1stGk÷f1N×kmCmballabs212c
74 73 adantl φCIc+ikim1N1stGk÷f1N×kmCmballabs21ik2cm1N1stGk÷f1N×kmCmballabs212c
75 uznnssnn 2c2c
76 65 75 syl c+2c
77 76 sseld c+k2ck
78 77 adantl φCIc+k2ck
79 78 imdistani φCIc+k2cφCIc+k
80 65 nnrpd c+2c+
81 54 80 lerecd c+2c2c12c12c
82 62 81 mpbid c+12c12c
83 rpcn c+c
84 rpne0 c+c0
85 2cn 2
86 2ne0 20
87 recdiv 220cc012c=c2
88 85 86 87 mpanl12 cc012c=c2
89 83 84 88 syl2anc c+12c=c2
90 82 89 breqtrd c+12cc2
91 90 ad4antlr φCIc+kj0Nm1N12cc2
92 elmapi C011NC:1N01
93 92 2 eleq2s CIC:1N01
94 93 ad4antlr φCIc+kj0NC:1N01
95 94 ffvelcdmda φCIc+kj0Nm1NCm01
96 39 95 sselid φCIc+kj0Nm1NCm
97 simp-4l φCIc+kj0Nφ
98 simplr φCIc+kj0Nk
99 97 98 jca φCIc+kj0Nφk
100 6 ffvelcdmda φkGk01N×f|f:1N1-1 onto1N
101 xp1st Gk01N×f|f:1N1-1 onto1N1stGk01N
102 elmapi 1stGk01N1stGk:1N0
103 100 101 102 3syl φk1stGk:1N0
104 103 ffvelcdmda φkm1N1stGkm0
105 104 nn0red φkm1N1stGkm
106 simplr φkm1Nk
107 105 106 nndivred φkm1N1stGkmk
108 99 107 sylan φCIc+kj0Nm1N1stGkmk
109 96 108 resubcld φCIc+kj0Nm1NCm1stGkmk
110 109 recnd φCIc+kj0Nm1NCm1stGkmk
111 110 abscld φCIc+kj0Nm1NCm1stGkmk
112 65 nnrecred c+12c
113 112 ad4antlr φCIc+kj0Nm1N12c
114 rphalfcl c+c2+
115 114 rpred c+c2
116 115 ad4antlr φCIc+kj0Nm1Nc2
117 ltletr Cm1stGkmk12cc2Cm1stGkmk<12c12cc2Cm1stGkmk<c2
118 111 113 116 117 syl3anc φCIc+kj0Nm1NCm1stGkmk<12c12cc2Cm1stGkmk<c2
119 91 118 mpan2d φCIc+kj0Nm1NCm1stGkmk<12cCm1stGkmk<c2
120 79 119 sylanl1 φCIc+k2cj0Nm1NCm1stGkmk<12cCm1stGkmk<c2
121 simpl φCIφ
122 76 sselda c+k2ck
123 121 122 anim12i φCIc+k2cφk
124 123 anassrs φCIc+k2cφk
125 1re 1
126 snssi 11
127 125 126 ax-mp 1
128 0re 0
129 snssi 00
130 128 129 ax-mp 0
131 127 130 unssi 10
132 1ex 1V
133 132 fconst 2ndGk1j×1:2ndGk1j1
134 c0ex 0V
135 134 fconst 2ndGkj+1N×0:2ndGkj+1N0
136 133 135 pm3.2i 2ndGk1j×1:2ndGk1j12ndGkj+1N×0:2ndGkj+1N0
137 xp2nd Gk01N×f|f:1N1-1 onto1N2ndGkf|f:1N1-1 onto1N
138 100 137 syl φk2ndGkf|f:1N1-1 onto1N
139 fvex 2ndGkV
140 f1oeq1 f=2ndGkf:1N1-1 onto1N2ndGk:1N1-1 onto1N
141 139 140 elab 2ndGkf|f:1N1-1 onto1N2ndGk:1N1-1 onto1N
142 138 141 sylib φk2ndGk:1N1-1 onto1N
143 dff1o3 2ndGk:1N1-1 onto1N2ndGk:1Nonto1NFun2ndGk-1
144 143 simprbi 2ndGk:1N1-1 onto1NFun2ndGk-1
145 imain Fun2ndGk-12ndGk1jj+1N=2ndGk1j2ndGkj+1N
146 142 144 145 3syl φk2ndGk1jj+1N=2ndGk1j2ndGkj+1N
147 elfznn0 j0Nj0
148 147 nn0red j0Nj
149 148 ltp1d j0Nj<j+1
150 fzdisj j<j+11jj+1N=
151 149 150 syl j0N1jj+1N=
152 151 imaeq2d j0N2ndGk1jj+1N=2ndGk
153 ima0 2ndGk=
154 152 153 eqtrdi j0N2ndGk1jj+1N=
155 146 154 sylan9req φkj0N2ndGk1j2ndGkj+1N=
156 fun 2ndGk1j×1:2ndGk1j12ndGkj+1N×0:2ndGkj+1N02ndGk1j2ndGkj+1N=2ndGk1j×12ndGkj+1N×0:2ndGk1j2ndGkj+1N10
157 136 155 156 sylancr φkj0N2ndGk1j×12ndGkj+1N×0:2ndGk1j2ndGkj+1N10
158 imaundi 2ndGk1jj+1N=2ndGk1j2ndGkj+1N
159 nn0p1nn j0j+1
160 147 159 syl j0Nj+1
161 nnuz =1
162 160 161 eleqtrdi j0Nj+11
163 elfzuz3 j0NNj
164 fzsplit2 j+11Nj1N=1jj+1N
165 162 163 164 syl2anc j0N1N=1jj+1N
166 165 imaeq2d j0N2ndGk1N=2ndGk1jj+1N
167 f1ofo 2ndGk:1N1-1 onto1N2ndGk:1Nonto1N
168 foima 2ndGk:1Nonto1N2ndGk1N=1N
169 142 167 168 3syl φk2ndGk1N=1N
170 166 169 sylan9req j0Nφk2ndGk1jj+1N=1N
171 170 ancoms φkj0N2ndGk1jj+1N=1N
172 158 171 eqtr3id φkj0N2ndGk1j2ndGkj+1N=1N
173 172 feq2d φkj0N2ndGk1j×12ndGkj+1N×0:2ndGk1j2ndGkj+1N102ndGk1j×12ndGkj+1N×0:1N10
174 157 173 mpbid φkj0N2ndGk1j×12ndGkj+1N×0:1N10
175 174 ffvelcdmda φkj0Nm1N2ndGk1j×12ndGkj+1N×0m10
176 131 175 sselid φkj0Nm1N2ndGk1j×12ndGkj+1N×0m
177 simpllr φkj0Nm1Nk
178 176 177 nndivred φkj0Nm1N2ndGk1j×12ndGkj+1N×0mk
179 178 recnd φkj0Nm1N2ndGk1j×12ndGkj+1N×0mk
180 179 absnegd φkj0Nm1N2ndGk1j×12ndGkj+1N×0mk=2ndGk1j×12ndGkj+1N×0mk
181 124 180 sylanl1 φCIc+k2cj0Nm1N2ndGk1j×12ndGkj+1N×0mk=2ndGk1j×12ndGkj+1N×0mk
182 124 175 sylanl1 φCIc+k2cj0Nm1N2ndGk1j×12ndGkj+1N×0m10
183 elun 2ndGk1j×12ndGkj+1N×0m102ndGk1j×12ndGkj+1N×0m12ndGk1j×12ndGkj+1N×0m0
184 182 183 sylib φCIc+k2cj0Nm1N2ndGk1j×12ndGkj+1N×0m12ndGk1j×12ndGkj+1N×0m0
185 nnrecre k1k
186 nnrp kk+
187 186 rpreccld k1k+
188 187 rpge0d k01k
189 185 188 absidd k1k=1k
190 122 189 syl c+k2c1k=1k
191 122 nnrecred c+k2c1k
192 112 adantr c+k2c12c
193 115 adantr c+k2cc2
194 eluzle k2c2ck
195 194 adantl c+k2c2ck
196 65 adantr c+k2c2c
197 196 nnrpd c+k2c2c+
198 122 nnrpd c+k2ck+
199 197 198 lerecd c+k2c2ck1k12c
200 195 199 mpbid c+k2c1k12c
201 90 adantr c+k2c12cc2
202 191 192 193 200 201 letrd c+k2c1kc2
203 190 202 eqbrtrd c+k2c1kc2
204 elsni 2ndGk1j×12ndGkj+1N×0m12ndGk1j×12ndGkj+1N×0m=1
205 204 fvoveq1d 2ndGk1j×12ndGkj+1N×0m12ndGk1j×12ndGkj+1N×0mk=1k
206 205 breq1d 2ndGk1j×12ndGkj+1N×0m12ndGk1j×12ndGkj+1N×0mkc21kc2
207 203 206 syl5ibrcom c+k2c2ndGk1j×12ndGkj+1N×0m12ndGk1j×12ndGkj+1N×0mkc2
208 114 rpge0d c+0c2
209 nncn kk
210 nnne0 kk0
211 209 210 div0d k0k=0
212 211 abs00bd k0k=0
213 212 breq1d k0kc20c2
214 213 biimparc 0c2k0kc2
215 208 214 sylan c+k0kc2
216 122 215 syldan c+k2c0kc2
217 elsni 2ndGk1j×12ndGkj+1N×0m02ndGk1j×12ndGkj+1N×0m=0
218 217 fvoveq1d 2ndGk1j×12ndGkj+1N×0m02ndGk1j×12ndGkj+1N×0mk=0k
219 218 breq1d 2ndGk1j×12ndGkj+1N×0m02ndGk1j×12ndGkj+1N×0mkc20kc2
220 216 219 syl5ibrcom c+k2c2ndGk1j×12ndGkj+1N×0m02ndGk1j×12ndGkj+1N×0mkc2
221 207 220 jaod c+k2c2ndGk1j×12ndGkj+1N×0m12ndGk1j×12ndGkj+1N×0m02ndGk1j×12ndGkj+1N×0mkc2
222 221 adantll φCIc+k2c2ndGk1j×12ndGkj+1N×0m12ndGk1j×12ndGkj+1N×0m02ndGk1j×12ndGkj+1N×0mkc2
223 222 ad2antrr φCIc+k2cj0Nm1N2ndGk1j×12ndGkj+1N×0m12ndGk1j×12ndGkj+1N×0m02ndGk1j×12ndGkj+1N×0mkc2
224 184 223 mpd φCIc+k2cj0Nm1N2ndGk1j×12ndGkj+1N×0mkc2
225 181 224 eqbrtrd φCIc+k2cj0Nm1N2ndGk1j×12ndGkj+1N×0mkc2
226 79 111 sylanl1 φCIc+k2cj0Nm1NCm1stGkmk
227 simpll φCIc+φ
228 227 anim1i φCIc+kφk
229 178 renegcld φkj0Nm1N2ndGk1j×12ndGkj+1N×0mk
230 228 229 sylanl1 φCIc+kj0Nm1N2ndGk1j×12ndGkj+1N×0mk
231 230 recnd φCIc+kj0Nm1N2ndGk1j×12ndGkj+1N×0mk
232 231 abscld φCIc+kj0Nm1N2ndGk1j×12ndGkj+1N×0mk
233 79 232 sylanl1 φCIc+k2cj0Nm1N2ndGk1j×12ndGkj+1N×0mk
234 115 115 jca c+c2c2
235 234 ad4antlr φCIc+k2cj0Nm1Nc2c2
236 ltleadd Cm1stGkmk2ndGk1j×12ndGkj+1N×0mkc2c2Cm1stGkmk<c22ndGk1j×12ndGkj+1N×0mkc2Cm1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
237 226 233 235 236 syl21anc φCIc+k2cj0Nm1NCm1stGkmk<c22ndGk1j×12ndGkj+1N×0mkc2Cm1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
238 225 237 mpan2d φCIc+k2cj0Nm1NCm1stGkmk<c2Cm1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
239 110 231 abstrid φCIc+kj0Nm1NCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mkCm1stGkmk+2ndGk1j×12ndGkj+1N×0mk
240 109 230 readdcld φCIc+kj0Nm1NCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk
241 240 recnd φCIc+kj0Nm1NCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk
242 241 abscld φCIc+kj0Nm1NCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk
243 111 232 readdcld φCIc+kj0Nm1NCm1stGkmk+2ndGk1j×12ndGkj+1N×0mk
244 115 115 readdcld c+c2+c2
245 244 ad4antlr φCIc+kj0Nm1Nc2+c2
246 lelttr Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mkCm1stGkmk+2ndGk1j×12ndGkj+1N×0mkc2+c2Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mkCm1stGkmk+2ndGk1j×12ndGkj+1N×0mkCm1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
247 242 243 245 246 syl3anc φCIc+kj0Nm1NCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mkCm1stGkmk+2ndGk1j×12ndGkj+1N×0mkCm1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
248 239 247 mpand φCIc+kj0Nm1NCm1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
249 79 248 sylanl1 φCIc+k2cj0Nm1NCm1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
250 120 238 249 3syld φCIc+k2cj0Nm1NCm1stGkmk<12cCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
251 105 adantlr φkj0Nm1N1stGkm
252 251 176 readdcld φkj0Nm1N1stGkm+2ndGk1j×12ndGkj+1N×0m
253 252 177 nndivred φkj0Nm1N1stGkm+2ndGk1j×12ndGkj+1N×0mk
254 124 253 sylanl1 φCIc+k2cj0Nm1N1stGkm+2ndGk1j×12ndGkj+1N×0mk
255 250 254 jctild φCIc+k2cj0Nm1NCm1stGkmk<12c1stGkm+2ndGk1j×12ndGkj+1N×0mkCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
256 255 adantld φCIc+k2cj0Nm1N1stGk÷f1N×kmCm1stGkmk<12c1stGkm+2ndGk1j×12ndGkj+1N×0mkCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
257 79 adantr φCIc+k2cj0NφCIc+k
258 93 ad3antlr φCIc+kC:1N01
259 258 ffvelcdmda φCIc+km1NCm01
260 39 259 sselid φCIc+km1NCm
261 80 rpreccld c+12c+
262 261 rpxrd c+12c*
263 262 ad3antlr φCIc+km1N12c*
264 19 rexmet abs2∞Met
265 elbl abs2∞MetCm12c*1stGk÷f1N×kmCmballabs212c1stGk÷f1N×kmCmabs21stGk÷f1N×km<12c
266 264 265 mp3an1 Cm12c*1stGk÷f1N×kmCmballabs212c1stGk÷f1N×kmCmabs21stGk÷f1N×km<12c
267 260 263 266 syl2anc φCIc+km1N1stGk÷f1N×kmCmballabs212c1stGk÷f1N×kmCmabs21stGk÷f1N×km<12c
268 elmapfn 1stGk01N1stGkFn1N
269 100 101 268 3syl φk1stGkFn1N
270 vex kV
271 fnconstg kV1N×kFn1N
272 270 271 mp1i φk1N×kFn1N
273 fzfid φk1NFin
274 inidm 1N1N=1N
275 eqidd φkm1N1stGkm=1stGkm
276 270 fvconst2 m1N1N×km=k
277 276 adantl φkm1N1N×km=k
278 269 272 273 273 274 275 277 ofval φkm1N1stGk÷f1N×km=1stGkmk
279 278 oveq2d φkm1NCmabs21stGk÷f1N×km=Cmabs21stGkmk
280 227 279 sylanl1 φCIc+km1NCmabs21stGk÷f1N×km=Cmabs21stGkmk
281 227 107 sylanl1 φCIc+km1N1stGkmk
282 19 remetdval Cm1stGkmkCmabs21stGkmk=Cm1stGkmk
283 260 281 282 syl2anc φCIc+km1NCmabs21stGkmk=Cm1stGkmk
284 280 283 eqtrd φCIc+km1NCmabs21stGk÷f1N×km=Cm1stGkmk
285 284 breq1d φCIc+km1NCmabs21stGk÷f1N×km<12cCm1stGkmk<12c
286 285 anbi2d φCIc+km1N1stGk÷f1N×kmCmabs21stGk÷f1N×km<12c1stGk÷f1N×kmCm1stGkmk<12c
287 267 286 bitrd φCIc+km1N1stGk÷f1N×kmCmballabs212c1stGk÷f1N×kmCm1stGkmk<12c
288 257 287 sylan φCIc+k2cj0Nm1N1stGk÷f1N×kmCmballabs212c1stGk÷f1N×kmCm1stGkmk<12c
289 rpxr c+c*
290 289 ad4antlr φCIc+kj0Nm1Nc*
291 elbl abs2∞MetCmc*1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmabs21stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km<c
292 264 291 mp3an1 Cmc*1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmabs21stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km<c
293 96 290 292 syl2anc φCIc+kj0Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmabs21stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km<c
294 elun z10z1z0
295 fzofzp1 v0..^kv+10k
296 elsni z1z=1
297 296 oveq2d z1v+z=v+1
298 297 eleq1d z1v+z0kv+10k
299 295 298 syl5ibrcom v0..^kz1v+z0k
300 elfzonn0 v0..^kv0
301 300 nn0cnd v0..^kv
302 301 addridd v0..^kv+0=v
303 elfzofz v0..^kv0k
304 302 303 eqeltrd v0..^kv+00k
305 elsni z0z=0
306 305 oveq2d z0v+z=v+0
307 306 eleq1d z0v+z0kv+00k
308 304 307 syl5ibrcom v0..^kz0v+z0k
309 299 308 jaod v0..^kz1z0v+z0k
310 294 309 biimtrid v0..^kz10v+z0k
311 310 imp v0..^kz10v+z0k
312 311 adantl φkj0Nv0..^kz10v+z0k
313 dffn3 1stGkFn1N1stGk:1Nran1stGk
314 269 313 sylib φk1stGk:1Nran1stGk
315 314 7 fssd φk1stGk:1N0..^k
316 315 adantr φkj0N1stGk:1N0..^k
317 fzfid φkj0N1NFin
318 312 316 174 317 317 274 off φkj0N1stGk+f2ndGk1j×12ndGkj+1N×0:1N0k
319 318 ffnd φkj0N1stGk+f2ndGk1j×12ndGkj+1N×0Fn1N
320 270 271 mp1i φkj0N1N×kFn1N
321 269 adantr φkj0N1stGkFn1N
322 174 ffnd φkj0N2ndGk1j×12ndGkj+1N×0Fn1N
323 eqidd φkj0Nm1N1stGkm=1stGkm
324 eqidd φkj0Nm1N2ndGk1j×12ndGkj+1N×0m=2ndGk1j×12ndGkj+1N×0m
325 321 322 317 317 274 323 324 ofval φkj0Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0m=1stGkm+2ndGk1j×12ndGkj+1N×0m
326 276 adantl φkj0Nm1N1N×km=k
327 319 320 317 317 274 325 326 ofval φkj0Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1stGkm+2ndGk1j×12ndGkj+1N×0mk
328 327 eleq1d φkj0Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km1stGkm+2ndGk1j×12ndGkj+1N×0mk
329 228 328 sylanl1 φCIc+kj0Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km1stGkm+2ndGk1j×12ndGkj+1N×0mk
330 327 adantl3r φCIkj0Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1stGkm+2ndGk1j×12ndGkj+1N×0mk
331 330 oveq2d φCIkj0Nm1NCmabs21stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=Cmabs21stGkm+2ndGk1j×12ndGkj+1N×0mk
332 93 ad3antlr φCIkj0NC:1N01
333 332 ffvelcdmda φCIkj0Nm1NCm01
334 39 333 sselid φCIkj0Nm1NCm
335 253 adantl3r φCIkj0Nm1N1stGkm+2ndGk1j×12ndGkj+1N×0mk
336 19 remetdval Cm1stGkm+2ndGk1j×12ndGkj+1N×0mkCmabs21stGkm+2ndGk1j×12ndGkj+1N×0mk=Cm1stGkm+2ndGk1j×12ndGkj+1N×0mk
337 334 335 336 syl2anc φCIkj0Nm1NCmabs21stGkm+2ndGk1j×12ndGkj+1N×0mk=Cm1stGkm+2ndGk1j×12ndGkj+1N×0mk
338 251 recnd φkj0Nm1N1stGkm
339 176 recnd φkj0Nm1N2ndGk1j×12ndGkj+1N×0m
340 209 ad3antlr φkj0Nm1Nk
341 210 ad3antlr φkj0Nm1Nk0
342 338 339 340 341 divdird φkj0Nm1N1stGkm+2ndGk1j×12ndGkj+1N×0mk=1stGkmk+2ndGk1j×12ndGkj+1N×0mk
343 107 recnd φkm1N1stGkmk
344 343 adantlr φkj0Nm1N1stGkmk
345 344 179 subnegd φkj0Nm1N1stGkmk2ndGk1j×12ndGkj+1N×0mk=1stGkmk+2ndGk1j×12ndGkj+1N×0mk
346 342 345 eqtr4d φkj0Nm1N1stGkm+2ndGk1j×12ndGkj+1N×0mk=1stGkmk2ndGk1j×12ndGkj+1N×0mk
347 346 oveq2d φkj0Nm1NCm1stGkm+2ndGk1j×12ndGkj+1N×0mk=Cm1stGkmk2ndGk1j×12ndGkj+1N×0mk
348 347 adantl3r φCIkj0Nm1NCm1stGkm+2ndGk1j×12ndGkj+1N×0mk=Cm1stGkmk2ndGk1j×12ndGkj+1N×0mk
349 334 recnd φCIkj0Nm1NCm
350 107 adantllr φCIkm1N1stGkmk
351 350 adantlr φCIkj0Nm1N1stGkmk
352 351 recnd φCIkj0Nm1N1stGkmk
353 179 adantl3r φCIkj0Nm1N2ndGk1j×12ndGkj+1N×0mk
354 353 negcld φCIkj0Nm1N2ndGk1j×12ndGkj+1N×0mk
355 349 352 354 subsubd φCIkj0Nm1NCm1stGkmk2ndGk1j×12ndGkj+1N×0mk=Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk
356 348 355 eqtrd φCIkj0Nm1NCm1stGkm+2ndGk1j×12ndGkj+1N×0mk=Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk
357 356 fveq2d φCIkj0Nm1NCm1stGkm+2ndGk1j×12ndGkj+1N×0mk=Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk
358 331 337 357 3eqtrd φCIkj0Nm1NCmabs21stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk
359 358 adantl3r φCIc+kj0Nm1NCmabs21stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=Cm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk
360 83 2halvesd c+c2+c2=c
361 360 eqcomd c+c=c2+c2
362 361 ad4antlr φCIc+kj0Nm1Nc=c2+c2
363 359 362 breq12d φCIc+kj0Nm1NCmabs21stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km<cCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
364 329 363 anbi12d φCIc+kj0Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmabs21stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km<c1stGkm+2ndGk1j×12ndGkj+1N×0mkCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
365 293 364 bitrd φCIc+kj0Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c1stGkm+2ndGk1j×12ndGkj+1N×0mkCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
366 79 365 sylanl1 φCIc+k2cj0Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c1stGkm+2ndGk1j×12ndGkj+1N×0mkCm-1stGkmk+2ndGk1j×12ndGkj+1N×0mk<c2+c2
367 256 288 366 3imtr4d φCIc+k2cj0Nm1N1stGk÷f1N×kmCmballabs212c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c
368 367 ralimdva φCIc+k2cj0Nm1N1stGk÷f1N×kmCmballabs212cm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c
369 simplr φkj0Nk
370 elfznn0 v0kv0
371 370 nn0red v0kv
372 nndivre vkvk
373 371 372 sylan v0kkvk
374 elfzle1 v0k0v
375 371 374 jca v0kv0v
376 186 rpregt0d kk0<k
377 divge0 v0vk0<k0vk
378 375 376 377 syl2an v0kk0vk
379 elfzle2 v0kvk
380 379 adantr v0kkvk
381 371 adantr v0kkv
382 1red v0kk1
383 186 adantl v0kkk+
384 381 382 383 ledivmuld v0kkvk1vk1
385 209 mulridd kk1=k
386 385 breq2d kvk1vk
387 386 adantl v0kkvk1vk
388 384 387 bitrd v0kkvk1vk
389 380 388 mpbird v0kkvk1
390 elicc01 vk01vk0vkvk1
391 373 378 389 390 syl3anbrc v0kkvk01
392 391 ancoms kv0kvk01
393 elsni zkz=k
394 393 oveq2d zkvz=vk
395 394 eleq1d zkvz01vk01
396 392 395 syl5ibrcom kv0kzkvz01
397 396 impr kv0kzkvz01
398 369 397 sylan φkj0Nv0kzkvz01
399 270 fconst 1N×k:1Nk
400 399 a1i φkj0N1N×k:1Nk
401 398 318 400 317 317 274 off φkj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×k:1N01
402 401 ffnd φkj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFn1N
403 124 402 sylan φCIc+k2cj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFn1N
404 368 403 jctild φCIc+k2cj0Nm1N1stGk÷f1N×kmCmballabs212c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFn1Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c
405 2 eleq2i 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kI1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×k011N
406 ovex 01V
407 406 43 elmap 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×k011N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×k:1N01
408 405 407 bitri 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kI1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×k:1N01
409 401 408 sylibr φkj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kI
410 124 409 sylan φCIc+k2cj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kI
411 404 410 jctird φCIc+k2cj0Nm1N1stGk÷f1N×kmCmballabs212c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFn1Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kI
412 elin 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1NCmballabs2cI1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1NCmballabs2c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kI
413 ovex 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kV
414 413 elixp 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1NCmballabs2c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFn1Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c
415 414 anbi1i 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1NCmballabs2c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kI1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFn1Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kI
416 412 415 bitri 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1NCmballabs2cI1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFn1Nm1N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kmCmballabs2c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kI
417 411 416 imbitrrdi φCIc+k2cj0Nm1N1stGk÷f1N×kmCmballabs212c1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1NCmballabs2cI
418 ssel m=1NCmballabs2cIv1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1NCmballabs2cI1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kv
419 418 com12 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×km=1NCmballabs2cIm=1NCmballabs2cIv1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kv
420 417 419 syl6 φCIc+k2cj0Nm1N1stGk÷f1N×kmCmballabs212cm=1NCmballabs2cIv1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kv
421 420 impd φCIc+k2cj0Nm1N1stGk÷f1N×kmCmballabs212cm=1NCmballabs2cIv1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kv
422 421 ralrimdva φCIc+k2cm1N1stGk÷f1N×kmCmballabs212cm=1NCmballabs2cIvj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kv
423 422 expd φCIc+k2cm1N1stGk÷f1N×kmCmballabs212cm=1NCmballabs2cIvj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kv
424 8 3exp2 φkn1Nr-1j0N0rX
425 424 imp43 φkn1Nr-1j0N0rX
426 r19.29 j0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kvj0N0rXj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kv0rX
427 fveq2 z=1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFz=F1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×k
428 427 fveq1d z=1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFzn=F1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kn
429 428 5 eqtr4di z=1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kFzn=X
430 429 breq2d z=1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×k0rFzn0rX
431 430 rspcev 1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kv0rXzv0rFzn
432 431 rexlimivw j0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kv0rXzv0rFzn
433 426 432 syl j0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kvj0N0rXzv0rFzn
434 433 expcom j0N0rXj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kvzv0rFzn
435 425 434 syl φkn1Nr-1j0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kvzv0rFzn
436 435 ralrimdvva φkj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kvn1Nr-1zv0rFzn
437 122 436 sylan2 φc+k2cj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kvn1Nr-1zv0rFzn
438 437 anassrs φc+k2cj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kvn1Nr-1zv0rFzn
439 438 adantllr φCIc+k2cj0N1stGk+f2ndGk1j×12ndGkj+1N×0÷f1N×kvn1Nr-1zv0rFzn
440 423 439 syl6d φCIc+k2cm1N1stGk÷f1N×kmCmballabs212cm=1NCmballabs2cIvn1Nr-1zv0rFzn
441 440 rexlimdva φCIc+k2cm1N1stGk÷f1N×kmCmballabs212cm=1NCmballabs2cIvn1Nr-1zv0rFzn
442 74 441 syld φCIc+ikim1N1stGk÷f1N×kmCmballabs21im=1NCmballabs2cIvn1Nr-1zv0rFzn
443 442 com23 φCIc+m=1NCmballabs2cIvikim1N1stGk÷f1N×kmCmballabs21in1Nr-1zv0rFzn
444 443 impr φCIc+m=1NCmballabs2cIvikim1N1stGk÷f1N×kmCmballabs21in1Nr-1zv0rFzn
445 51 444 sylanl2 φvR𝑡ICvc+m=1NCmballabs2cIvikim1N1stGk÷f1N×kmCmballabs21in1Nr-1zv0rFzn
446 35 445 rexlimddv φvR𝑡ICvikim1N1stGk÷f1N×kmCmballabs21in1Nr-1zv0rFzn
447 446 expr φvR𝑡ICvikim1N1stGk÷f1N×kmCmballabs21in1Nr-1zv0rFzn
448 447 com23 φvR𝑡Iikim1N1stGk÷f1N×kmCmballabs21iCvn1Nr-1zv0rFzn
449 r19.21v n1NCvr-1zv0rFznCvn1Nr-1zv0rFzn
450 448 449 imbitrrdi φvR𝑡Iikim1N1stGk÷f1N×kmCmballabs21in1NCvr-1zv0rFzn
451 450 ralrimdva φikim1N1stGk÷f1N×kmCmballabs21ivR𝑡In1NCvr-1zv0rFzn
452 ralcom vR𝑡In1NCvr-1zv0rFznn1NvR𝑡ICvr-1zv0rFzn
453 451 452 imbitrdi φikim1N1stGk÷f1N×kmCmballabs21in1NvR𝑡ICvr-1zv0rFzn