Metamath Proof Explorer


Theorem poimirlem31

Description: Lemma for poimir , assigning values to the vertices of the tessellation that meet the hypotheses of both poimirlem30 and poimirlem28 . Equation (2) of Kulpa p. 547. (Contributed by Brendan Leahy, 21-Aug-2020)

Ref Expression
Hypotheses poimir.0 φN
poimir.i I=011N
poimir.r R=𝑡1N×topGenran.
poimir.1 φFR𝑡ICnR
poimir.2 φn1NzIzn=0Fzn0
poimirlem31.p P=1stGk+f2ndGk1j×12ndGkj+1N×0
poimirlem31.3 φG:01N×f|f:1N1-1 onto1N
poimirlem31.4 φkran1stGk0..^k
poimirlem31.5 φki0Nj0Ni=sup0a1N|b1a0FP÷f1N×kbPb0<
Assertion poimirlem31 φkn1Nr-1j0N0rFP÷f1N×kn

Proof

Step Hyp Ref Expression
1 poimir.0 φN
2 poimir.i I=011N
3 poimir.r R=𝑡1N×topGenran.
4 poimir.1 φFR𝑡ICnR
5 poimir.2 φn1NzIzn=0Fzn0
6 poimirlem31.p P=1stGk+f2ndGk1j×12ndGkj+1N×0
7 poimirlem31.3 φG:01N×f|f:1N1-1 onto1N
8 poimirlem31.4 φkran1stGk0..^k
9 poimirlem31.5 φki0Nj0Ni=sup0a1N|b1a0FP÷f1N×kbPb0<
10 elpri r-1r=r=-1
11 simprr φkn1Nn1N
12 fz1ssfz0 1N0N
13 12 sseli n1Nn0N
14 13 anim2i kn1Nkn0N
15 eleq1 i=ni0Nn0N
16 15 anbi2d i=nki0Nkn0N
17 16 anbi2d i=nφki0Nφkn0N
18 eqeq1 i=ni=sup0a1N|b1a0FP÷f1N×kbPb0<n=sup0a1N|b1a0FP÷f1N×kbPb0<
19 18 rexbidv i=nj0Ni=sup0a1N|b1a0FP÷f1N×kbPb0<j0Nn=sup0a1N|b1a0FP÷f1N×kbPb0<
20 17 19 imbi12d i=nφki0Nj0Ni=sup0a1N|b1a0FP÷f1N×kbPb0<φkn0Nj0Nn=sup0a1N|b1a0FP÷f1N×kbPb0<
21 20 9 chvarvv φkn0Nj0Nn=sup0a1N|b1a0FP÷f1N×kbPb0<
22 elfzle1 n1N1n
23 1re 1
24 elfzelz n1Nn
25 24 zred n1Nn
26 lenlt 1n1n¬n<1
27 23 25 26 sylancr n1N1n¬n<1
28 22 27 mpbid n1N¬n<1
29 elsni n0n=0
30 0lt1 0<1
31 29 30 eqbrtrdi n0n<1
32 28 31 nsyl n1N¬n0
33 ltso <Or
34 snfi 0Fin
35 fzfi 1NFin
36 rabfi 1NFina1N|b1a0FP÷f1N×kbPb0Fin
37 35 36 ax-mp a1N|b1a0FP÷f1N×kbPb0Fin
38 unfi 0Fina1N|b1a0FP÷f1N×kbPb0Fin0a1N|b1a0FP÷f1N×kbPb0Fin
39 34 37 38 mp2an 0a1N|b1a0FP÷f1N×kbPb0Fin
40 c0ex 0V
41 40 snid 00
42 elun1 0000a1N|b1a0FP÷f1N×kbPb0
43 ne0i 00a1N|b1a0FP÷f1N×kbPb00a1N|b1a0FP÷f1N×kbPb0
44 41 42 43 mp2b 0a1N|b1a0FP÷f1N×kbPb0
45 0re 0
46 snssi 00
47 45 46 ax-mp 0
48 ssrab2 a1N|b1a0FP÷f1N×kbPb01N
49 24 ssriv 1N
50 zssre
51 49 50 sstri 1N
52 48 51 sstri a1N|b1a0FP÷f1N×kbPb0
53 47 52 unssi 0a1N|b1a0FP÷f1N×kbPb0
54 39 44 53 3pm3.2i 0a1N|b1a0FP÷f1N×kbPb0Fin0a1N|b1a0FP÷f1N×kbPb00a1N|b1a0FP÷f1N×kbPb0
55 fisupcl <Or0a1N|b1a0FP÷f1N×kbPb0Fin0a1N|b1a0FP÷f1N×kbPb00a1N|b1a0FP÷f1N×kbPb0sup0a1N|b1a0FP÷f1N×kbPb0<0a1N|b1a0FP÷f1N×kbPb0
56 33 54 55 mp2an sup0a1N|b1a0FP÷f1N×kbPb0<0a1N|b1a0FP÷f1N×kbPb0
57 eleq1 n=sup0a1N|b1a0FP÷f1N×kbPb0<n0a1N|b1a0FP÷f1N×kbPb0sup0a1N|b1a0FP÷f1N×kbPb0<0a1N|b1a0FP÷f1N×kbPb0
58 56 57 mpbiri n=sup0a1N|b1a0FP÷f1N×kbPb0<n0a1N|b1a0FP÷f1N×kbPb0
59 elun n0a1N|b1a0FP÷f1N×kbPb0n0na1N|b1a0FP÷f1N×kbPb0
60 58 59 sylib n=sup0a1N|b1a0FP÷f1N×kbPb0<n0na1N|b1a0FP÷f1N×kbPb0
61 oveq2 a=n1a=1n
62 61 raleqdv a=nb1a0FP÷f1N×kbPb0b1n0FP÷f1N×kbPb0
63 62 elrab na1N|b1a0FP÷f1N×kbPb0n1Nb1n0FP÷f1N×kbPb0
64 elfzuz n1Nn1
65 eluzfz2 n1n1n
66 64 65 syl n1Nn1n
67 simpl 0FP÷f1N×kbPb00FP÷f1N×kb
68 67 ralimi b1n0FP÷f1N×kbPb0b1n0FP÷f1N×kb
69 fveq2 b=nFP÷f1N×kb=FP÷f1N×kn
70 69 breq2d b=n0FP÷f1N×kb0FP÷f1N×kn
71 70 rspcva n1nb1n0FP÷f1N×kb0FP÷f1N×kn
72 66 68 71 syl2an n1Nb1n0FP÷f1N×kbPb00FP÷f1N×kn
73 63 72 sylbi na1N|b1a0FP÷f1N×kbPb00FP÷f1N×kn
74 73 orim2i n0na1N|b1a0FP÷f1N×kbPb0n00FP÷f1N×kn
75 60 74 syl n=sup0a1N|b1a0FP÷f1N×kbPb0<n00FP÷f1N×kn
76 orel1 ¬n0n00FP÷f1N×kn0FP÷f1N×kn
77 32 75 76 syl2im n1Nn=sup0a1N|b1a0FP÷f1N×kbPb0<0FP÷f1N×kn
78 77 reximdv n1Nj0Nn=sup0a1N|b1a0FP÷f1N×kbPb0<j0N0FP÷f1N×kn
79 21 78 syl5 n1Nφkn0Nj0N0FP÷f1N×kn
80 14 79 sylan2i n1Nφkn1Nj0N0FP÷f1N×kn
81 11 80 mpcom φkn1Nj0N0FP÷f1N×kn
82 breq r=0rFP÷f1N×kn0FP÷f1N×kn
83 82 rexbidv r=j0N0rFP÷f1N×knj0N0FP÷f1N×kn
84 81 83 syl5ibrcom φkn1Nr=j0N0rFP÷f1N×kn
85 1 nnzd φN
86 elfzm1b nNn1Nn10N1
87 24 85 86 syl2anr φn1Nn1Nn10N1
88 87 biimpd φn1Nn1Nn10N1
89 88 ex φn1Nn1Nn10N1
90 89 pm2.43d φn1Nn10N1
91 1 nncnd φN
92 npcan1 NN-1+1=N
93 91 92 syl φN-1+1=N
94 nnm1nn0 NN10
95 1 94 syl φN10
96 95 nn0zd φN1
97 uzid N1N1N1
98 peano2uz N1N1N-1+1N1
99 96 97 98 3syl φN-1+1N1
100 93 99 eqeltrrd φNN1
101 fzss2 NN10N10N
102 100 101 syl φ0N10N
103 102 sseld φn10N1n10N
104 90 103 syld φn1Nn10N
105 104 anim2d φkn1Nkn10N
106 105 imp φkn1Nkn10N
107 ovex n1V
108 eleq1 i=n1i0Nn10N
109 108 anbi2d i=n1ki0Nkn10N
110 109 anbi2d i=n1φki0Nφkn10N
111 eqeq1 i=n1i=sup0a1N|b1a0FP÷f1N×kbPb0<n1=sup0a1N|b1a0FP÷f1N×kbPb0<
112 111 rexbidv i=n1j0Ni=sup0a1N|b1a0FP÷f1N×kbPb0<j0Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<
113 110 112 imbi12d i=n1φki0Nj0Ni=sup0a1N|b1a0FP÷f1N×kbPb0<φkn10Nj0Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<
114 107 113 9 vtocl φkn10Nj0Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<
115 106 114 syldan φkn1Nj0Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<
116 eleq1 n1=sup0a1N|b1a0FP÷f1N×kbPb0<n10a1N|b1a0FP÷f1N×kbPb0sup0a1N|b1a0FP÷f1N×kbPb0<0a1N|b1a0FP÷f1N×kbPb0
117 56 116 mpbiri n1=sup0a1N|b1a0FP÷f1N×kbPb0<n10a1N|b1a0FP÷f1N×kbPb0
118 elun n10a1N|b1a0FP÷f1N×kbPb0n10n1a1N|b1a0FP÷f1N×kbPb0
119 107 elsn n10n1=0
120 oveq2 a=n11a=1n1
121 120 raleqdv a=n1b1a0FP÷f1N×kbPb0b1n10FP÷f1N×kbPb0
122 121 elrab n1a1N|b1a0FP÷f1N×kbPb0n11Nb1n10FP÷f1N×kbPb0
123 119 122 orbi12i n10n1a1N|b1a0FP÷f1N×kbPb0n1=0n11Nb1n10FP÷f1N×kbPb0
124 118 123 bitri n10a1N|b1a0FP÷f1N×kbPb0n1=0n11Nb1n10FP÷f1N×kbPb0
125 117 124 sylib n1=sup0a1N|b1a0FP÷f1N×kbPb0<n1=0n11Nb1n10FP÷f1N×kbPb0
126 125 a1i n1Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<n1=0n11Nb1n10FP÷f1N×kbPb0
127 ltm1 nn1<n
128 peano2rem nn1
129 ltnle n1nn1<n¬nn1
130 128 129 mpancom nn1<n¬nn1
131 127 130 mpbid n¬nn1
132 25 131 syl n1N¬nn1
133 breq2 n1=sup0a1N|b1a0FP÷f1N×kbPb0<nn1nsup0a1N|b1a0FP÷f1N×kbPb0<
134 133 notbid n1=sup0a1N|b1a0FP÷f1N×kbPb0<¬nn1¬nsup0a1N|b1a0FP÷f1N×kbPb0<
135 132 134 syl5ibcom n1Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<¬nsup0a1N|b1a0FP÷f1N×kbPb0<
136 elun2 na1N|b1a0FP÷f1N×kbPb0n0a1N|b1a0FP÷f1N×kbPb0
137 fimaxre2 0a1N|b1a0FP÷f1N×kbPb00a1N|b1a0FP÷f1N×kbPb0Finxy0a1N|b1a0FP÷f1N×kbPb0yx
138 53 39 137 mp2an xy0a1N|b1a0FP÷f1N×kbPb0yx
139 53 44 138 3pm3.2i 0a1N|b1a0FP÷f1N×kbPb00a1N|b1a0FP÷f1N×kbPb0xy0a1N|b1a0FP÷f1N×kbPb0yx
140 139 suprubii n0a1N|b1a0FP÷f1N×kbPb0nsup0a1N|b1a0FP÷f1N×kbPb0<
141 136 140 syl na1N|b1a0FP÷f1N×kbPb0nsup0a1N|b1a0FP÷f1N×kbPb0<
142 141 con3i ¬nsup0a1N|b1a0FP÷f1N×kbPb0<¬na1N|b1a0FP÷f1N×kbPb0
143 ianor ¬n1Nb1n0FP÷f1N×kbPb0¬n1N¬b1n0FP÷f1N×kbPb0
144 143 63 xchnxbir ¬na1N|b1a0FP÷f1N×kbPb0¬n1N¬b1n0FP÷f1N×kbPb0
145 142 144 sylib ¬nsup0a1N|b1a0FP÷f1N×kbPb0<¬n1N¬b1n0FP÷f1N×kbPb0
146 135 145 syl6 n1Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<¬n1N¬b1n0FP÷f1N×kbPb0
147 pm2.63 n1N¬b1n0FP÷f1N×kbPb0¬n1N¬b1n0FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0
148 147 orcs n1N¬n1N¬b1n0FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0
149 146 148 syld n1Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<¬b1n0FP÷f1N×kbPb0
150 126 149 jcad n1Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<n1=0n11Nb1n10FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0
151 andir n1=0n11Nb1n10FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0n1=0¬b1n0FP÷f1N×kbPb0n11Nb1n10FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0
152 24 zcnd n1Nn
153 ax-1cn 1
154 0cn 0
155 subadd n10n1=01+0=n
156 153 154 155 mp3an23 nn1=01+0=n
157 152 156 syl n1Nn1=01+0=n
158 157 biimpa n1Nn1=01+0=n
159 1p0e1 1+0=1
160 158 159 eqtr3di n1Nn1=0n=1
161 1z 1
162 fzsn 111=1
163 161 162 ax-mp 11=1
164 oveq2 n=11n=11
165 sneq n=1n=1
166 163 164 165 3eqtr4a n=11n=n
167 166 raleqdv n=1b1n0FP÷f1N×kbPb0bn0FP÷f1N×kbPb0
168 167 notbid n=1¬b1n0FP÷f1N×kbPb0¬bn0FP÷f1N×kbPb0
169 168 biimpd n=1¬b1n0FP÷f1N×kbPb0¬bn0FP÷f1N×kbPb0
170 160 169 syl n1Nn1=0¬b1n0FP÷f1N×kbPb0¬bn0FP÷f1N×kbPb0
171 170 expimpd n1Nn1=0¬b1n0FP÷f1N×kbPb0¬bn0FP÷f1N×kbPb0
172 ralun b1n10FP÷f1N×kbPb0bn0FP÷f1N×kbPb0b1n1n0FP÷f1N×kbPb0
173 npcan1 nn-1+1=n
174 152 173 syl n1Nn-1+1=n
175 174 64 eqeltrd n1Nn-1+11
176 peano2zm nn1
177 uzid n1n1n1
178 peano2uz n1n1n-1+1n1
179 24 176 177 178 4syl n1Nn-1+1n1
180 174 179 eqeltrrd n1Nnn1
181 fzsplit2 n-1+11nn11n=1n1n-1+1n
182 175 180 181 syl2anc n1N1n=1n1n-1+1n
183 174 oveq1d n1Nn-1+1n=nn
184 fzsn nnn=n
185 24 184 syl n1Nnn=n
186 183 185 eqtrd n1Nn-1+1n=n
187 186 uneq2d n1N1n1n-1+1n=1n1n
188 182 187 eqtrd n1N1n=1n1n
189 188 raleqdv n1Nb1n0FP÷f1N×kbPb0b1n1n0FP÷f1N×kbPb0
190 172 189 imbitrrid n1Nb1n10FP÷f1N×kbPb0bn0FP÷f1N×kbPb0b1n0FP÷f1N×kbPb0
191 190 expdimp n1Nb1n10FP÷f1N×kbPb0bn0FP÷f1N×kbPb0b1n0FP÷f1N×kbPb0
192 191 con3d n1Nb1n10FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0¬bn0FP÷f1N×kbPb0
193 192 adantrl n1Nn11Nb1n10FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0¬bn0FP÷f1N×kbPb0
194 193 expimpd n1Nn11Nb1n10FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0¬bn0FP÷f1N×kbPb0
195 171 194 jaod n1Nn1=0¬b1n0FP÷f1N×kbPb0n11Nb1n10FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0¬bn0FP÷f1N×kbPb0
196 151 195 biimtrid n1Nn1=0n11Nb1n10FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0¬bn0FP÷f1N×kbPb0
197 fveq2 b=nPb=Pn
198 197 neeq1d b=nPb0Pn0
199 70 198 anbi12d b=n0FP÷f1N×kbPb00FP÷f1N×knPn0
200 199 ralsng n1Nbn0FP÷f1N×kbPb00FP÷f1N×knPn0
201 200 notbid n1N¬bn0FP÷f1N×kbPb0¬0FP÷f1N×knPn0
202 ianor ¬0FP÷f1N×knPn0¬0FP÷f1N×kn¬Pn0
203 nne ¬Pn0Pn=0
204 203 orbi2i ¬0FP÷f1N×kn¬Pn0¬0FP÷f1N×knPn=0
205 202 204 bitri ¬0FP÷f1N×knPn0¬0FP÷f1N×knPn=0
206 201 205 bitrdi n1N¬bn0FP÷f1N×kbPb0¬0FP÷f1N×knPn=0
207 196 206 sylibd n1Nn1=0n11Nb1n10FP÷f1N×kbPb0¬b1n0FP÷f1N×kbPb0¬0FP÷f1N×knPn=0
208 150 207 syld n1Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<¬0FP÷f1N×knPn=0
209 208 ad2antlr φkn1Nj0Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<¬0FP÷f1N×knPn=0
210 retop topGenran.Top
211 210 fconst6 1N×topGenran.:1NTop
212 pttop 1NFin1N×topGenran.:1NTop𝑡1N×topGenran.Top
213 35 211 212 mp2an 𝑡1N×topGenran.Top
214 3 213 eqeltri RTop
215 reex V
216 unitssre 01
217 mapss V01011N1N
218 215 216 217 mp2an 011N1N
219 2 218 eqsstri I1N
220 uniretop =topGenran.
221 3 220 ptuniconst 1NFintopGenran.Top1N=R
222 35 210 221 mp2an 1N=R
223 222 restuni RTopI1NI=R𝑡I
224 214 219 223 mp2an I=R𝑡I
225 224 222 cnf FR𝑡ICnRF:I1N
226 4 225 syl φF:I1N
227 226 ad2antrr φkj0NF:I1N
228 simplr φkj0Nk
229 elfzelz x0kx
230 229 zred x0kx
231 230 adantr x0kkx
232 nnre kk
233 232 adantl x0kkk
234 nnne0 kk0
235 234 adantl x0kkk0
236 231 233 235 redivcld x0kkxk
237 elfzle1 x0k0x
238 230 237 jca x0kx0x
239 nnrp kk+
240 239 rpregt0d kk0<k
241 divge0 x0xk0<k0xk
242 238 240 241 syl2an x0kk0xk
243 elfzle2 x0kxk
244 243 adantr x0kkxk
245 1red x0kk1
246 239 adantl x0kkk+
247 231 245 246 ledivmuld x0kkxk1xk1
248 nncn kk
249 248 mulridd kk1=k
250 249 breq2d kxk1xk
251 250 adantl x0kkxk1xk
252 247 251 bitrd x0kkxk1xk
253 244 252 mpbird x0kkxk1
254 elicc01 xk01xk0xkxk1
255 236 242 253 254 syl3anbrc x0kkxk01
256 255 ancoms kx0kxk01
257 elsni yky=k
258 257 oveq2d ykxy=xk
259 258 eleq1d ykxy01xk01
260 256 259 syl5ibrcom kx0kykxy01
261 260 impr kx0kykxy01
262 228 261 sylan φkj0Nx0kykxy01
263 elun y10y1y0
264 fzofzp1 x0..^kx+10k
265 elsni y1y=1
266 265 oveq2d y1x+y=x+1
267 266 eleq1d y1x+y0kx+10k
268 264 267 syl5ibrcom x0..^ky1x+y0k
269 elfzonn0 x0..^kx0
270 269 nn0cnd x0..^kx
271 270 addridd x0..^kx+0=x
272 elfzofz x0..^kx0k
273 271 272 eqeltrd x0..^kx+00k
274 elsni y0y=0
275 274 oveq2d y0x+y=x+0
276 275 eleq1d y0x+y0kx+00k
277 273 276 syl5ibrcom x0..^ky0x+y0k
278 268 277 jaod x0..^ky1y0x+y0k
279 263 278 biimtrid x0..^ky10x+y0k
280 279 imp x0..^ky10x+y0k
281 280 adantl φkj0Nx0..^ky10x+y0k
282 7 ffvelcdmda φkGk01N×f|f:1N1-1 onto1N
283 xp1st Gk01N×f|f:1N1-1 onto1N1stGk01N
284 elmapfn 1stGk01N1stGkFn1N
285 282 283 284 3syl φk1stGkFn1N
286 df-f 1stGk:1N0..^k1stGkFn1Nran1stGk0..^k
287 285 8 286 sylanbrc φk1stGk:1N0..^k
288 287 adantr φkj0N1stGk:1N0..^k
289 1ex 1V
290 289 fconst 2ndGk1j×1:2ndGk1j1
291 40 fconst 2ndGkj+1N×0:2ndGkj+1N0
292 290 291 pm3.2i 2ndGk1j×1:2ndGk1j12ndGkj+1N×0:2ndGkj+1N0
293 xp2nd Gk01N×f|f:1N1-1 onto1N2ndGkf|f:1N1-1 onto1N
294 282 293 syl φk2ndGkf|f:1N1-1 onto1N
295 fvex 2ndGkV
296 f1oeq1 f=2ndGkf:1N1-1 onto1N2ndGk:1N1-1 onto1N
297 295 296 elab 2ndGkf|f:1N1-1 onto1N2ndGk:1N1-1 onto1N
298 294 297 sylib φk2ndGk:1N1-1 onto1N
299 dff1o3 2ndGk:1N1-1 onto1N2ndGk:1Nonto1NFun2ndGk-1
300 299 simprbi 2ndGk:1N1-1 onto1NFun2ndGk-1
301 imain Fun2ndGk-12ndGk1jj+1N=2ndGk1j2ndGkj+1N
302 298 300 301 3syl φk2ndGk1jj+1N=2ndGk1j2ndGkj+1N
303 elfznn0 j0Nj0
304 303 nn0red j0Nj
305 304 ltp1d j0Nj<j+1
306 fzdisj j<j+11jj+1N=
307 305 306 syl j0N1jj+1N=
308 307 imaeq2d j0N2ndGk1jj+1N=2ndGk
309 ima0 2ndGk=
310 308 309 eqtrdi j0N2ndGk1jj+1N=
311 302 310 sylan9req φkj0N2ndGk1j2ndGkj+1N=
312 fun 2ndGk1j×1:2ndGk1j12ndGkj+1N×0:2ndGkj+1N02ndGk1j2ndGkj+1N=2ndGk1j×12ndGkj+1N×0:2ndGk1j2ndGkj+1N10
313 292 311 312 sylancr φkj0N2ndGk1j×12ndGkj+1N×0:2ndGk1j2ndGkj+1N10
314 imaundi 2ndGk1jj+1N=2ndGk1j2ndGkj+1N
315 nn0p1nn j0j+1
316 303 315 syl j0Nj+1
317 nnuz =1
318 316 317 eleqtrdi j0Nj+11
319 elfzuz3 j0NNj
320 fzsplit2 j+11Nj1N=1jj+1N
321 318 319 320 syl2anc j0N1N=1jj+1N
322 321 imaeq2d j0N2ndGk1N=2ndGk1jj+1N
323 f1ofo 2ndGk:1N1-1 onto1N2ndGk:1Nonto1N
324 foima 2ndGk:1Nonto1N2ndGk1N=1N
325 298 323 324 3syl φk2ndGk1N=1N
326 322 325 sylan9req j0Nφk2ndGk1jj+1N=1N
327 326 ancoms φkj0N2ndGk1jj+1N=1N
328 314 327 eqtr3id φkj0N2ndGk1j2ndGkj+1N=1N
329 328 feq2d φkj0N2ndGk1j×12ndGkj+1N×0:2ndGk1j2ndGkj+1N102ndGk1j×12ndGkj+1N×0:1N10
330 313 329 mpbid φkj0N2ndGk1j×12ndGkj+1N×0:1N10
331 fzfid φkj0N1NFin
332 inidm 1N1N=1N
333 281 288 330 331 331 332 off φkj0N1stGk+f2ndGk1j×12ndGkj+1N×0:1N0k
334 6 feq1i P:1N0k1stGk+f2ndGk1j×12ndGkj+1N×0:1N0k
335 333 334 sylibr φkj0NP:1N0k
336 vex kV
337 336 fconst 1N×k:1Nk
338 337 a1i φkj0N1N×k:1Nk
339 262 335 338 331 331 332 off φkj0NP÷f1N×k:1N01
340 2 eleq2i P÷f1N×kIP÷f1N×k011N
341 ovex 01V
342 ovex 1NV
343 341 342 elmap P÷f1N×k011NP÷f1N×k:1N01
344 340 343 bitri P÷f1N×kIP÷f1N×k:1N01
345 339 344 sylibr φkj0NP÷f1N×kI
346 227 345 ffvelcdmd φkj0NFP÷f1N×k1N
347 elmapi FP÷f1N×k1NFP÷f1N×k:1N
348 346 347 syl φkj0NFP÷f1N×k:1N
349 348 ffvelcdmda φkj0Nn1NFP÷f1N×kn
350 349 an32s φkn1Nj0NFP÷f1N×kn
351 0red φkn1Nj0N0
352 350 351 ltnled φkn1Nj0NFP÷f1N×kn<0¬0FP÷f1N×kn
353 ltle FP÷f1N×kn0FP÷f1N×kn<0FP÷f1N×kn0
354 350 45 353 sylancl φkn1Nj0NFP÷f1N×kn<0FP÷f1N×kn0
355 352 354 sylbird φkn1Nj0N¬0FP÷f1N×knFP÷f1N×kn0
356 248 234 div0d k0k=0
357 oveq1 Pn=0Pnk=0k
358 357 eqeq1d Pn=0Pnk=00k=0
359 356 358 syl5ibrcom kPn=0Pnk=0
360 359 ad3antlr φkn1Nj0NPn=0Pnk=0
361 335 ffnd φkj0NPFn1N
362 fnconstg kV1N×kFn1N
363 336 362 mp1i φkj0N1N×kFn1N
364 eqidd φkj0Nn1NPn=Pn
365 336 fvconst2 n1N1N×kn=k
366 365 adantl φkj0Nn1N1N×kn=k
367 361 363 331 331 332 364 366 ofval φkj0Nn1NP÷f1N×kn=Pnk
368 367 an32s φkn1Nj0NP÷f1N×kn=Pnk
369 368 eqeq1d φkn1Nj0NP÷f1N×kn=0Pnk=0
370 360 369 sylibrd φkn1Nj0NPn=0P÷f1N×kn=0
371 simplll φkn1Nj0Nφ
372 simplr φkn1Nj0Nn1N
373 345 adantlr φkn1Nj0NP÷f1N×kI
374 ovex P÷f1N×kV
375 eleq1 z=P÷f1N×kzIP÷f1N×kI
376 fveq1 z=P÷f1N×kzn=P÷f1N×kn
377 376 eqeq1d z=P÷f1N×kzn=0P÷f1N×kn=0
378 fveq2 z=P÷f1N×kFz=FP÷f1N×k
379 378 fveq1d z=P÷f1N×kFzn=FP÷f1N×kn
380 379 breq1d z=P÷f1N×kFzn0FP÷f1N×kn0
381 377 380 imbi12d z=P÷f1N×kzn=0Fzn0P÷f1N×kn=0FP÷f1N×kn0
382 375 381 imbi12d z=P÷f1N×kzIzn=0Fzn0P÷f1N×kIP÷f1N×kn=0FP÷f1N×kn0
383 382 imbi2d z=P÷f1N×kn1NzIzn=0Fzn0n1NP÷f1N×kIP÷f1N×kn=0FP÷f1N×kn0
384 383 imbi2d z=P÷f1N×kφn1NzIzn=0Fzn0φn1NP÷f1N×kIP÷f1N×kn=0FP÷f1N×kn0
385 5 3exp2 φn1NzIzn=0Fzn0
386 374 384 385 vtocl φn1NP÷f1N×kIP÷f1N×kn=0FP÷f1N×kn0
387 371 372 373 386 syl3c φkn1Nj0NP÷f1N×kn=0FP÷f1N×kn0
388 370 387 syld φkn1Nj0NPn=0FP÷f1N×kn0
389 355 388 jaod φkn1Nj0N¬0FP÷f1N×knPn=0FP÷f1N×kn0
390 209 389 syld φkn1Nj0Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<FP÷f1N×kn0
391 390 reximdva φkn1Nj0Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<j0NFP÷f1N×kn0
392 391 anasss φkn1Nj0Nn1=sup0a1N|b1a0FP÷f1N×kbPb0<j0NFP÷f1N×kn0
393 115 392 mpd φkn1Nj0NFP÷f1N×kn0
394 breq r=-10rFP÷f1N×kn0-1FP÷f1N×kn
395 fvex FP÷f1N×knV
396 40 395 brcnv 0-1FP÷f1N×knFP÷f1N×kn0
397 394 396 bitrdi r=-10rFP÷f1N×knFP÷f1N×kn0
398 397 rexbidv r=-1j0N0rFP÷f1N×knj0NFP÷f1N×kn0
399 393 398 syl5ibrcom φkn1Nr=-1j0N0rFP÷f1N×kn
400 84 399 jaod φkn1Nr=r=-1j0N0rFP÷f1N×kn
401 10 400 syl5 φkn1Nr-1j0N0rFP÷f1N×kn
402 401 exp32 φkn1Nr-1j0N0rFP÷f1N×kn
403 402 3imp2 φkn1Nr-1j0N0rFP÷f1N×kn