Metamath Proof Explorer


Theorem fourierdlem48

Description: The given periodic function F has a right limit at every point in the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem48.a φA
fourierdlem48.b φB
fourierdlem48.altb φA<B
fourierdlem48.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
fourierdlem48.t T=BA
fourierdlem48.m φM
fourierdlem48.q φQPM
fourierdlem48.f φF:D
fourierdlem48.dper φxDkx+kTD
fourierdlem48.per φxDkFx+kT=Fx
fourierdlem48.cn φi0..^MFQiQi+1:QiQi+1cn
fourierdlem48.r φi0..^MRFQiQi+1limQi
fourierdlem48.x φX
fourierdlem48.z Z=xBxTT
fourierdlem48.e E=xx+Zx
fourierdlem48.ch χφi0..^MyQiQi+1ky=X+kT
Assertion fourierdlem48 φFX+∞limX

Proof

Step Hyp Ref Expression
1 fourierdlem48.a φA
2 fourierdlem48.b φB
3 fourierdlem48.altb φA<B
4 fourierdlem48.p P=mp0m|p0=Apm=Bi0..^mpi<pi+1
5 fourierdlem48.t T=BA
6 fourierdlem48.m φM
7 fourierdlem48.q φQPM
8 fourierdlem48.f φF:D
9 fourierdlem48.dper φxDkx+kTD
10 fourierdlem48.per φxDkFx+kT=Fx
11 fourierdlem48.cn φi0..^MFQiQi+1:QiQi+1cn
12 fourierdlem48.r φi0..^MRFQiQi+1limQi
13 fourierdlem48.x φX
14 fourierdlem48.z Z=xBxTT
15 fourierdlem48.e E=xx+Zx
16 fourierdlem48.ch χφi0..^MyQiQi+1ky=X+kT
17 simpl φEX=Bφ
18 0zd φ0
19 6 nnzd φM
20 6 nngt0d φ0<M
21 fzolb 00..^M0M0<M
22 18 19 20 21 syl3anbrc φ00..^M
23 22 adantr φEX=B00..^M
24 2 13 resubcld φBX
25 2 1 resubcld φBA
26 5 25 eqeltrid φT
27 1 2 posdifd φA<B0<BA
28 3 27 mpbid φ0<BA
29 28 5 breqtrrdi φ0<T
30 29 gt0ne0d φT0
31 24 26 30 redivcld φBXT
32 31 adantr φEX=BBXT
33 32 flcld φEX=BBXT
34 1zzd φEX=B1
35 33 34 zsubcld φEX=BBXT1
36 id EX=BEX=B
37 5 a1i EX=BT=BA
38 36 37 oveq12d EX=BEXT=BBA
39 2 recnd φB
40 1 recnd φA
41 39 40 nncand φBBA=A
42 38 41 sylan9eqr φEX=BEXT=A
43 4 fourierdlem2 MQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
44 6 43 syl φQPMQ0MQ0=AQM=Bi0..^MQi<Qi+1
45 7 44 mpbid φQ0MQ0=AQM=Bi0..^MQi<Qi+1
46 45 simpld φQ0M
47 elmapi Q0MQ:0M
48 46 47 syl φQ:0M
49 6 nnnn0d φM0
50 nn0uz 0=0
51 49 50 eleqtrdi φM0
52 eluzfz1 M000M
53 51 52 syl φ00M
54 48 53 ffvelcdmd φQ0
55 54 rexrd φQ0*
56 1zzd φ1
57 0le1 01
58 57 a1i φ01
59 6 nnge1d φ1M
60 18 19 56 58 59 elfzd φ10M
61 48 60 ffvelcdmd φQ1
62 61 rexrd φQ1*
63 1 rexrd φA*
64 45 simprd φQ0=AQM=Bi0..^MQi<Qi+1
65 64 simplld φQ0=A
66 1 leidd φAA
67 65 66 eqbrtrd φQ0A
68 65 eqcomd φA=Q0
69 0re 0
70 eleq1 i=0i0..^M00..^M
71 70 anbi2d i=0φi0..^Mφ00..^M
72 fveq2 i=0Qi=Q0
73 oveq1 i=0i+1=0+1
74 73 fveq2d i=0Qi+1=Q0+1
75 72 74 breq12d i=0Qi<Qi+1Q0<Q0+1
76 71 75 imbi12d i=0φi0..^MQi<Qi+1φ00..^MQ0<Q0+1
77 45 simprrd φi0..^MQi<Qi+1
78 77 r19.21bi φi0..^MQi<Qi+1
79 76 78 vtoclg 0φ00..^MQ0<Q0+1
80 69 79 ax-mp φ00..^MQ0<Q0+1
81 22 80 mpdan φQ0<Q0+1
82 1e0p1 1=0+1
83 82 fveq2i Q1=Q0+1
84 81 83 breqtrrdi φQ0<Q1
85 68 84 eqbrtrd φA<Q1
86 55 62 63 67 85 elicod φAQ0Q1
87 83 oveq2i Q0Q1=Q0Q0+1
88 86 87 eleqtrdi φAQ0Q0+1
89 88 adantr φEX=BAQ0Q0+1
90 42 89 eqeltrd φEX=BEXTQ0Q0+1
91 15 a1i φE=xx+Zx
92 id x=Xx=X
93 fveq2 x=XZx=ZX
94 92 93 oveq12d x=Xx+Zx=X+ZX
95 94 adantl φx=Xx+Zx=X+ZX
96 14 a1i φZ=xBxTT
97 oveq2 x=XBx=BX
98 97 oveq1d x=XBxT=BXT
99 98 fveq2d x=XBxT=BXT
100 99 oveq1d x=XBxTT=BXTT
101 100 adantl φx=XBxTT=BXTT
102 31 flcld φBXT
103 102 zred φBXT
104 103 26 remulcld φBXTT
105 96 101 13 104 fvmptd φZX=BXTT
106 105 104 eqeltrd φZX
107 13 106 readdcld φX+ZX
108 91 95 13 107 fvmptd φEX=X+ZX
109 105 oveq2d φX+ZX=X+BXTT
110 108 109 eqtrd φEX=X+BXTT
111 110 oveq1d φEXT=X+BXTT-T
112 13 recnd φX
113 104 recnd φBXTT
114 26 recnd φT
115 112 113 114 addsubassd φX+BXTT-T=X+BXTT-T
116 102 zcnd φBXT
117 116 114 mulsubfacd φBXTTT=BXT1T
118 117 oveq2d φX+BXTT-T=X+BXT1T
119 111 115 118 3eqtrd φEXT=X+BXT1T
120 119 adantr φEX=BEXT=X+BXT1T
121 oveq1 k=BXT1kT=BXT1T
122 121 oveq2d k=BXT1X+kT=X+BXT1T
123 122 eqeq2d k=BXT1EXT=X+kTEXT=X+BXT1T
124 123 anbi2d k=BXT1EXTQ0Q0+1EXT=X+kTEXTQ0Q0+1EXT=X+BXT1T
125 124 rspcev BXT1EXTQ0Q0+1EXT=X+BXT1TkEXTQ0Q0+1EXT=X+kT
126 35 90 120 125 syl12anc φEX=BkEXTQ0Q0+1EXT=X+kT
127 72 74 oveq12d i=0QiQi+1=Q0Q0+1
128 127 eleq2d i=0EXTQiQi+1EXTQ0Q0+1
129 128 anbi1d i=0EXTQiQi+1EXT=X+kTEXTQ0Q0+1EXT=X+kT
130 129 rexbidv i=0kEXTQiQi+1EXT=X+kTkEXTQ0Q0+1EXT=X+kT
131 130 rspcev 00..^MkEXTQ0Q0+1EXT=X+kTi0..^MkEXTQiQi+1EXT=X+kT
132 23 126 131 syl2anc φEX=Bi0..^MkEXTQiQi+1EXT=X+kT
133 ovex EXTV
134 eleq1 y=EXTyQiQi+1EXTQiQi+1
135 eqeq1 y=EXTy=X+kTEXT=X+kT
136 134 135 anbi12d y=EXTyQiQi+1y=X+kTEXTQiQi+1EXT=X+kT
137 136 2rexbidv y=EXTi0..^MkyQiQi+1y=X+kTi0..^MkEXTQiQi+1EXT=X+kT
138 137 anbi2d y=EXTφi0..^MkyQiQi+1y=X+kTφi0..^MkEXTQiQi+1EXT=X+kT
139 138 imbi1d y=EXTφi0..^MkyQiQi+1y=X+kTFX+∞limXφi0..^MkEXTQiQi+1EXT=X+kTFX+∞limX
140 simpr φi0..^MkyQiQi+1y=X+kTi0..^MkyQiQi+1y=X+kT
141 nfv iφ
142 nfre1 ii0..^MkyQiQi+1y=X+kT
143 141 142 nfan iφi0..^MkyQiQi+1y=X+kT
144 nfv kφ
145 nfcv _k0..^M
146 nfre1 kkyQiQi+1y=X+kT
147 145 146 nfrexw ki0..^MkyQiQi+1y=X+kT
148 144 147 nfan kφi0..^MkyQiQi+1y=X+kT
149 simp1 φi0..^MkyQiQi+1y=X+kTφ
150 simp2l φi0..^MkyQiQi+1y=X+kTi0..^M
151 simp3l φi0..^MkyQiQi+1y=X+kTyQiQi+1
152 149 150 151 jca31 φi0..^MkyQiQi+1y=X+kTφi0..^MyQiQi+1
153 simp2r φi0..^MkyQiQi+1y=X+kTk
154 simp3r φi0..^MkyQiQi+1y=X+kTy=X+kT
155 16 biimpi χφi0..^MyQiQi+1ky=X+kT
156 155 simplld χφi0..^MyQiQi+1
157 156 simplld χφ
158 frel F:DRelF
159 157 8 158 3syl χRelF
160 resindm RelFFX+∞domF=FX+∞
161 160 eqcomd RelFFX+∞=FX+∞domF
162 159 161 syl χFX+∞=FX+∞domF
163 fdm F:DdomF=D
164 157 8 163 3syl χdomF=D
165 164 ineq2d χX+∞domF=X+∞D
166 165 reseq2d χFX+∞domF=FX+∞D
167 162 166 eqtrd χFX+∞=FX+∞D
168 167 oveq1d χFX+∞limX=FX+∞DlimX
169 157 8 syl χF:D
170 ax-resscn
171 170 a1i χ
172 169 171 fssd χF:D
173 inss2 X+∞DD
174 173 a1i χX+∞DD
175 172 174 fssresd χFX+∞D:X+∞D
176 pnfxr +∞*
177 176 a1i χ+∞*
178 156 simplrd χi0..^M
179 48 adantr φi0..^MQ:0M
180 fzofzp1 i0..^Mi+10M
181 180 adantl φi0..^Mi+10M
182 179 181 ffvelcdmd φi0..^MQi+1
183 157 178 182 syl2anc χQi+1
184 155 simplrd χk
185 184 zred χk
186 157 26 syl χT
187 185 186 remulcld χkT
188 183 187 resubcld χQi+1kT
189 188 rexrd χQi+1kT*
190 188 ltpnfd χQi+1kT<+∞
191 189 177 190 xrltled χQi+1kT+∞
192 iooss2 +∞*Qi+1kT+∞XQi+1kTX+∞
193 177 191 192 syl2anc χXQi+1kTX+∞
194 184 adantr χwXQi+1kTk
195 194 zcnd χwXQi+1kTk
196 186 recnd χT
197 196 adantr χwXQi+1kTT
198 195 197 mulneg1d χwXQi+1kTkT=kT
199 198 oveq2d χwXQi+1kTw+kT+kT=w+kT+kT
200 elioore wXQi+1kTw
201 200 recnd wXQi+1kTw
202 201 adantl χwXQi+1kTw
203 195 197 mulcld χwXQi+1kTkT
204 202 203 addcld χwXQi+1kTw+kT
205 204 203 negsubd χwXQi+1kTw+kT+kT=w+kT-kT
206 202 203 pncand χwXQi+1kTw+kT-kT=w
207 199 205 206 3eqtrrd χwXQi+1kTw=w+kT+kT
208 157 adantr χwXQi+1kTφ
209 156 simpld χφi0..^M
210 cncff FQiQi+1:QiQi+1cnFQiQi+1:QiQi+1
211 fdm FQiQi+1:QiQi+1domFQiQi+1=QiQi+1
212 11 210 211 3syl φi0..^MdomFQiQi+1=QiQi+1
213 ssdmres QiQi+1domFdomFQiQi+1=QiQi+1
214 212 213 sylibr φi0..^MQiQi+1domF
215 8 163 syl φdomF=D
216 215 adantr φi0..^MdomF=D
217 214 216 sseqtrd φi0..^MQiQi+1D
218 209 217 syl χQiQi+1D
219 218 adantr χwXQi+1kTQiQi+1D
220 elfzofz i0..^Mi0M
221 220 adantl φi0..^Mi0M
222 179 221 ffvelcdmd φi0..^MQi
223 157 178 222 syl2anc χQi
224 223 rexrd χQi*
225 224 adantr χwXQi+1kTQi*
226 183 rexrd χQi+1*
227 226 adantr χwXQi+1kTQi+1*
228 200 adantl χwXQi+1kTw
229 194 zred χwXQi+1kTk
230 208 26 syl χwXQi+1kTT
231 229 230 remulcld χwXQi+1kTkT
232 228 231 readdcld χwXQi+1kTw+kT
233 223 adantr χwXQi+1kTQi
234 157 13 syl χX
235 234 187 readdcld χX+kT
236 235 adantr χwXQi+1kTX+kT
237 16 simprbi χy=X+kT
238 237 eqcomd χX+kT=y
239 156 simprd χyQiQi+1
240 238 239 eqeltrd χX+kTQiQi+1
241 icogelb Qi*Qi+1*X+kTQiQi+1QiX+kT
242 224 226 240 241 syl3anc χQiX+kT
243 242 adantr χwXQi+1kTQiX+kT
244 208 13 syl χwXQi+1kTX
245 244 rexrd χwXQi+1kTX*
246 183 adantr χwXQi+1kTQi+1
247 246 231 resubcld χwXQi+1kTQi+1kT
248 247 rexrd χwXQi+1kTQi+1kT*
249 simpr χwXQi+1kTwXQi+1kT
250 ioogtlb X*Qi+1kT*wXQi+1kTX<w
251 245 248 249 250 syl3anc χwXQi+1kTX<w
252 244 228 231 251 ltadd1dd χwXQi+1kTX+kT<w+kT
253 233 236 232 243 252 lelttrd χwXQi+1kTQi<w+kT
254 iooltub X*Qi+1kT*wXQi+1kTw<Qi+1kT
255 245 248 249 254 syl3anc χwXQi+1kTw<Qi+1kT
256 228 247 231 255 ltadd1dd χwXQi+1kTw+kT<Qi+1-kT+kT
257 183 recnd χQi+1
258 187 recnd χkT
259 257 258 npcand χQi+1-kT+kT=Qi+1
260 259 adantr χwXQi+1kTQi+1-kT+kT=Qi+1
261 256 260 breqtrd χwXQi+1kTw+kT<Qi+1
262 225 227 232 253 261 eliood χwXQi+1kTw+kTQiQi+1
263 219 262 sseldd χwXQi+1kTw+kTD
264 194 znegcld χwXQi+1kTk
265 ovex w+kTV
266 eleq1 x=w+kTxDw+kTD
267 266 3anbi2d x=w+kTφxDkφw+kTDk
268 oveq1 x=w+kTx+kT=w+kT+kT
269 268 eleq1d x=w+kTx+kTDw+kT+kTD
270 267 269 imbi12d x=w+kTφxDkx+kTDφw+kTDkw+kT+kTD
271 negex kV
272 eleq1 j=kjk
273 272 3anbi3d j=kφxDjφxDk
274 oveq1 j=kjT=kT
275 274 oveq2d j=kx+jT=x+kT
276 275 eleq1d j=kx+jTDx+kTD
277 273 276 imbi12d j=kφxDjx+jTDφxDkx+kTD
278 eleq1 k=jkj
279 278 3anbi3d k=jφxDkφxDj
280 oveq1 k=jkT=jT
281 280 oveq2d k=jx+kT=x+jT
282 281 eleq1d k=jx+kTDx+jTD
283 279 282 imbi12d k=jφxDkx+kTDφxDjx+jTD
284 283 9 chvarvv φxDjx+jTD
285 271 277 284 vtocl φxDkx+kTD
286 265 270 285 vtocl φw+kTDkw+kT+kTD
287 208 263 264 286 syl3anc χwXQi+1kTw+kT+kTD
288 207 287 eqeltrd χwXQi+1kTwD
289 288 ralrimiva χwXQi+1kTwD
290 dfss3 XQi+1kTDwXQi+1kTwD
291 289 290 sylibr χXQi+1kTD
292 193 291 ssind χXQi+1kTX+∞D
293 ioosscn X+∞
294 ssinss1 X+∞X+∞D
295 293 294 mp1i χX+∞D
296 eqid TopOpenfld=TopOpenfld
297 eqid TopOpenfld𝑡X+∞DX=TopOpenfld𝑡X+∞DX
298 234 rexrd χX*
299 234 leidd χXX
300 237 oveq1d χykT=X+kT-kT
301 234 recnd χX
302 301 258 pncand χX+kT-kT=X
303 300 302 eqtr2d χX=ykT
304 icossre QiQi+1*QiQi+1
305 223 226 304 syl2anc χQiQi+1
306 305 239 sseldd χy
307 icoltub Qi*Qi+1*yQiQi+1y<Qi+1
308 224 226 239 307 syl3anc χy<Qi+1
309 306 183 187 308 ltsub1dd χykT<Qi+1kT
310 303 309 eqbrtrd χX<Qi+1kT
311 298 189 298 299 310 elicod χXXQi+1kT
312 snunioo1 X*Qi+1kT*X<Qi+1kTXQi+1kTX=XQi+1kT
313 298 189 310 312 syl3anc χXQi+1kTX=XQi+1kT
314 313 fveq2d χintTopOpenfld𝑡X+∞DXXQi+1kTX=intTopOpenfld𝑡X+∞DXXQi+1kT
315 296 cnfldtop TopOpenfldTop
316 ovex X+∞V
317 316 inex1 X+∞DV
318 snex XV
319 317 318 unex X+∞DXV
320 resttop TopOpenfldTopX+∞DXVTopOpenfld𝑡X+∞DXTop
321 315 319 320 mp2an TopOpenfld𝑡X+∞DXTop
322 321 a1i χTopOpenfld𝑡X+∞DXTop
323 retop topGenran.Top
324 323 a1i χtopGenran.Top
325 319 a1i χX+∞DXV
326 iooretop −∞Qi+1kTtopGenran.
327 326 a1i χ−∞Qi+1kTtopGenran.
328 elrestr topGenran.TopX+∞DXV−∞Qi+1kTtopGenran.−∞Qi+1kTX+∞DXtopGenran.𝑡X+∞DX
329 324 325 327 328 syl3anc χ−∞Qi+1kTX+∞DXtopGenran.𝑡X+∞DX
330 mnfxr −∞*
331 330 a1i χxXQi+1kT−∞*
332 189 adantr χxXQi+1kTQi+1kT*
333 icossre XQi+1kT*XQi+1kT
334 234 189 333 syl2anc χXQi+1kT
335 334 sselda χxXQi+1kTx
336 335 mnfltd χxXQi+1kT−∞<x
337 298 adantr χxXQi+1kTX*
338 simpr χxXQi+1kTxXQi+1kT
339 icoltub X*Qi+1kT*xXQi+1kTx<Qi+1kT
340 337 332 338 339 syl3anc χxXQi+1kTx<Qi+1kT
341 331 332 335 336 340 eliood χxXQi+1kTx−∞Qi+1kT
342 vsnid xx
343 342 a1i x=Xxx
344 sneq x=Xx=X
345 343 344 eleqtrd x=XxX
346 elun2 xXxX+∞DX
347 345 346 syl x=XxX+∞DX
348 347 adantl χxXQi+1kTx=XxX+∞DX
349 298 ad2antrr χxXQi+1kT¬x=XX*
350 176 a1i χxXQi+1kT¬x=X+∞*
351 335 adantr χxXQi+1kT¬x=Xx
352 234 ad2antrr χxXQi+1kT¬x=XX
353 icogelb X*Qi+1kT*xXQi+1kTXx
354 337 332 338 353 syl3anc χxXQi+1kTXx
355 354 adantr χxXQi+1kT¬x=XXx
356 neqne ¬x=XxX
357 356 adantl χxXQi+1kT¬x=XxX
358 352 351 355 357 leneltd χxXQi+1kT¬x=XX<x
359 351 ltpnfd χxXQi+1kT¬x=Xx<+∞
360 349 350 351 358 359 eliood χxXQi+1kT¬x=XxX+∞
361 184 zcnd χk
362 361 196 mulneg1d χkT=kT
363 362 oveq2d χw+kT+kT=w+kT+kT
364 363 adantr χwXQi+1kTw+kT+kT=w+kT+kT
365 ioosscn XQi+1kT
366 365 sseli wXQi+1kTw
367 366 adantl χwXQi+1kTw
368 258 adantr χwXQi+1kTkT
369 367 368 addcld χwXQi+1kTw+kT
370 369 368 negsubd χwXQi+1kTw+kT+kT=w+kT-kT
371 367 368 pncand χwXQi+1kTw+kT-kT=w
372 364 370 371 3eqtrrd χwXQi+1kTw=w+kT+kT
373 187 adantr χwXQi+1kTkT
374 228 373 readdcld χwXQi+1kTw+kT
375 225 227 374 253 261 eliood χwXQi+1kTw+kTQiQi+1
376 219 375 sseldd χwXQi+1kTw+kTD
377 272 3anbi3d j=kφw+kTDjφw+kTDk
378 274 oveq2d j=kw+kT+jT=w+kT+kT
379 378 eleq1d j=kw+kT+jTDw+kT+kTD
380 377 379 imbi12d j=kφw+kTDjw+kT+jTDφw+kTDkw+kT+kTD
381 266 3anbi2d x=w+kTφxDjφw+kTDj
382 oveq1 x=w+kTx+jT=w+kT+jT
383 382 eleq1d x=w+kTx+jTDw+kT+jTD
384 381 383 imbi12d x=w+kTφxDjx+jTDφw+kTDjw+kT+jTD
385 265 384 284 vtocl φw+kTDjw+kT+jTD
386 271 380 385 vtocl φw+kTDkw+kT+kTD
387 208 376 264 386 syl3anc χwXQi+1kTw+kT+kTD
388 372 387 eqeltrd χwXQi+1kTwD
389 388 ralrimiva χwXQi+1kTwD
390 389 290 sylibr χXQi+1kTD
391 390 ad2antrr χxXQi+1kT¬x=XXQi+1kTD
392 189 ad2antrr χxXQi+1kT¬x=XQi+1kT*
393 340 adantr χxXQi+1kT¬x=Xx<Qi+1kT
394 349 392 351 358 393 eliood χxXQi+1kT¬x=XxXQi+1kT
395 391 394 sseldd χxXQi+1kT¬x=XxD
396 360 395 elind χxXQi+1kT¬x=XxX+∞D
397 elun1 xX+∞DxX+∞DX
398 396 397 syl χxXQi+1kT¬x=XxX+∞DX
399 348 398 pm2.61dan χxXQi+1kTxX+∞DX
400 341 399 elind χxXQi+1kTx−∞Qi+1kTX+∞DX
401 298 adantr χx−∞Qi+1kTX+∞DXX*
402 189 adantr χx−∞Qi+1kTX+∞DXQi+1kT*
403 elinel1 x−∞Qi+1kTX+∞DXx−∞Qi+1kT
404 elioore x−∞Qi+1kTx
405 403 404 syl x−∞Qi+1kTX+∞DXx
406 405 rexrd x−∞Qi+1kTX+∞DXx*
407 406 adantl χx−∞Qi+1kTX+∞DXx*
408 elinel2 x−∞Qi+1kTX+∞DXxX+∞DX
409 234 adantr χx=XX
410 92 eqcomd x=XX=x
411 410 adantl χx=XX=x
412 409 411 eqled χx=XXx
413 412 adantlr χxX+∞DXx=XXx
414 simpll χxX+∞DX¬x=Xχ
415 simplr χxX+∞DX¬x=XxX+∞DX
416 id ¬x=X¬x=X
417 velsn xXx=X
418 416 417 sylnibr ¬x=X¬xX
419 418 adantl χxX+∞DX¬x=X¬xX
420 elunnel2 xX+∞DX¬xXxX+∞D
421 415 419 420 syl2anc χxX+∞DX¬x=XxX+∞D
422 elinel1 xX+∞DxX+∞
423 421 422 syl χxX+∞DX¬x=XxX+∞
424 234 adantr χxX+∞X
425 elioore xX+∞x
426 425 adantl χxX+∞x
427 298 adantr χxX+∞X*
428 176 a1i χxX+∞+∞*
429 simpr χxX+∞xX+∞
430 ioogtlb X*+∞*xX+∞X<x
431 427 428 429 430 syl3anc χxX+∞X<x
432 424 426 431 ltled χxX+∞Xx
433 414 423 432 syl2anc χxX+∞DX¬x=XXx
434 413 433 pm2.61dan χxX+∞DXXx
435 408 434 sylan2 χx−∞Qi+1kTX+∞DXXx
436 330 a1i χx−∞Qi+1kT−∞*
437 189 adantr χx−∞Qi+1kTQi+1kT*
438 simpr χx−∞Qi+1kTx−∞Qi+1kT
439 iooltub −∞*Qi+1kT*x−∞Qi+1kTx<Qi+1kT
440 436 437 438 439 syl3anc χx−∞Qi+1kTx<Qi+1kT
441 403 440 sylan2 χx−∞Qi+1kTX+∞DXx<Qi+1kT
442 401 402 407 435 441 elicod χx−∞Qi+1kTX+∞DXxXQi+1kT
443 400 442 impbida χxXQi+1kTx−∞Qi+1kTX+∞DX
444 443 eqrdv χXQi+1kT=−∞Qi+1kTX+∞DX
445 ioossre X+∞
446 ssinss1 X+∞X+∞D
447 445 446 mp1i χX+∞D
448 234 snssd χX
449 447 448 unssd χX+∞DX
450 eqid topGenran.=topGenran.
451 296 450 rerest X+∞DXTopOpenfld𝑡X+∞DX=topGenran.𝑡X+∞DX
452 449 451 syl χTopOpenfld𝑡X+∞DX=topGenran.𝑡X+∞DX
453 329 444 452 3eltr4d χXQi+1kTTopOpenfld𝑡X+∞DX
454 isopn3i TopOpenfld𝑡X+∞DXTopXQi+1kTTopOpenfld𝑡X+∞DXintTopOpenfld𝑡X+∞DXXQi+1kT=XQi+1kT
455 322 453 454 syl2anc χintTopOpenfld𝑡X+∞DXXQi+1kT=XQi+1kT
456 314 455 eqtr2d χXQi+1kT=intTopOpenfld𝑡X+∞DXXQi+1kTX
457 311 456 eleqtrd χXintTopOpenfld𝑡X+∞DXXQi+1kTX
458 175 292 295 296 297 457 limcres χFX+∞DXQi+1kTlimX=FX+∞DlimX
459 292 resabs1d χFX+∞DXQi+1kT=FXQi+1kT
460 459 oveq1d χFX+∞DXQi+1kTlimX=FXQi+1kTlimX
461 170 a1i φ
462 8 461 fssd φF:D
463 215 feq2d φF:domFF:D
464 462 463 mpbird φF:domF
465 157 464 syl χF:domF
466 465 adantr χwFXQi+1kTlimXF:domF
467 365 a1i χwFXQi+1kTlimXXQi+1kT
468 390 164 sseqtrrd χXQi+1kTdomF
469 468 adantr χwFXQi+1kTlimXXQi+1kTdomF
470 258 adantr χwFXQi+1kTlimXkT
471 eqid z|xXQi+1kTz=x+kT=z|xXQi+1kTz=x+kT
472 eqeq1 z=wz=x+kTw=x+kT
473 472 rexbidv z=wxXQi+1kTz=x+kTxXQi+1kTw=x+kT
474 473 elrab wz|xXQi+1kTz=x+kTwxXQi+1kTw=x+kT
475 474 simprbi wz|xXQi+1kTz=x+kTxXQi+1kTw=x+kT
476 475 adantl χwz|xXQi+1kTz=x+kTxXQi+1kTw=x+kT
477 nfv xχ
478 nfre1 xxXQi+1kTz=x+kT
479 nfcv _x
480 478 479 nfrabw _xz|xXQi+1kTz=x+kT
481 480 nfcri xwz|xXQi+1kTz=x+kT
482 477 481 nfan xχwz|xXQi+1kTz=x+kT
483 nfv xwD
484 simp3 χxXQi+1kTw=x+kTw=x+kT
485 eleq1 w=xwXQi+1kTxXQi+1kT
486 485 anbi2d w=xχwXQi+1kTχxXQi+1kT
487 oveq1 w=xw+kT=x+kT
488 487 eleq1d w=xw+kTDx+kTD
489 486 488 imbi12d w=xχwXQi+1kTw+kTDχxXQi+1kTx+kTD
490 489 263 chvarvv χxXQi+1kTx+kTD
491 490 3adant3 χxXQi+1kTw=x+kTx+kTD
492 484 491 eqeltrd χxXQi+1kTw=x+kTwD
493 492 3exp χxXQi+1kTw=x+kTwD
494 493 adantr χwz|xXQi+1kTz=x+kTxXQi+1kTw=x+kTwD
495 482 483 494 rexlimd χwz|xXQi+1kTz=x+kTxXQi+1kTw=x+kTwD
496 476 495 mpd χwz|xXQi+1kTz=x+kTwD
497 496 ralrimiva χwz|xXQi+1kTz=x+kTwD
498 dfss3 z|xXQi+1kTz=x+kTDwz|xXQi+1kTz=x+kTwD
499 497 498 sylibr χz|xXQi+1kTz=x+kTD
500 499 164 sseqtrrd χz|xXQi+1kTz=x+kTdomF
501 500 adantr χwFXQi+1kTlimXz|xXQi+1kTz=x+kTdomF
502 157 adantr χxXQi+1kTφ
503 390 sselda χxXQi+1kTxD
504 184 adantr χxXQi+1kTk
505 502 503 504 10 syl3anc χxXQi+1kTFx+kT=Fx
506 505 adantlr χwFXQi+1kTlimXxXQi+1kTFx+kT=Fx
507 simpr χwFXQi+1kTlimXwFXQi+1kTlimX
508 466 467 469 470 471 501 506 507 limcperiod χwFXQi+1kTlimXwFz|xXQi+1kTz=x+kTlimX+kT
509 259 eqcomd χQi+1=Qi+1-kT+kT
510 237 509 oveq12d χyQi+1=X+kTQi+1-kT+kT
511 234 188 187 iooshift χX+kTQi+1-kT+kT=z|xXQi+1kTz=x+kT
512 510 511 eqtr2d χz|xXQi+1kTz=x+kT=yQi+1
513 512 reseq2d χFz|xXQi+1kTz=x+kT=FyQi+1
514 513 238 oveq12d χFz|xXQi+1kTz=x+kTlimX+kT=FyQi+1limy
515 514 adantr χwFXQi+1kTlimXFz|xXQi+1kTz=x+kTlimX+kT=FyQi+1limy
516 508 515 eleqtrd χwFXQi+1kTlimXwFyQi+1limy
517 465 adantr χwFyQi+1limyF:domF
518 ioosscn yQi+1
519 518 a1i χwFyQi+1limyyQi+1
520 icogelb Qi*Qi+1*yQiQi+1Qiy
521 224 226 239 520 syl3anc χQiy
522 iooss1 Qi*QiyyQi+1QiQi+1
523 224 521 522 syl2anc χyQi+1QiQi+1
524 523 218 sstrd χyQi+1D
525 524 164 sseqtrrd χyQi+1domF
526 525 adantr χwFyQi+1limyyQi+1domF
527 361 negcld χk
528 527 196 mulcld χkT
529 528 adantr χwFyQi+1limykT
530 eqid z|xyQi+1z=x+kT=z|xyQi+1z=x+kT
531 eqeq1 z=wz=x+kTw=x+kT
532 531 rexbidv z=wxyQi+1z=x+kTxyQi+1w=x+kT
533 532 elrab wz|xyQi+1z=x+kTwxyQi+1w=x+kT
534 533 simprbi wz|xyQi+1z=x+kTxyQi+1w=x+kT
535 534 adantl χwz|xyQi+1z=x+kTxyQi+1w=x+kT
536 nfre1 xxyQi+1z=x+kT
537 536 479 nfrabw _xz|xyQi+1z=x+kT
538 537 nfcri xwz|xyQi+1z=x+kT
539 477 538 nfan xχwz|xyQi+1z=x+kT
540 simp3 χxyQi+1w=x+kTw=x+kT
541 157 adantr χxyQi+1φ
542 524 sselda χxyQi+1xD
543 184 adantr χxyQi+1k
544 543 znegcld χxyQi+1k
545 541 542 544 285 syl3anc χxyQi+1x+kTD
546 545 3adant3 χxyQi+1w=x+kTx+kTD
547 540 546 eqeltrd χxyQi+1w=x+kTwD
548 547 3exp χxyQi+1w=x+kTwD
549 548 adantr χwz|xyQi+1z=x+kTxyQi+1w=x+kTwD
550 539 483 549 rexlimd χwz|xyQi+1z=x+kTxyQi+1w=x+kTwD
551 535 550 mpd χwz|xyQi+1z=x+kTwD
552 551 ralrimiva χwz|xyQi+1z=x+kTwD
553 dfss3 z|xyQi+1z=x+kTDwz|xyQi+1z=x+kTwD
554 552 553 sylibr χz|xyQi+1z=x+kTD
555 554 164 sseqtrrd χz|xyQi+1z=x+kTdomF
556 555 adantr χwFyQi+1limyz|xyQi+1z=x+kTdomF
557 157 ad2antrr χwFyQi+1limyxyQi+1φ
558 542 adantlr χwFyQi+1limyxyQi+1xD
559 544 adantlr χwFyQi+1limyxyQi+1k
560 275 fveq2d j=kFx+jT=Fx+kT
561 560 eqeq1d j=kFx+jT=FxFx+kT=Fx
562 273 561 imbi12d j=kφxDjFx+jT=FxφxDkFx+kT=Fx
563 281 fveq2d k=jFx+kT=Fx+jT
564 563 eqeq1d k=jFx+kT=FxFx+jT=Fx
565 279 564 imbi12d k=jφxDkFx+kT=FxφxDjFx+jT=Fx
566 565 10 chvarvv φxDjFx+jT=Fx
567 271 562 566 vtocl φxDkFx+kT=Fx
568 557 558 559 567 syl3anc χwFyQi+1limyxyQi+1Fx+kT=Fx
569 simpr χwFyQi+1limywFyQi+1limy
570 517 519 526 529 530 556 568 569 limcperiod χwFyQi+1limywFz|xyQi+1z=x+kTlimy+kT
571 362 oveq2d χy+kT=y+kT
572 306 recnd χy
573 572 258 negsubd χy+kT=ykT
574 303 eqcomd χykT=X
575 571 573 574 3eqtrd χy+kT=X
576 575 eqcomd χX=y+kT
577 362 oveq2d χQi+1+kT=Qi+1+kT
578 257 258 negsubd χQi+1+kT=Qi+1kT
579 577 578 eqtr2d χQi+1kT=Qi+1+kT
580 576 579 oveq12d χXQi+1kT=y+kTQi+1+kT
581 185 renegcld χk
582 581 186 remulcld χkT
583 306 183 582 iooshift χy+kTQi+1+kT=z|xyQi+1z=x+kT
584 580 583 eqtr2d χz|xyQi+1z=x+kT=XQi+1kT
585 584 adantr χwFyQi+1limyz|xyQi+1z=x+kT=XQi+1kT
586 585 reseq2d χwFyQi+1limyFz|xyQi+1z=x+kT=FXQi+1kT
587 575 adantr χwFyQi+1limyy+kT=X
588 586 587 oveq12d χwFyQi+1limyFz|xyQi+1z=x+kTlimy+kT=FXQi+1kTlimX
589 570 588 eleqtrd χwFyQi+1limywFXQi+1kTlimX
590 516 589 impbida χwFXQi+1kTlimXwFyQi+1limy
591 590 eqrdv χFXQi+1kTlimX=FyQi+1limy
592 460 591 eqtrd χFX+∞DXQi+1kTlimX=FyQi+1limy
593 168 458 592 3eqtr2d χFX+∞limX=FyQi+1limy
594 157 178 78 syl2anc χQi<Qi+1
595 157 178 11 syl2anc χFQiQi+1:QiQi+1cn
596 157 178 12 syl2anc χRFQiQi+1limQi
597 eqid ify=QiRFQiQi+1y=ify=QiRFQiQi+1y
598 eqid TopOpenfld𝑡QiQi+1=TopOpenfld𝑡QiQi+1
599 223 183 594 595 596 306 183 308 523 597 598 fourierdlem32 χify=QiRFQiQi+1yFQiQi+1yQi+1limy
600 523 resabs1d χFQiQi+1yQi+1=FyQi+1
601 600 oveq1d χFQiQi+1yQi+1limy=FyQi+1limy
602 599 601 eleqtrd χify=QiRFQiQi+1yFyQi+1limy
603 ne0i ify=QiRFQiQi+1yFyQi+1limyFyQi+1limy
604 602 603 syl χFyQi+1limy
605 593 604 eqnetrd χFX+∞limX
606 16 605 sylbir φi0..^MyQiQi+1ky=X+kTFX+∞limX
607 152 153 154 606 syl21anc φi0..^MkyQiQi+1y=X+kTFX+∞limX
608 607 3exp φi0..^MkyQiQi+1y=X+kTFX+∞limX
609 608 adantr φi0..^MkyQiQi+1y=X+kTi0..^MkyQiQi+1y=X+kTFX+∞limX
610 143 148 609 rexlim2d φi0..^MkyQiQi+1y=X+kTi0..^MkyQiQi+1y=X+kTFX+∞limX
611 140 610 mpd φi0..^MkyQiQi+1y=X+kTFX+∞limX
612 133 139 611 vtocl φi0..^MkEXTQiQi+1EXT=X+kTFX+∞limX
613 17 132 612 syl2anc φEX=BFX+∞limX
614 iocssre A*BAB
615 63 2 614 syl2anc φAB
616 ovex BxTTV
617 14 fvmpt2 xBxTTVZx=BxTT
618 616 617 mpan2 xZx=BxTT
619 618 oveq2d xx+Zx=x+BxTT
620 619 mpteq2ia xx+Zx=xx+BxTT
621 15 620 eqtri E=xx+BxTT
622 1 2 3 5 621 fourierdlem4 φE:AB
623 622 13 ffvelcdmd φEXAB
624 615 623 sseldd φEX
625 624 adantr φEXBEX
626 simpl φEXBφ
627 simpr φEXABEXranQEXranQ
628 ffn Q:0MQFn0M
629 48 628 syl φQFn0M
630 629 ad2antrr φEXABEXranQQFn0M
631 fvelrnb QFn0MEXranQj0MQj=EX
632 630 631 syl φEXABEXranQEXranQj0MQj=EX
633 627 632 mpbid φEXABEXranQj0MQj=EX
634 1zzd φEXABj0MQj=EX1
635 elfzelz j0Mj
636 635 ad2antlr φEXABj0MQj=EXj
637 636 zred φEXABj0MQj=EXj
638 elfzle1 j0M0j
639 638 ad2antlr φEXABj0MQj=EX0j
640 id Qj=EXQj=EX
641 640 eqcomd Qj=EXEX=Qj
642 641 ad2antlr φQj=EXj=0EX=Qj
643 fveq2 j=0Qj=Q0
644 643 adantl φQj=EXj=0Qj=Q0
645 45 simprld φQ0=AQM=B
646 645 simpld φQ0=A
647 646 ad2antrr φQj=EXj=0Q0=A
648 642 644 647 3eqtrd φQj=EXj=0EX=A
649 648 adantllr φEXABQj=EXj=0EX=A
650 649 adantllr φEXABj0MQj=EXj=0EX=A
651 1 adantr φEXABA
652 63 adantr φEXABA*
653 2 rexrd φB*
654 653 adantr φEXABB*
655 simpr φEXABEXAB
656 iocgtlb A*B*EXABA<EX
657 652 654 655 656 syl3anc φEXABA<EX
658 651 657 gtned φEXABEXA
659 658 neneqd φEXAB¬EX=A
660 659 ad3antrrr φEXABj0MQj=EXj=0¬EX=A
661 650 660 pm2.65da φEXABj0MQj=EX¬j=0
662 661 neqned φEXABj0MQj=EXj0
663 637 639 662 ne0gt0d φEXABj0MQj=EX0<j
664 0zd φEXABj0MQj=EX0
665 zltp1le 0j0<j0+1j
666 664 636 665 syl2anc φEXABj0MQj=EX0<j0+1j
667 663 666 mpbid φEXABj0MQj=EX0+1j
668 82 667 eqbrtrid φEXABj0MQj=EX1j
669 eluz2 j11j1j
670 634 636 668 669 syl3anbrc φEXABj0MQj=EXj1
671 nnuz =1
672 670 671 eleqtrrdi φEXABj0MQj=EXj
673 nnm1nn0 jj10
674 672 673 syl φEXABj0MQj=EXj10
675 674 50 eleqtrdi φEXABj0MQj=EXj10
676 19 ad3antrrr φEXABj0MQj=EXM
677 peano2zm jj1
678 635 677 syl j0Mj1
679 678 zred j0Mj1
680 635 zred j0Mj
681 elfzel2 j0MM
682 681 zred j0MM
683 680 ltm1d j0Mj1<j
684 elfzle2 j0MjM
685 679 680 682 683 684 ltletrd j0Mj1<M
686 685 ad2antlr φEXABj0MQj=EXj1<M
687 elfzo2 j10..^Mj10Mj1<M
688 675 676 686 687 syl3anbrc φEXABj0MQj=EXj10..^M
689 48 ad3antrrr φEXABj0MQj=EXQ:0M
690 636 677 syl φEXABj0MQj=EXj1
691 674 nn0ge0d φEXABj0MQj=EX0j1
692 679 682 685 ltled j0Mj1M
693 692 ad2antlr φEXABj0MQj=EXj1M
694 664 676 690 691 693 elfzd φEXABj0MQj=EXj10M
695 689 694 ffvelcdmd φEXABj0MQj=EXQj1
696 695 rexrd φEXABj0MQj=EXQj1*
697 48 ffvelcdmda φj0MQj
698 697 rexrd φj0MQj*
699 698 adantlr φEXABj0MQj*
700 699 adantr φEXABj0MQj=EXQj*
701 615 sselda φEXABEX
702 701 rexrd φEXABEX*
703 702 ad2antrr φEXABj0MQj=EXEX*
704 simplll φEXABj0MQj=EXφ
705 ovex j1V
706 eleq1 i=j1i0..^Mj10..^M
707 706 anbi2d i=j1φi0..^Mφj10..^M
708 fveq2 i=j1Qi=Qj1
709 oveq1 i=j1i+1=j-1+1
710 709 fveq2d i=j1Qi+1=Qj-1+1
711 708 710 breq12d i=j1Qi<Qi+1Qj1<Qj-1+1
712 707 711 imbi12d i=j1φi0..^MQi<Qi+1φj10..^MQj1<Qj-1+1
713 705 712 78 vtocl φj10..^MQj1<Qj-1+1
714 704 688 713 syl2anc φEXABj0MQj=EXQj1<Qj-1+1
715 635 zcnd j0Mj
716 1cnd j0M1
717 715 716 npcand j0Mj-1+1=j
718 717 eqcomd j0Mj=j-1+1
719 718 fveq2d j0MQj=Qj-1+1
720 719 eqcomd j0MQj-1+1=Qj
721 720 ad2antlr φEXABj0MQj=EXQj-1+1=Qj
722 714 721 breqtrd φEXABj0MQj=EXQj1<Qj
723 simpr φEXABj0MQj=EXQj=EX
724 722 723 breqtrd φEXABj0MQj=EXQj1<EX
725 624 leidd φEXEX
726 725 ad2antrr φj0MQj=EXEXEX
727 641 adantl φj0MQj=EXEX=Qj
728 726 727 breqtrd φj0MQj=EXEXQj
729 728 adantllr φEXABj0MQj=EXEXQj
730 696 700 703 724 729 eliocd φEXABj0MQj=EXEXQj1Qj
731 719 oveq2d j0MQj1Qj=Qj1Qj-1+1
732 731 ad2antlr φEXABj0MQj=EXQj1Qj=Qj1Qj-1+1
733 730 732 eleqtrd φEXABj0MQj=EXEXQj1Qj-1+1
734 708 710 oveq12d i=j1QiQi+1=Qj1Qj-1+1
735 734 eleq2d i=j1EXQiQi+1EXQj1Qj-1+1
736 735 rspcev j10..^MEXQj1Qj-1+1i0..^MEXQiQi+1
737 688 733 736 syl2anc φEXABj0MQj=EXi0..^MEXQiQi+1
738 737 ex φEXABj0MQj=EXi0..^MEXQiQi+1
739 738 adantlr φEXABEXranQj0MQj=EXi0..^MEXQiQi+1
740 739 rexlimdva φEXABEXranQj0MQj=EXi0..^MEXQiQi+1
741 633 740 mpd φEXABEXranQi0..^MEXQiQi+1
742 6 ad2antrr φEXAB¬EXranQM
743 48 ad2antrr φEXAB¬EXranQQ:0M
744 iocssicc ABAB
745 646 eqcomd φA=Q0
746 645 simprd φQM=B
747 746 eqcomd φB=QM
748 745 747 oveq12d φAB=Q0QM
749 744 748 sseqtrid φABQ0QM
750 749 sselda φEXABEXQ0QM
751 750 adantr φEXAB¬EXranQEXQ0QM
752 simpr φEXAB¬EXranQ¬EXranQ
753 fveq2 k=jQk=Qj
754 753 breq1d k=jQk<EXQj<EX
755 754 cbvrabv k0..^M|Qk<EX=j0..^M|Qj<EX
756 755 supeq1i supk0..^M|Qk<EX<=supj0..^M|Qj<EX<
757 742 743 751 752 756 fourierdlem25 φEXAB¬EXranQi0..^MEXQiQi+1
758 ioossioc QiQi+1QiQi+1
759 758 sseli EXQiQi+1EXQiQi+1
760 759 a1i φEXAB¬EXranQi0..^MEXQiQi+1EXQiQi+1
761 760 reximdva φEXAB¬EXranQi0..^MEXQiQi+1i0..^MEXQiQi+1
762 757 761 mpd φEXAB¬EXranQi0..^MEXQiQi+1
763 741 762 pm2.61dan φEXABi0..^MEXQiQi+1
764 623 763 mpdan φi0..^MEXQiQi+1
765 fveq2 i=jQi=Qj
766 oveq1 i=ji+1=j+1
767 766 fveq2d i=jQi+1=Qj+1
768 765 767 oveq12d i=jQiQi+1=QjQj+1
769 768 eleq2d i=jEXQiQi+1EXQjQj+1
770 769 cbvrexvw i0..^MEXQiQi+1j0..^MEXQjQj+1
771 764 770 sylib φj0..^MEXQjQj+1
772 771 adantr φEXBj0..^MEXQjQj+1
773 elfzonn0 j0..^Mj0
774 1nn0 10
775 774 a1i j0..^M10
776 773 775 nn0addcld j0..^Mj+10
777 776 50 eleqtrdi j0..^Mj+10
778 777 adantr j0..^MEX=Qj+1j+10
779 778 3ad2antl2 φEXBj0..^MEXQjQj+1EX=Qj+1j+10
780 19 ad2antrr φEXBEX=Qj+1M
781 780 3ad2antl1 φEXBj0..^MEXQjQj+1EX=Qj+1M
782 773 nn0red j0..^Mj
783 782 adantr j0..^MEX=Qj+1j
784 783 3ad2antl2 φEXBj0..^MEXQjQj+1EX=Qj+1j
785 1red φEXBj0..^MEXQjQj+1EX=Qj+11
786 784 785 readdcld φEXBj0..^MEXQjQj+1EX=Qj+1j+1
787 781 zred φEXBj0..^MEXQjQj+1EX=Qj+1M
788 elfzop1le2 j0..^Mj+1M
789 788 adantr j0..^MEX=Qj+1j+1M
790 789 3ad2antl2 φEXBj0..^MEXQjQj+1EX=Qj+1j+1M
791 simplr φEX=Qj+1M=j+1EX=Qj+1
792 fveq2 M=j+1QM=Qj+1
793 792 eqcomd M=j+1Qj+1=QM
794 793 adantl φEX=Qj+1M=j+1Qj+1=QM
795 746 ad2antrr φEX=Qj+1M=j+1QM=B
796 791 794 795 3eqtrd φEX=Qj+1M=j+1EX=B
797 796 adantllr φEXBEX=Qj+1M=j+1EX=B
798 simpllr φEXBEX=Qj+1M=j+1EXB
799 798 neneqd φEXBEX=Qj+1M=j+1¬EX=B
800 797 799 pm2.65da φEXBEX=Qj+1¬M=j+1
801 800 neqned φEXBEX=Qj+1Mj+1
802 801 3ad2antl1 φEXBj0..^MEXQjQj+1EX=Qj+1Mj+1
803 786 787 790 802 leneltd φEXBj0..^MEXQjQj+1EX=Qj+1j+1<M
804 elfzo2 j+10..^Mj+10Mj+1<M
805 779 781 803 804 syl3anbrc φEXBj0..^MEXQjQj+1EX=Qj+1j+10..^M
806 48 adantr φj0..^MQ:0M
807 fzofzp1 j0..^Mj+10M
808 807 adantl φj0..^Mj+10M
809 806 808 ffvelcdmd φj0..^MQj+1
810 809 rexrd φj0..^MQj+1*
811 810 adantlr φEXBj0..^MQj+1*
812 811 3adant3 φEXBj0..^MEXQjQj+1Qj+1*
813 812 adantr φEXBj0..^MEXQjQj+1EX=Qj+1Qj+1*
814 simpl1l φEXBj0..^MEXQjQj+1EX=Qj+1φ
815 814 48 syl φEXBj0..^MEXQjQj+1EX=Qj+1Q:0M
816 fzofzp1 j+10..^Mj+1+10M
817 805 816 syl φEXBj0..^MEXQjQj+1EX=Qj+1j+1+10M
818 815 817 ffvelcdmd φEXBj0..^MEXQjQj+1EX=Qj+1Qj+1+1
819 818 rexrd φEXBj0..^MEXQjQj+1EX=Qj+1Qj+1+1*
820 624 rexrd φEX*
821 820 ad2antrr φEXBEX=Qj+1EX*
822 821 3ad2antl1 φEXBj0..^MEXQjQj+1EX=Qj+1EX*
823 809 leidd φj0..^MQj+1Qj+1
824 823 adantr φj0..^MEX=Qj+1Qj+1Qj+1
825 id EX=Qj+1EX=Qj+1
826 825 eqcomd EX=Qj+1Qj+1=EX
827 826 adantl φj0..^MEX=Qj+1Qj+1=EX
828 824 827 breqtrd φj0..^MEX=Qj+1Qj+1EX
829 828 adantllr φEXBj0..^MEX=Qj+1Qj+1EX
830 829 3adantl3 φEXBj0..^MEXQjQj+1EX=Qj+1Qj+1EX
831 simpr φEXBj0..^MEXQjQj+1EX=Qj+1EX=Qj+1
832 simpr φj+10..^MEX=Qj+1EX=Qj+1
833 ovex j+1V
834 eleq1 i=j+1i0..^Mj+10..^M
835 834 anbi2d i=j+1φi0..^Mφj+10..^M
836 fveq2 i=j+1Qi=Qj+1
837 oveq1 i=j+1i+1=j+1+1
838 837 fveq2d i=j+1Qi+1=Qj+1+1
839 836 838 breq12d i=j+1Qi<Qi+1Qj+1<Qj+1+1
840 835 839 imbi12d i=j+1φi0..^MQi<Qi+1φj+10..^MQj+1<Qj+1+1
841 833 840 78 vtocl φj+10..^MQj+1<Qj+1+1
842 841 adantr φj+10..^MEX=Qj+1Qj+1<Qj+1+1
843 832 842 eqbrtrd φj+10..^MEX=Qj+1EX<Qj+1+1
844 814 805 831 843 syl21anc φEXBj0..^MEXQjQj+1EX=Qj+1EX<Qj+1+1
845 813 819 822 830 844 elicod φEXBj0..^MEXQjQj+1EX=Qj+1EXQj+1Qj+1+1
846 836 838 oveq12d i=j+1QiQi+1=Qj+1Qj+1+1
847 846 eleq2d i=j+1EXQiQi+1EXQj+1Qj+1+1
848 847 rspcev j+10..^MEXQj+1Qj+1+1i0..^MEXQiQi+1
849 805 845 848 syl2anc φEXBj0..^MEXQjQj+1EX=Qj+1i0..^MEXQiQi+1
850 simpl2 φEXBj0..^MEXQjQj+1¬EX=Qj+1j0..^M
851 id φj0..^MEXQjQj+1φj0..^MEXQjQj+1
852 851 3adant1r φEXBj0..^MEXQjQj+1φj0..^MEXQjQj+1
853 elfzofz j0..^Mj0M
854 853 adantl φj0..^Mj0M
855 806 854 ffvelcdmd φj0..^MQj
856 855 rexrd φj0..^MQj*
857 856 adantr φj0..^M¬EX=Qj+1Qj*
858 857 3adantl3 φj0..^MEXQjQj+1¬EX=Qj+1Qj*
859 810 adantr φj0..^M¬EX=Qj+1Qj+1*
860 859 3adantl3 φj0..^MEXQjQj+1¬EX=Qj+1Qj+1*
861 820 adantr φ¬EX=Qj+1EX*
862 861 3ad2antl1 φj0..^MEXQjQj+1¬EX=Qj+1EX*
863 855 3adant3 φj0..^MEXQjQj+1Qj
864 624 3ad2ant1 φj0..^MEXQjQj+1EX
865 856 3adant3 φj0..^MEXQjQj+1Qj*
866 810 3adant3 φj0..^MEXQjQj+1Qj+1*
867 simp3 φj0..^MEXQjQj+1EXQjQj+1
868 iocgtlb Qj*Qj+1*EXQjQj+1Qj<EX
869 865 866 867 868 syl3anc φj0..^MEXQjQj+1Qj<EX
870 863 864 869 ltled φj0..^MEXQjQj+1QjEX
871 870 adantr φj0..^MEXQjQj+1¬EX=Qj+1QjEX
872 864 adantr φj0..^MEXQjQj+1¬EX=Qj+1EX
873 809 adantr φj0..^M¬EX=Qj+1Qj+1
874 873 3adantl3 φj0..^MEXQjQj+1¬EX=Qj+1Qj+1
875 iocleub Qj*Qj+1*EXQjQj+1EXQj+1
876 865 866 867 875 syl3anc φj0..^MEXQjQj+1EXQj+1
877 876 adantr φj0..^MEXQjQj+1¬EX=Qj+1EXQj+1
878 neqne ¬EX=Qj+1EXQj+1
879 878 necomd ¬EX=Qj+1Qj+1EX
880 879 adantl φj0..^MEXQjQj+1¬EX=Qj+1Qj+1EX
881 872 874 877 880 leneltd φj0..^MEXQjQj+1¬EX=Qj+1EX<Qj+1
882 858 860 862 871 881 elicod φj0..^MEXQjQj+1¬EX=Qj+1EXQjQj+1
883 852 882 sylan φEXBj0..^MEXQjQj+1¬EX=Qj+1EXQjQj+1
884 765 767 oveq12d i=jQiQi+1=QjQj+1
885 884 eleq2d i=jEXQiQi+1EXQjQj+1
886 885 rspcev j0..^MEXQjQj+1i0..^MEXQiQi+1
887 850 883 886 syl2anc φEXBj0..^MEXQjQj+1¬EX=Qj+1i0..^MEXQiQi+1
888 849 887 pm2.61dan φEXBj0..^MEXQjQj+1i0..^MEXQiQi+1
889 888 rexlimdv3a φEXBj0..^MEXQjQj+1i0..^MEXQiQi+1
890 772 889 mpd φEXBi0..^MEXQiQi+1
891 simpr φEXBEXQiQi+1EXQiQi+1
892 oveq1 k=BXTkT=BXTT
893 892 oveq2d k=BXTX+kT=X+BXTT
894 893 eqeq2d k=BXTEX=X+kTEX=X+BXTT
895 894 rspcev BXTEX=X+BXTTkEX=X+kT
896 102 110 895 syl2anc φkEX=X+kT
897 896 ad2antrr φEXBEXQiQi+1kEX=X+kT
898 r19.42v kEXQiQi+1EX=X+kTEXQiQi+1kEX=X+kT
899 891 897 898 sylanbrc φEXBEXQiQi+1kEXQiQi+1EX=X+kT
900 899 ex φEXBEXQiQi+1kEXQiQi+1EX=X+kT
901 900 reximdv φEXBi0..^MEXQiQi+1i0..^MkEXQiQi+1EX=X+kT
902 890 901 mpd φEXBi0..^MkEXQiQi+1EX=X+kT
903 626 902 jca φEXBφi0..^MkEXQiQi+1EX=X+kT
904 eleq1 y=EXyQiQi+1EXQiQi+1
905 eqeq1 y=EXy=X+kTEX=X+kT
906 904 905 anbi12d y=EXyQiQi+1y=X+kTEXQiQi+1EX=X+kT
907 906 2rexbidv y=EXi0..^MkyQiQi+1y=X+kTi0..^MkEXQiQi+1EX=X+kT
908 907 anbi2d y=EXφi0..^MkyQiQi+1y=X+kTφi0..^MkEXQiQi+1EX=X+kT
909 908 imbi1d y=EXφi0..^MkyQiQi+1y=X+kTFX+∞limXφi0..^MkEXQiQi+1EX=X+kTFX+∞limX
910 909 611 vtoclg EXφi0..^MkEXQiQi+1EX=X+kTFX+∞limX
911 625 903 910 sylc φEXBFX+∞limX
912 613 911 pm2.61dane φFX+∞limX