Metamath Proof Explorer


Theorem fourierdlem73

Description: A version of the Riemann Lebesgue lemma: as r increases, the integral in S goes to zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem73.a φA
fourierdlem73.b φB
fourierdlem73.f φF:AB
fourierdlem73.m φM
fourierdlem73.qf φQ:0MAB
fourierdlem73.q0 φQ0=A
fourierdlem73.qm φQM=B
fourierdlem73.qilt φi0..^MQi<Qi+1
fourierdlem73.fcn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem73.l φi0..^MLFQiQi+1limQi+1
fourierdlem73.r φi0..^MRFQiQi+1limQi
fourierdlem73.g G=DF
fourierdlem73.gcn φi0..^MGQiQi+1:QiQi+1cn
fourierdlem73.gbd φyxdomGGxy
fourierdlem73.s S=r+ABFxsinrxdx
fourierdlem73.d D=xQiQi+1ifx=QiRifx=Qi+1LFx
Assertion fourierdlem73 φe+nrn+∞ABFxsinrxdx<e

Proof

Step Hyp Ref Expression
1 fourierdlem73.a φA
2 fourierdlem73.b φB
3 fourierdlem73.f φF:AB
4 fourierdlem73.m φM
5 fourierdlem73.qf φQ:0MAB
6 fourierdlem73.q0 φQ0=A
7 fourierdlem73.qm φQM=B
8 fourierdlem73.qilt φi0..^MQi<Qi+1
9 fourierdlem73.fcn φi0..^MFQiQi+1:QiQi+1cn
10 fourierdlem73.l φi0..^MLFQiQi+1limQi+1
11 fourierdlem73.r φi0..^MRFQiQi+1limQi
12 fourierdlem73.g G=DF
13 fourierdlem73.gcn φi0..^MGQiQi+1:QiQi+1cn
14 fourierdlem73.gbd φyxdomGGxy
15 fourierdlem73.s S=r+ABFxsinrxdx
16 fourierdlem73.d D=xQiQi+1ifx=QiRifx=Qi+1LFx
17 cncff GQiQi+1:QiQi+1cnGQiQi+1:QiQi+1
18 13 17 syl φi0..^MGQiQi+1:QiQi+1
19 ax-resscn
20 19 a1i φi0..^M
21 1 2 iccssred φAB
22 5 21 fssd φQ:0M
23 22 adantr φi0..^MQ:0M
24 elfzofz i0..^Mi0M
25 24 adantl φi0..^Mi0M
26 23 25 ffvelcdmd φi0..^MQi
27 fzofzp1 i0..^Mi+10M
28 27 adantl φi0..^Mi+10M
29 23 28 ffvelcdmd φi0..^MQi+1
30 26 29 iccssred φi0..^MQiQi+1
31 limccl FQiQi+1limQi
32 31 11 sselid φi0..^MR
33 32 adantr φi0..^MxQiQi+1R
34 limccl FQiQi+1limQi+1
35 34 10 sselid φi0..^ML
36 35 adantr φi0..^MxQiQi+1L
37 3 ad2antrr φi0..^MxQiQi+1F:AB
38 1 ad2antrr φi0..^MxQiQi+1A
39 2 ad2antrr φi0..^MxQiQi+1B
40 26 adantr φi0..^MxQiQi+1Qi
41 29 adantr φi0..^MxQiQi+1Qi+1
42 simpr φi0..^MxQiQi+1xQiQi+1
43 eliccre QiQi+1xQiQi+1x
44 40 41 42 43 syl3anc φi0..^MxQiQi+1x
45 1 rexrd φA*
46 45 adantr φi0..^MA*
47 2 rexrd φB*
48 47 adantr φi0..^MB*
49 5 adantr φi0..^MQ:0MAB
50 49 25 ffvelcdmd φi0..^MQiAB
51 iccgelb A*B*QiABAQi
52 46 48 50 51 syl3anc φi0..^MAQi
53 52 adantr φi0..^MxQiQi+1AQi
54 40 rexrd φi0..^MxQiQi+1Qi*
55 41 rexrd φi0..^MxQiQi+1Qi+1*
56 iccgelb Qi*Qi+1*xQiQi+1Qix
57 54 55 42 56 syl3anc φi0..^MxQiQi+1Qix
58 38 40 44 53 57 letrd φi0..^MxQiQi+1Ax
59 iccleub Qi*Qi+1*xQiQi+1xQi+1
60 54 55 42 59 syl3anc φi0..^MxQiQi+1xQi+1
61 45 ad2antrr φi0..^MxQiQi+1A*
62 47 ad2antrr φi0..^MxQiQi+1B*
63 49 28 ffvelcdmd φi0..^MQi+1AB
64 63 adantr φi0..^MxQiQi+1Qi+1AB
65 iccleub A*B*Qi+1ABQi+1B
66 61 62 64 65 syl3anc φi0..^MxQiQi+1Qi+1B
67 44 41 39 60 66 letrd φi0..^MxQiQi+1xB
68 38 39 44 58 67 eliccd φi0..^MxQiQi+1xAB
69 37 68 ffvelcdmd φi0..^MxQiQi+1Fx
70 36 69 ifcld φi0..^MxQiQi+1ifx=Qi+1LFx
71 33 70 ifcld φi0..^MxQiQi+1ifx=QiRifx=Qi+1LFx
72 71 16 fmptd φi0..^MD:QiQi+1
73 eqid TopOpenfld=TopOpenfld
74 73 tgioo2 topGenran.=TopOpenfld𝑡
75 iccntr QiQi+1inttopGenran.QiQi+1=QiQi+1
76 26 29 75 syl2anc φi0..^MinttopGenran.QiQi+1=QiQi+1
77 20 30 72 74 73 76 dvresntr φi0..^MDD=DDQiQi+1
78 ioossicc QiQi+1QiQi+1
79 78 sseli xQiQi+1xQiQi+1
80 79 adantl φi0..^MxQiQi+1xQiQi+1
81 fvres xQiQi+1FQiQi+1x=Fx
82 80 81 syl φi0..^MxQiQi+1FQiQi+1x=Fx
83 80 71 syldan φi0..^MxQiQi+1ifx=QiRifx=Qi+1LFx
84 16 fvmpt2 xQiQi+1ifx=QiRifx=Qi+1LFxDx=ifx=QiRifx=Qi+1LFx
85 80 83 84 syl2anc φi0..^MxQiQi+1Dx=ifx=QiRifx=Qi+1LFx
86 26 adantr φi0..^MxQiQi+1Qi
87 80 54 syldan φi0..^MxQiQi+1Qi*
88 80 55 syldan φi0..^MxQiQi+1Qi+1*
89 simpr φi0..^MxQiQi+1xQiQi+1
90 ioogtlb Qi*Qi+1*xQiQi+1Qi<x
91 87 88 89 90 syl3anc φi0..^MxQiQi+1Qi<x
92 86 91 gtned φi0..^MxQiQi+1xQi
93 92 neneqd φi0..^MxQiQi+1¬x=Qi
94 93 iffalsed φi0..^MxQiQi+1ifx=QiRifx=Qi+1LFx=ifx=Qi+1LFx
95 elioore xQiQi+1x
96 95 adantl φi0..^MxQiQi+1x
97 iooltub Qi*Qi+1*xQiQi+1x<Qi+1
98 87 88 89 97 syl3anc φi0..^MxQiQi+1x<Qi+1
99 96 98 ltned φi0..^MxQiQi+1xQi+1
100 99 neneqd φi0..^MxQiQi+1¬x=Qi+1
101 100 iffalsed φi0..^MxQiQi+1ifx=Qi+1LFx=Fx
102 85 94 101 3eqtrrd φi0..^MxQiQi+1Fx=Dx
103 82 102 eqtr2d φi0..^MxQiQi+1Dx=FQiQi+1x
104 103 ralrimiva φi0..^MxQiQi+1Dx=FQiQi+1x
105 ffn D:QiQi+1DFnQiQi+1
106 72 105 syl φi0..^MDFnQiQi+1
107 ffn F:ABFFnAB
108 3 107 syl φFFnAB
109 108 adantr φi0..^MFFnAB
110 simpr φi0..^Mi0..^M
111 46 48 49 110 fourierdlem8 φi0..^MQiQi+1AB
112 fnssres FFnABQiQi+1ABFQiQi+1FnQiQi+1
113 109 111 112 syl2anc φi0..^MFQiQi+1FnQiQi+1
114 78 a1i φi0..^MQiQi+1QiQi+1
115 fvreseq DFnQiQi+1FQiQi+1FnQiQi+1QiQi+1QiQi+1DQiQi+1=FQiQi+1QiQi+1xQiQi+1Dx=FQiQi+1x
116 106 113 114 115 syl21anc φi0..^MDQiQi+1=FQiQi+1QiQi+1xQiQi+1Dx=FQiQi+1x
117 104 116 mpbird φi0..^MDQiQi+1=FQiQi+1QiQi+1
118 114 resabs1d φi0..^MFQiQi+1QiQi+1=FQiQi+1
119 117 118 eqtrd φi0..^MDQiQi+1=FQiQi+1
120 119 oveq2d φi0..^MDDQiQi+1=DFQiQi+1
121 3 adantr φi0..^MF:AB
122 21 adantr φi0..^MAB
123 114 30 sstrd φi0..^MQiQi+1
124 73 74 dvres F:ABABQiQi+1DFQiQi+1=FinttopGenran.QiQi+1
125 20 121 122 123 124 syl22anc φi0..^MDFQiQi+1=FinttopGenran.QiQi+1
126 12 eqcomi DF=G
127 126 a1i φi0..^MDF=G
128 iooretop QiQi+1topGenran.
129 retop topGenran.Top
130 uniretop =topGenran.
131 130 isopn3 topGenran.TopQiQi+1QiQi+1topGenran.inttopGenran.QiQi+1=QiQi+1
132 129 123 131 sylancr φi0..^MQiQi+1topGenran.inttopGenran.QiQi+1=QiQi+1
133 128 132 mpbii φi0..^MinttopGenran.QiQi+1=QiQi+1
134 127 133 reseq12d φi0..^MFinttopGenran.QiQi+1=GQiQi+1
135 125 134 eqtrd φi0..^MDFQiQi+1=GQiQi+1
136 77 120 135 3eqtrd φi0..^MDD=GQiQi+1
137 136 feq1d φi0..^MD:QiQi+1GQiQi+1:QiQi+1
138 18 137 mpbird φi0..^MD:QiQi+1
139 138 feqmptd φi0..^MDD=xQiQi+1Dx
140 139 136 eqtr3d φi0..^MxQiQi+1Dx=GQiQi+1
141 ioombl QiQi+1domvol
142 141 a1i φi0..^MQiQi+1domvol
143 26 29 8 ltled φi0..^MQiQi+1
144 volioo QiQi+1QiQi+1volQiQi+1=Qi+1Qi
145 26 29 143 144 syl3anc φi0..^MvolQiQi+1=Qi+1Qi
146 29 26 resubcld φi0..^MQi+1Qi
147 145 146 eqeltrd φi0..^MvolQiQi+1
148 14 adantr φi0..^MyxdomGGxy
149 nfv xφi0..^My
150 nfra1 xxdomGGxy
151 149 150 nfan xφi0..^MyxdomGGxy
152 simpr φi0..^MxdomGQiQi+1xdomGQiQi+1
153 fdm GQiQi+1:QiQi+1domGQiQi+1=QiQi+1
154 18 153 syl φi0..^MdomGQiQi+1=QiQi+1
155 154 adantr φi0..^MxdomGQiQi+1domGQiQi+1=QiQi+1
156 152 155 eleqtrd φi0..^MxdomGQiQi+1xQiQi+1
157 fvres xQiQi+1GQiQi+1x=Gx
158 156 157 syl φi0..^MxdomGQiQi+1GQiQi+1x=Gx
159 158 fveq2d φi0..^MxdomGQiQi+1GQiQi+1x=Gx
160 159 ad4ant14 φi0..^MyxdomGGxyxdomGQiQi+1GQiQi+1x=Gx
161 simplr φi0..^MxdomGGxyxdomGQiQi+1xdomGGxy
162 ssdmres QiQi+1domGdomGQiQi+1=QiQi+1
163 154 162 sylibr φi0..^MQiQi+1domG
164 163 sselda φi0..^MxQiQi+1xdomG
165 156 164 syldan φi0..^MxdomGQiQi+1xdomG
166 165 adantlr φi0..^MxdomGGxyxdomGQiQi+1xdomG
167 rsp xdomGGxyxdomGGxy
168 161 166 167 sylc φi0..^MxdomGGxyxdomGQiQi+1Gxy
169 168 adantllr φi0..^MyxdomGGxyxdomGQiQi+1Gxy
170 160 169 eqbrtrd φi0..^MyxdomGGxyxdomGQiQi+1GQiQi+1xy
171 170 ex φi0..^MyxdomGGxyxdomGQiQi+1GQiQi+1xy
172 151 171 ralrimi φi0..^MyxdomGGxyxdomGQiQi+1GQiQi+1xy
173 172 ex φi0..^MyxdomGGxyxdomGQiQi+1GQiQi+1xy
174 173 reximdva φi0..^MyxdomGGxyyxdomGQiQi+1GQiQi+1xy
175 148 174 mpd φi0..^MyxdomGQiQi+1GQiQi+1xy
176 142 147 13 175 cnbdibl φi0..^MGQiQi+1𝐿1
177 140 176 eqeltrd φi0..^MxQiQi+1Dx𝐿1
178 177 adantr φi0..^Me+xQiQi+1Dx𝐿1
179 141 a1i φi0..^MrQiQi+1domvol
180 147 adantr φi0..^MrvolQiQi+1
181 140 13 eqeltrd φi0..^MxQiQi+1Dx:QiQi+1cn
182 181 adantr φi0..^MrxQiQi+1Dx:QiQi+1cn
183 coscn cos:cn
184 183 a1i φi0..^Mrcos:cn
185 ioosscn QiQi+1
186 185 a1i φi0..^MrQiQi+1
187 simpr φi0..^Mrr
188 187 recnd φi0..^Mrr
189 ssid
190 189 a1i φi0..^Mr
191 186 188 190 constcncfg φi0..^MrxQiQi+1r:QiQi+1cn
192 185 a1i φQiQi+1
193 189 a1i φ
194 192 193 idcncfg φxQiQi+1x:QiQi+1cn
195 194 ad2antrr φi0..^MrxQiQi+1x:QiQi+1cn
196 191 195 mulcncf φi0..^MrxQiQi+1rx:QiQi+1cn
197 184 196 cncfmpt1f φi0..^MrxQiQi+1cosrx:QiQi+1cn
198 197 negcncfg φi0..^MrxQiQi+1cosrx:QiQi+1cn
199 182 198 mulcncf φi0..^MrxQiQi+1Dxcosrx:QiQi+1cn
200 nfv xφi0..^M
201 200 150 nfan xφi0..^MxdomGGxy
202 136 fveq1d φi0..^MDx=GQiQi+1x
203 202 157 sylan9eq φi0..^MxQiQi+1Dx=Gx
204 203 fveq2d φi0..^MxQiQi+1Dx=Gx
205 204 adantlr φi0..^MxdomGGxyxQiQi+1Dx=Gx
206 simplr φi0..^MxdomGGxyxQiQi+1xdomGGxy
207 164 adantlr φi0..^MxdomGGxyxQiQi+1xdomG
208 206 207 167 sylc φi0..^MxdomGGxyxQiQi+1Gxy
209 205 208 eqbrtrd φi0..^MxdomGGxyxQiQi+1Dxy
210 209 ex φi0..^MxdomGGxyxQiQi+1Dxy
211 201 210 ralrimi φi0..^MxdomGGxyxQiQi+1Dxy
212 211 ex φi0..^MxdomGGxyxQiQi+1Dxy
213 212 reximdv φi0..^MyxdomGGxyyxQiQi+1Dxy
214 148 213 mpd φi0..^MyxQiQi+1Dxy
215 214 adantr φi0..^MryxQiQi+1Dxy
216 eqidd φi0..^MrzQiQi+1xQiQi+1Dxcosrx=xQiQi+1Dxcosrx
217 fveq2 x=zDx=Dz
218 eleq1w x=zxQiQi+1zQiQi+1
219 218 anbi2d x=zφi0..^MxQiQi+1φi0..^MzQiQi+1
220 fveq2 x=zGx=Gz
221 217 220 eqeq12d x=zDx=GxDz=Gz
222 219 221 imbi12d x=zφi0..^MxQiQi+1Dx=Gxφi0..^MzQiQi+1Dz=Gz
223 222 203 chvarvv φi0..^MzQiQi+1Dz=Gz
224 217 223 sylan9eqr φi0..^MzQiQi+1x=zDx=Gz
225 oveq2 x=zrx=rz
226 225 fveq2d x=zcosrx=cosrz
227 226 negeqd x=zcosrx=cosrz
228 227 adantl φi0..^MzQiQi+1x=zcosrx=cosrz
229 224 228 oveq12d φi0..^MzQiQi+1x=zDxcosrx=Gzcosrz
230 229 adantllr φi0..^MrzQiQi+1x=zDxcosrx=Gzcosrz
231 simpr φi0..^MrzQiQi+1zQiQi+1
232 fvres zQiQi+1GQiQi+1z=Gz
233 232 adantl φi0..^MzQiQi+1GQiQi+1z=Gz
234 18 ffvelcdmda φi0..^MzQiQi+1GQiQi+1z
235 233 234 eqeltrrd φi0..^MzQiQi+1Gz
236 235 adantlr φi0..^MrzQiQi+1Gz
237 simpl rzQiQi+1r
238 elioore zQiQi+1z
239 238 adantl rzQiQi+1z
240 237 239 remulcld rzQiQi+1rz
241 240 recnd rzQiQi+1rz
242 241 coscld rzQiQi+1cosrz
243 242 negcld rzQiQi+1cosrz
244 243 adantll φi0..^MrzQiQi+1cosrz
245 236 244 mulcld φi0..^MrzQiQi+1Gzcosrz
246 216 230 231 245 fvmptd φi0..^MrzQiQi+1xQiQi+1Dxcosrxz=Gzcosrz
247 246 fveq2d φi0..^MrzQiQi+1xQiQi+1Dxcosrxz=Gzcosrz
248 247 ad4ant14 φi0..^MryxQiQi+1DxyzQiQi+1xQiQi+1Dxcosrxz=Gzcosrz
249 245 abscld φi0..^MrzQiQi+1Gzcosrz
250 249 ad4ant14 φi0..^MryxQiQi+1DxyzQiQi+1Gzcosrz
251 236 abscld φi0..^MrzQiQi+1Gz
252 251 ad4ant14 φi0..^MryxQiQi+1DxyzQiQi+1Gz
253 simpllr φi0..^MryxQiQi+1DxyzQiQi+1y
254 244 abscld φi0..^MrzQiQi+1cosrz
255 1red φi0..^MrzQiQi+11
256 236 absge0d φi0..^MrzQiQi+10Gz
257 242 absnegd rzQiQi+1cosrz=cosrz
258 abscosbd rzcosrz1
259 240 258 syl rzQiQi+1cosrz1
260 257 259 eqbrtrd rzQiQi+1cosrz1
261 260 adantll φi0..^MrzQiQi+1cosrz1
262 254 255 251 256 261 lemul2ad φi0..^MrzQiQi+1GzcosrzGz1
263 236 244 absmuld φi0..^MrzQiQi+1Gzcosrz=Gzcosrz
264 251 recnd φi0..^MrzQiQi+1Gz
265 264 mulridd φi0..^MrzQiQi+1Gz1=Gz
266 265 eqcomd φi0..^MrzQiQi+1Gz=Gz1
267 262 263 266 3brtr4d φi0..^MrzQiQi+1GzcosrzGz
268 267 ad4ant14 φi0..^MryxQiQi+1DxyzQiQi+1GzcosrzGz
269 simpr φi0..^MxQiQi+1DxyxQiQi+1Dxy
270 nfra1 xxQiQi+1Dxy
271 200 270 nfan xφi0..^MxQiQi+1Dxy
272 204 eqcomd φi0..^MxQiQi+1Gx=Dx
273 272 adantr φi0..^MxQiQi+1DxyGx=Dx
274 simpr φi0..^MxQiQi+1DxyDxy
275 273 274 eqbrtrd φi0..^MxQiQi+1DxyGxy
276 275 ex φi0..^MxQiQi+1DxyGxy
277 276 adantlr φi0..^MxQiQi+1DxyxQiQi+1DxyGxy
278 271 277 ralimdaa φi0..^MxQiQi+1DxyxQiQi+1DxyxQiQi+1Gxy
279 269 278 mpd φi0..^MxQiQi+1DxyxQiQi+1Gxy
280 220 fveq2d x=zGx=Gz
281 280 breq1d x=zGxyGzy
282 281 cbvralvw xQiQi+1GxyzQiQi+1Gzy
283 279 282 sylib φi0..^MxQiQi+1DxyzQiQi+1Gzy
284 283 ad4ant14 φi0..^MryxQiQi+1DxyzQiQi+1Gzy
285 284 r19.21bi φi0..^MryxQiQi+1DxyzQiQi+1Gzy
286 250 252 253 268 285 letrd φi0..^MryxQiQi+1DxyzQiQi+1Gzcosrzy
287 248 286 eqbrtrd φi0..^MryxQiQi+1DxyzQiQi+1xQiQi+1Dxcosrxzy
288 287 ralrimiva φi0..^MryxQiQi+1DxyzQiQi+1xQiQi+1Dxcosrxzy
289 138 ffvelcdmda φi0..^MxQiQi+1Dx
290 289 adantlr φi0..^MrxQiQi+1Dx
291 simpl rxQiQi+1r
292 95 adantl rxQiQi+1x
293 291 292 remulcld rxQiQi+1rx
294 293 recnd rxQiQi+1rx
295 294 coscld rxQiQi+1cosrx
296 295 negcld rxQiQi+1cosrx
297 296 adantll φi0..^MrxQiQi+1cosrx
298 290 297 mulcld φi0..^MrxQiQi+1Dxcosrx
299 298 ralrimiva φi0..^MrxQiQi+1Dxcosrx
300 dmmptg xQiQi+1DxcosrxdomxQiQi+1Dxcosrx=QiQi+1
301 299 300 syl φi0..^MrdomxQiQi+1Dxcosrx=QiQi+1
302 301 ad2antrr φi0..^MryxQiQi+1DxydomxQiQi+1Dxcosrx=QiQi+1
303 302 raleqdv φi0..^MryxQiQi+1DxyzdomxQiQi+1DxcosrxxQiQi+1DxcosrxzyzQiQi+1xQiQi+1Dxcosrxzy
304 288 303 mpbird φi0..^MryxQiQi+1DxyzdomxQiQi+1DxcosrxxQiQi+1Dxcosrxzy
305 304 ex φi0..^MryxQiQi+1DxyzdomxQiQi+1DxcosrxxQiQi+1Dxcosrxzy
306 305 reximdva φi0..^MryxQiQi+1DxyyzdomxQiQi+1DxcosrxxQiQi+1Dxcosrxzy
307 215 306 mpd φi0..^MryzdomxQiQi+1DxcosrxxQiQi+1Dxcosrxzy
308 179 180 199 307 cnbdibl φi0..^MrxQiQi+1Dxcosrx𝐿1
309 308 adantlr φi0..^Me+rxQiQi+1Dxcosrx𝐿1
310 289 adantlr φi0..^Me+xQiQi+1Dx
311 simpr φi0..^Me+xQiQi+1rr
312 185 sseli xQiQi+1x
313 312 ad2antlr φi0..^Me+xQiQi+1rx
314 311 313 mulcld φi0..^Me+xQiQi+1rrx
315 314 coscld φi0..^Me+xQiQi+1rcosrx
316 293 ancoms xQiQi+1rrx
317 abscosbd rxcosrx1
318 316 317 syl xQiQi+1rcosrx1
319 318 adantll φi0..^Me+xQiQi+1rcosrx1
320 16 a1i φi0..^MD=xQiQi+1ifx=QiRifx=Qi+1LFx
321 26 adantr φi0..^Mx=Qi+1Qi
322 8 adantr φi0..^Mx=Qi+1Qi<Qi+1
323 eqcom Qi+1=xx=Qi+1
324 323 biimpri x=Qi+1Qi+1=x
325 324 adantl φi0..^Mx=Qi+1Qi+1=x
326 322 325 breqtrd φi0..^Mx=Qi+1Qi<x
327 321 326 gtned φi0..^Mx=Qi+1xQi
328 327 neneqd φi0..^Mx=Qi+1¬x=Qi
329 328 iffalsed φi0..^Mx=Qi+1ifx=QiRifx=Qi+1LFx=ifx=Qi+1LFx
330 iftrue x=Qi+1ifx=Qi+1LFx=L
331 330 adantl φi0..^Mx=Qi+1ifx=Qi+1LFx=L
332 329 331 eqtrd φi0..^Mx=Qi+1ifx=QiRifx=Qi+1LFx=L
333 29 leidd φi0..^MQi+1Qi+1
334 26 29 29 143 333 eliccd φi0..^MQi+1QiQi+1
335 320 332 334 10 fvmptd φi0..^MDQi+1=L
336 335 35 eqeltrd φi0..^MDQi+1
337 336 adantr φi0..^Me+DQi+1
338 eqid DQi+1=DQi+1
339 iftrue x=Qiifx=QiRifx=Qi+1LFx=R
340 339 adantl φi0..^Mx=Qiifx=QiRifx=Qi+1LFx=R
341 26 rexrd φi0..^MQi*
342 29 rexrd φi0..^MQi+1*
343 lbicc2 Qi*Qi+1*QiQi+1QiQiQi+1
344 341 342 143 343 syl3anc φi0..^MQiQiQi+1
345 320 340 344 11 fvmptd φi0..^MDQi=R
346 345 32 eqeltrd φi0..^MDQi
347 346 adantr φi0..^Me+DQi
348 eqid DQi=DQi
349 eqid QiQi+1Dxdx=QiQi+1Dxdx
350 simpr φe+e+
351 4 nnrpd φM+
352 351 adantr φe+M+
353 350 352 rpdivcld φe+eM+
354 353 adantlr φi0..^Me+eM+
355 simpr φi0..^Me+rr
356 29 recnd φi0..^MQi+1
357 356 ad2antrr φi0..^Me+rQi+1
358 355 357 mulcld φi0..^Me+rrQi+1
359 358 coscld φi0..^Me+rcosrQi+1
360 29 adantr φi0..^MrQi+1
361 187 360 remulcld φi0..^MrrQi+1
362 abscosbd rQi+1cosrQi+11
363 361 362 syl φi0..^MrcosrQi+11
364 363 adantlr φi0..^Me+rcosrQi+11
365 26 recnd φi0..^MQi
366 365 ad2antrr φi0..^Me+rQi
367 355 366 mulcld φi0..^Me+rrQi
368 367 coscld φi0..^Me+rcosrQi
369 26 adantr φi0..^MrQi
370 187 369 remulcld φi0..^MrrQi
371 abscosbd rQicosrQi1
372 370 371 syl φi0..^MrcosrQi1
373 372 adantlr φi0..^Me+rcosrQi1
374 fveq2 z=xDz=Dx
375 374 fveq2d z=xDz=Dx
376 375 cbvitgv QiQi+1Dzdz=QiQi+1Dxdx
377 376 oveq2i DQi+1+DQi+QiQi+1Dzdz=DQi+1+DQi+QiQi+1Dxdx
378 377 oveq1i DQi+1+DQi+QiQi+1DzdzeM=DQi+1+DQi+QiQi+1DxdxeM
379 378 oveq1i DQi+1+DQi+QiQi+1DzdzeM+1=DQi+1+DQi+QiQi+1DxdxeM+1
380 379 fveq2i DQi+1+DQi+QiQi+1DzdzeM+1=DQi+1+DQi+QiQi+1DxdxeM+1
381 380 oveq1i DQi+1+DQi+QiQi+1DzdzeM+1+1=DQi+1+DQi+QiQi+1DxdxeM+1+1
382 178 309 310 315 319 337 338 347 348 349 354 359 364 368 373 381 fourierdlem47 φi0..^Me+mrm+∞DQi+1cosrQi+1r-DQicosrQir-QiQi+1Dxcosrxrdx<eM
383 simplll φi0..^Mmrm+∞φ
384 simpllr φi0..^Mmrm+∞i0..^M
385 elioore rm+∞r
386 385 adantl mrm+∞r
387 0red mrm+∞0
388 nnre mm
389 388 adantr mrm+∞m
390 nngt0 m0<m
391 390 adantr mrm+∞0<m
392 389 rexrd mrm+∞m*
393 pnfxr +∞*
394 393 a1i mrm+∞+∞*
395 simpr mrm+∞rm+∞
396 ioogtlb m*+∞*rm+∞m<r
397 392 394 395 396 syl3anc mrm+∞m<r
398 387 389 386 391 397 lttrd mrm+∞0<r
399 386 398 elrpd mrm+∞r+
400 399 adantll φi0..^Mmrm+∞r+
401 26 adantr φi0..^Mr+Qi
402 29 adantr φi0..^Mr+Qi+1
403 72 ffvelcdmda φi0..^MxQiQi+1Dx
404 403 adantlr φi0..^Mr+xQiQi+1Dx
405 rpcn r+r
406 405 ad2antlr φi0..^Mr+xQiQi+1r
407 44 recnd φi0..^MxQiQi+1x
408 407 adantlr φi0..^Mr+xQiQi+1x
409 406 408 mulcld φi0..^Mr+xQiQi+1rx
410 409 sincld φi0..^Mr+xQiQi+1sinrx
411 404 410 mulcld φi0..^Mr+xQiQi+1Dxsinrx
412 401 402 411 itgioo φi0..^Mr+QiQi+1Dxsinrxdx=QiQi+1Dxsinrxdx
413 143 adantr φi0..^Mr+QiQi+1
414 72 feqmptd φi0..^MD=xQiQi+1Dx
415 iftrue x=Qi+1ifx=Qi+1LFQiQi+1x=L
416 330 415 eqtr4d x=Qi+1ifx=Qi+1LFx=ifx=Qi+1LFQiQi+1x
417 416 adantl φi0..^MxQiQi+1¬x=Qix=Qi+1ifx=Qi+1LFx=ifx=Qi+1LFQiQi+1x
418 iffalse ¬x=Qi+1ifx=Qi+1LFQiQi+1x=FQiQi+1x
419 418 adantl φi0..^MxQiQi+1¬x=Qi¬x=Qi+1ifx=Qi+1LFQiQi+1x=FQiQi+1x
420 54 ad2antrr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Qi*
421 55 ad2antrr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Qi+1*
422 44 ad2antrr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1x
423 26 ad2antrr φi0..^MxQiQi+1¬x=QiQi
424 44 adantr φi0..^MxQiQi+1¬x=Qix
425 57 adantr φi0..^MxQiQi+1¬x=QiQix
426 neqne ¬x=QixQi
427 426 adantl φi0..^MxQiQi+1¬x=QixQi
428 423 424 425 427 leneltd φi0..^MxQiQi+1¬x=QiQi<x
429 428 adantr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Qi<x
430 44 adantr φi0..^MxQiQi+1¬x=Qi+1x
431 29 ad2antrr φi0..^MxQiQi+1¬x=Qi+1Qi+1
432 60 adantr φi0..^MxQiQi+1¬x=Qi+1xQi+1
433 323 biimpi Qi+1=xx=Qi+1
434 433 necon3bi ¬x=Qi+1Qi+1x
435 434 adantl φi0..^MxQiQi+1¬x=Qi+1Qi+1x
436 430 431 432 435 leneltd φi0..^MxQiQi+1¬x=Qi+1x<Qi+1
437 436 adantlr φi0..^MxQiQi+1¬x=Qi¬x=Qi+1x<Qi+1
438 420 421 422 429 437 eliood φi0..^MxQiQi+1¬x=Qi¬x=Qi+1xQiQi+1
439 fvres xQiQi+1FQiQi+1x=Fx
440 438 439 syl φi0..^MxQiQi+1¬x=Qi¬x=Qi+1FQiQi+1x=Fx
441 iffalse ¬x=Qi+1ifx=Qi+1LFx=Fx
442 441 eqcomd ¬x=Qi+1Fx=ifx=Qi+1LFx
443 442 adantl φi0..^MxQiQi+1¬x=Qi¬x=Qi+1Fx=ifx=Qi+1LFx
444 419 440 443 3eqtrrd φi0..^MxQiQi+1¬x=Qi¬x=Qi+1ifx=Qi+1LFx=ifx=Qi+1LFQiQi+1x
445 417 444 pm2.61dan φi0..^MxQiQi+1¬x=Qiifx=Qi+1LFx=ifx=Qi+1LFQiQi+1x
446 445 ifeq2da φi0..^MxQiQi+1ifx=QiRifx=Qi+1LFx=ifx=QiRifx=Qi+1LFQiQi+1x
447 446 mpteq2dva φi0..^MxQiQi+1ifx=QiRifx=Qi+1LFx=xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x
448 320 414 447 3eqtr3d φi0..^MxQiQi+1Dx=xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x
449 eqid xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x=xQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x
450 200 449 26 29 9 10 11 cncfiooicc φi0..^MxQiQi+1ifx=QiRifx=Qi+1LFQiQi+1x:QiQi+1cn
451 448 450 eqeltrd φi0..^MxQiQi+1Dx:QiQi+1cn
452 414 451 eqeltrd φi0..^MD:QiQi+1cn
453 452 adantr φi0..^Mr+D:QiQi+1cn
454 eqid DD=DD
455 136 13 eqeltrd φi0..^MD:QiQi+1cn
456 455 adantr φi0..^Mr+D:QiQi+1cn
457 214 adantr φi0..^Mr+yxQiQi+1Dxy
458 simpr φi0..^Mr+r+
459 401 402 413 453 454 456 457 458 fourierdlem39 φi0..^Mr+QiQi+1Dxsinrxdx=DQi+1cosrQi+1r-DQicosrQir-QiQi+1Dxcosrxrdx
460 412 459 eqtr3d φi0..^Mr+QiQi+1Dxsinrxdx=DQi+1cosrQi+1r-DQicosrQir-QiQi+1Dxcosrxrdx
461 383 384 400 460 syl21anc φi0..^Mmrm+∞QiQi+1Dxsinrxdx=DQi+1cosrQi+1r-DQicosrQir-QiQi+1Dxcosrxrdx
462 461 fveq2d φi0..^Mmrm+∞QiQi+1Dxsinrxdx=DQi+1cosrQi+1r-DQicosrQir-QiQi+1Dxcosrxrdx
463 462 breq1d φi0..^Mmrm+∞QiQi+1Dxsinrxdx<eMDQi+1cosrQi+1r-DQicosrQir-QiQi+1Dxcosrxrdx<eM
464 463 ralbidva φi0..^Mmrm+∞QiQi+1Dxsinrxdx<eMrm+∞DQi+1cosrQi+1r-DQicosrQir-QiQi+1Dxcosrxrdx<eM
465 464 rexbidva φi0..^Mmrm+∞QiQi+1Dxsinrxdx<eMmrm+∞DQi+1cosrQi+1r-DQicosrQir-QiQi+1Dxcosrxrdx<eM
466 465 adantr φi0..^Me+mrm+∞QiQi+1Dxsinrxdx<eMmrm+∞DQi+1cosrQi+1r-DQicosrQir-QiQi+1Dxcosrxrdx<eM
467 382 466 mpbird φi0..^Me+mrm+∞QiQi+1Dxsinrxdx<eM
468 467 an32s φe+i0..^Mmrm+∞QiQi+1Dxsinrxdx<eM
469 102 oveq1d φi0..^MxQiQi+1Fxsinrx=Dxsinrx
470 469 itgeq2dv φi0..^MQiQi+1Fxsinrxdx=QiQi+1Dxsinrxdx
471 470 eqcomd φi0..^MQiQi+1Dxsinrxdx=QiQi+1Fxsinrxdx
472 471 adantr φi0..^Mrm+∞QiQi+1Dxsinrxdx=QiQi+1Fxsinrxdx
473 26 adantr φi0..^Mrm+∞Qi
474 29 adantr φi0..^Mrm+∞Qi+1
475 403 adantlr φi0..^Mrm+∞xQiQi+1Dx
476 385 recnd rm+∞r
477 476 ad2antlr φi0..^Mrm+∞xQiQi+1r
478 407 adantlr φi0..^Mrm+∞xQiQi+1x
479 477 478 mulcld φi0..^Mrm+∞xQiQi+1rx
480 479 sincld φi0..^Mrm+∞xQiQi+1sinrx
481 475 480 mulcld φi0..^Mrm+∞xQiQi+1Dxsinrx
482 473 474 481 itgioo φi0..^Mrm+∞QiQi+1Dxsinrxdx=QiQi+1Dxsinrxdx
483 69 adantlr φi0..^Mrm+∞xQiQi+1Fx
484 483 480 mulcld φi0..^Mrm+∞xQiQi+1Fxsinrx
485 473 474 484 itgioo φi0..^Mrm+∞QiQi+1Fxsinrxdx=QiQi+1Fxsinrxdx
486 472 482 485 3eqtr3d φi0..^Mrm+∞QiQi+1Dxsinrxdx=QiQi+1Fxsinrxdx
487 486 fveq2d φi0..^Mrm+∞QiQi+1Dxsinrxdx=QiQi+1Fxsinrxdx
488 487 breq1d φi0..^Mrm+∞QiQi+1Dxsinrxdx<eMQiQi+1Fxsinrxdx<eM
489 488 ralbidva φi0..^Mrm+∞QiQi+1Dxsinrxdx<eMrm+∞QiQi+1Fxsinrxdx<eM
490 489 adantlr φe+i0..^Mrm+∞QiQi+1Dxsinrxdx<eMrm+∞QiQi+1Fxsinrxdx<eM
491 490 rexbidv φe+i0..^Mmrm+∞QiQi+1Dxsinrxdx<eMmrm+∞QiQi+1Fxsinrxdx<eM
492 468 491 mpbid φe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eM
493 492 ralrimiva φe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eM
494 493 ralrimiva φe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eM
495 nfv iφe+
496 nfra1 ii0..^Mmrm+∞QiQi+1Fxsinrxdx<eM
497 495 496 nfan iφe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eM
498 nfv rφe+
499 nfcv _r0..^M
500 nfcv _r
501 nfra1 rrm+∞QiQi+1Fxsinrxdx<eM
502 500 501 nfrexw rmrm+∞QiQi+1Fxsinrxdx<eM
503 499 502 nfralw ri0..^Mmrm+∞QiQi+1Fxsinrxdx<eM
504 498 503 nfan rφe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eM
505 nfmpt1 _ii0..^Msupm|rm+∞QiQi+1Fxsinrxdx<eM<
506 fzofi 0..^MFin
507 506 a1i φe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eM0..^MFin
508 simpr φe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eMi0..^Mmrm+∞QiQi+1Fxsinrxdx<eM
509 eqid m|rm+∞QiQi+1Fxsinrxdx<eM=m|rm+∞QiQi+1Fxsinrxdx<eM
510 eqid i0..^Msupm|rm+∞QiQi+1Fxsinrxdx<eM<=i0..^Msupm|rm+∞QiQi+1Fxsinrxdx<eM<
511 eqid suprani0..^Msupm|rm+∞QiQi+1Fxsinrxdx<eM<<=suprani0..^Msupm|rm+∞QiQi+1Fxsinrxdx<eM<<
512 497 504 505 507 508 509 510 511 fourierdlem31 φe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eMnrn+∞i0..^MQiQi+1Fxsinrxdx<eM
513 simpr φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMnrn+∞i0..^MQiQi+1Fxsinrxdx<eM
514 nfv nφe+
515 nfre1 nnrn+∞i0..^MQiQi+1Fxsinrxdx<eM
516 514 515 nfan nφe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eM
517 nfv rn
518 nfra1 rrn+∞i0..^MQiQi+1Fxsinrxdx<eM
519 498 517 518 nf3an rφe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eM
520 simpll φnrn+∞φ
521 elioore rn+∞r
522 521 adantl nrn+∞r
523 0red nrn+∞0
524 nnre nn
525 524 adantr nrn+∞n
526 nngt0 n0<n
527 526 adantr nrn+∞0<n
528 525 rexrd nrn+∞n*
529 393 a1i nrn+∞+∞*
530 simpr nrn+∞rn+∞
531 ioogtlb n*+∞*rn+∞n<r
532 528 529 530 531 syl3anc nrn+∞n<r
533 523 525 522 527 532 lttrd nrn+∞0<r
534 522 533 elrpd nrn+∞r+
535 534 adantll φnrn+∞r+
536 1 adantr φr+A
537 2 adantr φr+B
538 3 ffvelcdmda φxABFx
539 538 adantlr φr+xABFx
540 405 ad2antlr φr+xABr
541 21 sselda φxABx
542 541 recnd φxABx
543 542 adantlr φr+xABx
544 540 543 mulcld φr+xABrx
545 544 sincld φr+xABsinrx
546 539 545 mulcld φr+xABFxsinrx
547 536 537 546 itgioo φr+ABFxsinrxdx=ABFxsinrxdx
548 6 eqcomd φA=Q0
549 7 eqcomd φB=QM
550 548 549 oveq12d φAB=Q0QM
551 550 adantr φr+AB=Q0QM
552 551 itgeq1d φr+ABFxsinrxdx=Q0QMFxsinrxdx
553 0zd φr+0
554 nnuz =1
555 0p1e1 0+1=1
556 555 fveq2i 0+1=1
557 554 556 eqtr4i =0+1
558 4 557 eleqtrdi φM0+1
559 558 adantr φr+M0+1
560 22 adantr φr+Q:0M
561 8 adantlr φr+i0..^MQi<Qi+1
562 simpr φxQ0QMxQ0QM
563 550 eqcomd φQ0QM=AB
564 563 adantr φxQ0QMQ0QM=AB
565 562 564 eleqtrd φxQ0QMxAB
566 565 adantlr φr+xQ0QMxAB
567 566 546 syldan φr+xQ0QMFxsinrx
568 26 adantlr φr+i0..^MQi
569 29 adantlr φr+i0..^MQi+1
570 114 111 sstrd φi0..^MQiQi+1AB
571 121 570 feqresmpt φi0..^MFQiQi+1=xQiQi+1Fx
572 571 9 eqeltrrd φi0..^MxQiQi+1Fx:QiQi+1cn
573 572 adantlr φr+i0..^MxQiQi+1Fx:QiQi+1cn
574 sincn sin:cn
575 574 a1i φr+i0..^Msin:cn
576 185 a1i φr+QiQi+1
577 405 adantl φr+r
578 189 a1i φr+
579 576 577 578 constcncfg φr+xQiQi+1r:QiQi+1cn
580 194 adantr φr+xQiQi+1x:QiQi+1cn
581 579 580 mulcncf φr+xQiQi+1rx:QiQi+1cn
582 581 adantr φr+i0..^MxQiQi+1rx:QiQi+1cn
583 575 582 cncfmpt1f φr+i0..^MxQiQi+1sinrx:QiQi+1cn
584 573 583 mulcncf φr+i0..^MxQiQi+1Fxsinrx:QiQi+1cn
585 eqid xQiQi+1Fx=xQiQi+1Fx
586 eqid xQiQi+1sinrx=xQiQi+1sinrx
587 eqid xQiQi+1Fxsinrx=xQiQi+1Fxsinrx
588 3 ad2antrr φi0..^MxQiQi+1F:AB
589 45 ad2antrr φi0..^MxQiQi+1A*
590 47 ad2antrr φi0..^MxQiQi+1B*
591 5 ad2antrr φi0..^MxQiQi+1Q:0MAB
592 simplr φi0..^MxQiQi+1i0..^M
593 589 590 591 592 80 fourierdlem1 φi0..^MxQiQi+1xAB
594 588 593 ffvelcdmd φi0..^MxQiQi+1Fx
595 594 adantllr φr+i0..^MxQiQi+1Fx
596 577 ad2antrr φr+i0..^MxQiQi+1r
597 312 adantl φr+i0..^MxQiQi+1x
598 596 597 mulcld φr+i0..^MxQiQi+1rx
599 598 sincld φr+i0..^MxQiQi+1sinrx
600 571 oveq1d φi0..^MFQiQi+1limQi+1=xQiQi+1FxlimQi+1
601 10 600 eleqtrd φi0..^MLxQiQi+1FxlimQi+1
602 601 adantlr φr+i0..^MLxQiQi+1FxlimQi+1
603 rpre r+r
604 603 adantr r+xQiQi+1r
605 95 adantl r+xQiQi+1x
606 604 605 remulcld r+xQiQi+1rx
607 606 adantll φr+xQiQi+1rx
608 607 ad2ant2r φr+i0..^MxQiQi+1rxrQi+1rx
609 recn yy
610 609 sincld ysiny
611 610 adantl φr+i0..^Mysiny
612 eqid xQiQi+1r=xQiQi+1r
613 eqid xQiQi+1x=xQiQi+1x
614 eqid xQiQi+1rx=xQiQi+1rx
615 185 a1i φr+i0..^MQiQi+1
616 577 adantr φr+i0..^Mr
617 569 recnd φr+i0..^MQi+1
618 612 615 616 617 constlimc φr+i0..^MrxQiQi+1rlimQi+1
619 615 613 617 idlimc φr+i0..^MQi+1xQiQi+1xlimQi+1
620 612 613 614 596 597 618 619 mullimc φr+i0..^MrQi+1xQiQi+1rxlimQi+1
621 eqid ysiny=ysiny
622 sinf sin:
623 622 a1i sin:
624 623 feqmptd sin=ysiny
625 624 574 eqeltrrdi ysiny:cn
626 19 a1i
627 resincl ysiny
628 627 adantl ysiny
629 621 625 626 626 628 cncfmptssg ysiny:cn
630 629 mptru ysiny:cn
631 630 a1i φr+i0..^Mysiny:cn
632 603 ad2antlr φr+i0..^Mr
633 632 569 remulcld φr+i0..^MrQi+1
634 fveq2 y=rQi+1siny=sinrQi+1
635 631 633 634 cnmptlimc φr+i0..^MsinrQi+1ysinylimrQi+1
636 fveq2 y=rxsiny=sinrx
637 fveq2 rx=rQi+1sinrx=sinrQi+1
638 637 ad2antll φr+i0..^MxQiQi+1rx=rQi+1sinrx=sinrQi+1
639 608 611 620 635 636 638 limcco φr+i0..^MsinrQi+1xQiQi+1sinrxlimQi+1
640 585 586 587 595 599 602 639 mullimc φr+i0..^MLsinrQi+1xQiQi+1FxsinrxlimQi+1
641 571 oveq1d φi0..^MFQiQi+1limQi=xQiQi+1FxlimQi
642 11 641 eleqtrd φi0..^MRxQiQi+1FxlimQi
643 642 adantlr φr+i0..^MRxQiQi+1FxlimQi
644 607 ad2ant2r φr+i0..^MxQiQi+1rxrQirx
645 568 recnd φr+i0..^MQi
646 612 615 616 645 constlimc φr+i0..^MrxQiQi+1rlimQi
647 615 613 645 idlimc φr+i0..^MQixQiQi+1xlimQi
648 612 613 614 596 597 646 647 mullimc φr+i0..^MrQixQiQi+1rxlimQi
649 632 568 remulcld φr+i0..^MrQi
650 fveq2 y=rQisiny=sinrQi
651 631 649 650 cnmptlimc φr+i0..^MsinrQiysinylimrQi
652 fveq2 rx=rQisinrx=sinrQi
653 652 ad2antll φr+i0..^MxQiQi+1rx=rQisinrx=sinrQi
654 644 611 648 651 636 653 limcco φr+i0..^MsinrQixQiQi+1sinrxlimQi
655 585 586 587 595 599 643 654 mullimc φr+i0..^MRsinrQixQiQi+1FxsinrxlimQi
656 568 569 584 640 655 iblcncfioo φr+i0..^MxQiQi+1Fxsinrx𝐿1
657 simpll φr+i0..^MxQiQi+1φr+
658 68 adantllr φr+i0..^MxQiQi+1xAB
659 657 658 546 syl2anc φr+i0..^MxQiQi+1Fxsinrx
660 568 569 656 659 ibliooicc φr+i0..^MxQiQi+1Fxsinrx𝐿1
661 553 559 560 561 567 660 itgspltprt φr+Q0QMFxsinrxdx=i0..^MQiQi+1Fxsinrxdx
662 547 552 661 3eqtrd φr+ABFxsinrxdx=i0..^MQiQi+1Fxsinrxdx
663 520 535 662 syl2anc φnrn+∞ABFxsinrxdx=i0..^MQiQi+1Fxsinrxdx
664 506 a1i φnrn+∞0..^MFin
665 69 adantllr φrn+∞i0..^MxQiQi+1Fx
666 521 recnd rn+∞r
667 666 adantl φrn+∞r
668 667 ad2antrr φrn+∞i0..^MxQiQi+1r
669 407 adantllr φrn+∞i0..^MxQiQi+1x
670 668 669 mulcld φrn+∞i0..^MxQiQi+1rx
671 670 sincld φrn+∞i0..^MxQiQi+1sinrx
672 665 671 mulcld φrn+∞i0..^MxQiQi+1Fxsinrx
673 672 adantl3r φnrn+∞i0..^MxQiQi+1Fxsinrx
674 simplll φnrn+∞i0..^Mφ
675 535 adantr φnrn+∞i0..^Mr+
676 simpr φnrn+∞i0..^Mi0..^M
677 674 675 676 660 syl21anc φnrn+∞i0..^MxQiQi+1Fxsinrx𝐿1
678 673 677 itgcl φnrn+∞i0..^MQiQi+1Fxsinrxdx
679 664 678 fsumcl φnrn+∞i0..^MQiQi+1Fxsinrxdx
680 663 679 eqeltrd φnrn+∞ABFxsinrxdx
681 680 adantllr φe+nrn+∞ABFxsinrxdx
682 681 3adantl3 φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞ABFxsinrxdx
683 682 abscld φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞ABFxsinrxdx
684 678 abscld φnrn+∞i0..^MQiQi+1Fxsinrxdx
685 664 684 fsumrecl φnrn+∞i0..^MQiQi+1Fxsinrxdx
686 685 adantllr φe+nrn+∞i0..^MQiQi+1Fxsinrxdx
687 686 3adantl3 φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞i0..^MQiQi+1Fxsinrxdx
688 rpre e+e
689 688 ad2antlr φe+rn+∞e
690 689 3ad2antl1 φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞e
691 663 fveq2d φnrn+∞ABFxsinrxdx=i0..^MQiQi+1Fxsinrxdx
692 664 678 fsumabs φnrn+∞i0..^MQiQi+1Fxsinrxdxi0..^MQiQi+1Fxsinrxdx
693 691 692 eqbrtrd φnrn+∞ABFxsinrxdxi0..^MQiQi+1Fxsinrxdx
694 693 adantllr φe+nrn+∞ABFxsinrxdxi0..^MQiQi+1Fxsinrxdx
695 694 3adantl3 φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞ABFxsinrxdxi0..^MQiQi+1Fxsinrxdx
696 506 a1i φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞0..^MFin
697 0zd φ0
698 4 nnzd φM
699 4 nngt0d φ0<M
700 fzolb 00..^M0M0<M
701 697 698 699 700 syl3anbrc φ00..^M
702 ne0i 00..^M0..^M
703 701 702 syl φ0..^M
704 703 ad2antrr φe+rn+∞0..^M
705 704 3ad2antl1 φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞0..^M
706 simp1l φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMφ
707 706 ad2antrr φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^Mφ
708 simpll2 φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^Mn
709 707 708 jca φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^Mφn
710 simplr φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^Mrn+∞
711 simpr φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^Mj0..^M
712 eleq1w i=ji0..^Mj0..^M
713 712 anbi2d i=jφnrn+∞i0..^Mφnrn+∞j0..^M
714 fveq2 i=jQi=Qj
715 oveq1 i=ji+1=j+1
716 715 fveq2d i=jQi+1=Qj+1
717 714 716 oveq12d i=jQiQi+1=QjQj+1
718 717 itgeq1d i=jQiQi+1Fxsinrxdx=QjQj+1Fxsinrxdx
719 718 eleq1d i=jQiQi+1FxsinrxdxQjQj+1Fxsinrxdx
720 713 719 imbi12d i=jφnrn+∞i0..^MQiQi+1Fxsinrxdxφnrn+∞j0..^MQjQj+1Fxsinrxdx
721 720 678 chvarvv φnrn+∞j0..^MQjQj+1Fxsinrxdx
722 709 710 711 721 syl21anc φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^MQjQj+1Fxsinrxdx
723 722 abscld φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^MQjQj+1Fxsinrxdx
724 353 rpred φe+eM
725 724 3ad2ant1 φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMeM
726 725 ad2antrr φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^MeM
727 simpll3 φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^Mrn+∞i0..^MQiQi+1Fxsinrxdx<eM
728 rspa rn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞i0..^MQiQi+1Fxsinrxdx<eM
729 728 adantr rn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^Mi0..^MQiQi+1Fxsinrxdx<eM
730 718 fveq2d i=jQiQi+1Fxsinrxdx=QjQj+1Fxsinrxdx
731 730 breq1d i=jQiQi+1Fxsinrxdx<eMQjQj+1Fxsinrxdx<eM
732 731 cbvralvw i0..^MQiQi+1Fxsinrxdx<eMj0..^MQjQj+1Fxsinrxdx<eM
733 729 732 sylib rn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^Mj0..^MQjQj+1Fxsinrxdx<eM
734 rspa j0..^MQjQj+1Fxsinrxdx<eMj0..^MQjQj+1Fxsinrxdx<eM
735 733 734 sylancom rn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^MQjQj+1Fxsinrxdx<eM
736 727 710 711 735 syl21anc φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^MQjQj+1Fxsinrxdx<eM
737 696 705 723 726 736 fsumlt φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^MQjQj+1Fxsinrxdx<j0..^MeM
738 fveq2 j=iQj=Qi
739 oveq1 j=ij+1=i+1
740 739 fveq2d j=iQj+1=Qi+1
741 738 740 oveq12d j=iQjQj+1=QiQi+1
742 741 itgeq1d j=iQjQj+1Fxsinrxdx=QiQi+1Fxsinrxdx
743 742 fveq2d j=iQjQj+1Fxsinrxdx=QiQi+1Fxsinrxdx
744 743 cbvsumv j0..^MQjQj+1Fxsinrxdx=i0..^MQiQi+1Fxsinrxdx
745 744 a1i φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^MQjQj+1Fxsinrxdx=i0..^MQiQi+1Fxsinrxdx
746 353 rpcnd φe+eM
747 fsumconst 0..^MFineMj0..^MeM=0..^MeM
748 506 746 747 sylancr φe+j0..^MeM=0..^MeM
749 4 nnnn0d φM0
750 hashfzo0 M00..^M=M
751 749 750 syl φ0..^M=M
752 751 oveq1d φ0..^MeM=MeM
753 752 adantr φe+0..^MeM=MeM
754 350 rpcnd φe+e
755 352 rpcnd φe+M
756 352 rpne0d φe+M0
757 754 755 756 divcan2d φe+MeM=e
758 748 753 757 3eqtrd φe+j0..^MeM=e
759 758 adantr φe+rn+∞j0..^MeM=e
760 759 3ad2antl1 φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞j0..^MeM=e
761 737 745 760 3brtr3d φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞i0..^MQiQi+1Fxsinrxdx<e
762 683 687 690 695 761 lelttrd φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞ABFxsinrxdx<e
763 762 ex φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞ABFxsinrxdx<e
764 519 763 ralrimi φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞ABFxsinrxdx<e
765 764 3exp φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞ABFxsinrxdx<e
766 765 adantr φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMnrn+∞i0..^MQiQi+1Fxsinrxdx<eMrn+∞ABFxsinrxdx<e
767 516 766 reximdai φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMnrn+∞i0..^MQiQi+1Fxsinrxdx<eMnrn+∞ABFxsinrxdx<e
768 513 767 mpd φe+nrn+∞i0..^MQiQi+1Fxsinrxdx<eMnrn+∞ABFxsinrxdx<e
769 512 768 syldan φe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eMnrn+∞ABFxsinrxdx<e
770 769 ex φe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eMnrn+∞ABFxsinrxdx<e
771 770 ralimdva φe+i0..^Mmrm+∞QiQi+1Fxsinrxdx<eMe+nrn+∞ABFxsinrxdx<e
772 494 771 mpd φe+nrn+∞ABFxsinrxdx<e