Metamath Proof Explorer


Theorem fourierdlem42

Description: The set of points in a moved partition are finite. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Revised by AV, 29-Sep-2020)

Ref Expression
Hypotheses fourierdlem42.b φB
fourierdlem42.c φC
fourierdlem42.bc φB<C
fourierdlem42.t T=CB
fourierdlem42.a φABC
fourierdlem42.af φAFin
fourierdlem42.ba φBA
fourierdlem42.ca φCA
fourierdlem42.d D=abs
fourierdlem42.i I=A×AI
fourierdlem42.r R=ranDI
fourierdlem42.e E=supR<
fourierdlem42.x φX
fourierdlem42.y φY
fourierdlem42.j J=topGenran.
fourierdlem42.k K=J𝑡XY
fourierdlem42.h H=xXY|kx+kTA
fourierdlem42.15 ψφaba<bjka+jTAb+kTA
Assertion fourierdlem42 φHFin

Proof

Step Hyp Ref Expression
1 fourierdlem42.b φB
2 fourierdlem42.c φC
3 fourierdlem42.bc φB<C
4 fourierdlem42.t T=CB
5 fourierdlem42.a φABC
6 fourierdlem42.af φAFin
7 fourierdlem42.ba φBA
8 fourierdlem42.ca φCA
9 fourierdlem42.d D=abs
10 fourierdlem42.i I=A×AI
11 fourierdlem42.r R=ranDI
12 fourierdlem42.e E=supR<
13 fourierdlem42.x φX
14 fourierdlem42.y φY
15 fourierdlem42.j J=topGenran.
16 fourierdlem42.k K=J𝑡XY
17 fourierdlem42.h H=xXY|kx+kTA
18 fourierdlem42.15 ψφaba<bjka+jTAb+kTA
19 15 16 icccmp XYKComp
20 13 14 19 syl2anc φKComp
21 20 adantr φ¬HFinKComp
22 ssrab2 xXY|kx+kTAXY
23 22 a1i φxXY|kx+kTAXY
24 17 23 eqsstrid φHXY
25 retop topGenran.Top
26 15 25 eqeltri JTop
27 13 14 iccssred φXY
28 uniretop =topGenran.
29 15 unieqi J=topGenran.
30 28 29 eqtr4i =J
31 30 restuni JTopXYXY=J𝑡XY
32 26 27 31 sylancr φXY=J𝑡XY
33 16 unieqi K=J𝑡XY
34 33 eqcomi J𝑡XY=K
35 32 34 eqtrdi φXY=K
36 24 35 sseqtrd φHK
37 36 adantr φ¬HFinHK
38 simpr φ¬HFin¬HFin
39 eqid K=K
40 39 bwth KCompHK¬HFinxKxlimPtKH
41 21 37 38 40 syl3anc φ¬HFinxKxlimPtKH
42 24 27 sstrd φH
43 42 ad2antrr φxKxlimPtJHH
44 ne0i xlimPtJHlimPtJH
45 44 adantl φxKxlimPtJHlimPtJH
46 absf abs:
47 ffn abs:absFn
48 46 47 ax-mp absFn
49 subf :×
50 ffn :×Fn×
51 49 50 ax-mp Fn×
52 frn :×ran
53 49 52 ax-mp ran
54 fnco absFnFn×ranabsFn×
55 48 51 53 54 mp3an absFn×
56 9 fneq1i DFn×absFn×
57 55 56 mpbir DFn×
58 1 2 iccssred φBC
59 ax-resscn
60 58 59 sstrdi φBC
61 5 60 sstrd φA
62 xpss12 AAA×A×
63 61 61 62 syl2anc φA×A×
64 63 ssdifssd φA×AI×
65 10 64 eqsstrid φI×
66 fnssres DFn×I×DIFnI
67 57 65 66 sylancr φDIFnI
68 fvres xIDIx=Dx
69 68 adantl φxIDIx=Dx
70 9 fveq1i Dx=absx
71 70 a1i φxIDx=absx
72 ffun :×Fun
73 49 72 ax-mp Fun
74 65 sselda φxIx×
75 49 fdmi dom=×
76 74 75 eleqtrrdi φxIxdom
77 fvco Funxdomabsx=x
78 73 76 77 sylancr φxIabsx=x
79 69 71 78 3eqtrd φxIDIx=x
80 49 a1i φxI:×
81 80 74 ffvelcdmd φxIx
82 81 abscld φxIx
83 79 82 eqeltrd φxIDIx
84 elxp2 x×yzx=yz
85 74 84 sylib φxIyzx=yz
86 fveq2 x=yzx=yz
87 86 3ad2ant3 φxIyzx=yzx=yz
88 df-ov yz=yz
89 simp1l φxIyzx=yzφ
90 simpr xIx=yzx=yz
91 simpl xIx=yzxI
92 90 91 eqeltrrd xIx=yzyzI
93 92 adantll φxIx=yzyzI
94 93 3adant2 φxIyzx=yzyzI
95 61 adantr φyzIA
96 10 eleq2i yzIyzA×AI
97 eldif yzA×AIyzA×A¬yzI
98 96 97 sylbb yzIyzA×A¬yzI
99 98 simpld yzIyzA×A
100 opelxp yzA×AyAzA
101 99 100 sylib yzIyAzA
102 101 adantl φyzIyAzA
103 102 simpld φyzIyA
104 95 103 sseldd φyzIy
105 102 simprd φyzIzA
106 95 105 sseldd φyzIz
107 98 simprd yzI¬yzI
108 df-br yIzyzI
109 107 108 sylnibr yzI¬yIz
110 vex zV
111 110 ideq yIzy=z
112 109 111 sylnib yzI¬y=z
113 112 neqned yzIyz
114 113 adantl φyzIyz
115 104 106 114 subne0d φyzIyz0
116 89 94 115 syl2anc φxIyzx=yzyz0
117 88 116 eqnetrrid φxIyzx=yzyz0
118 87 117 eqnetrd φxIyzx=yzx0
119 118 3exp φxIyzx=yzx0
120 119 rexlimdvv φxIyzx=yzx0
121 85 120 mpd φxIx0
122 absgt0 xx00<x
123 81 122 syl φxIx00<x
124 121 123 mpbid φxI0<x
125 79 eqcomd φxIx=DIx
126 124 125 breqtrd φxI0<DIx
127 83 126 elrpd φxIDIx+
128 127 ralrimiva φxIDIx+
129 fnfvrnss DIFnIxIDIx+ranDI+
130 67 128 129 syl2anc φranDI+
131 11 130 eqsstrid φR+
132 ltso <Or
133 132 a1i φ<Or
134 xpfi AFinAFinA×AFin
135 6 6 134 syl2anc φA×AFin
136 diffi A×AFinA×AIFin
137 135 136 syl φA×AIFin
138 10 137 eqeltrid φIFin
139 fnfi DIFnIIFinDIFin
140 67 138 139 syl2anc φDIFin
141 rnfi DIFinranDIFin
142 140 141 syl φranDIFin
143 11 142 eqeltrid φRFin
144 11 a1i φR=ranDI
145 9 a1i φD=abs
146 145 reseq1d φDI=absI
147 146 fveq1d φDIBC=absIBC
148 opelxp BCA×ABACA
149 7 8 148 sylanbrc φBCA×A
150 1 3 ltned φBC
151 150 neneqd φ¬B=C
152 ideqg CABICB=C
153 8 152 syl φBICB=C
154 151 153 mtbird φ¬BIC
155 df-br BICBCI
156 154 155 sylnib φ¬BCI
157 149 156 eldifd φBCA×AI
158 157 10 eleqtrrdi φBCI
159 fvres BCIabsIBC=absBC
160 158 159 syl φabsIBC=absBC
161 1 recnd φB
162 2 recnd φC
163 opelxp BC×BC
164 161 162 163 sylanbrc φBC×
165 164 75 eleqtrrdi φBCdom
166 fvco FunBCdomabsBC=BC
167 73 165 166 sylancr φabsBC=BC
168 df-ov BC=BC
169 168 eqcomi BC=BC
170 169 a1i φBC=BC
171 170 fveq2d φBC=BC
172 167 171 eqtrd φabsBC=BC
173 147 160 172 3eqtrrd φBC=DIBC
174 fnfvelrn DIFnIBCIDIBCranDI
175 67 158 174 syl2anc φDIBCranDI
176 173 175 eqeltrd φBCranDI
177 ne0i BCranDIranDI
178 176 177 syl φranDI
179 144 178 eqnetrd φR
180 resss DID
181 rnss DIDranDIranD
182 180 181 ax-mp ranDIranD
183 9 rneqi ranD=ranabs
184 rncoss ranabsranabs
185 frn abs:ranabs
186 46 185 ax-mp ranabs
187 184 186 sstri ranabs
188 183 187 eqsstri ranD
189 182 188 sstri ranDI
190 11 189 eqsstri R
191 190 a1i φR
192 fiinfcl <OrRFinRRsupR<R
193 133 143 179 191 192 syl13anc φsupR<R
194 131 193 sseldd φsupR<+
195 12 194 eqeltrid φE+
196 195 ad2antrr φxKxlimPtJHE+
197 15 43 45 196 lptre2pt φxKxlimPtJHyHzHyzyz<E
198 simpll φyHzHyzφ
199 42 sselda φyHy
200 199 adantrr φyHzHy
201 200 adantr φyHzHyzy
202 42 sselda φzHz
203 202 adantrl φyHzHz
204 203 adantr φyHzHyzz
205 simpr φyHzHyzyz
206 201 204 205 3jca φyHzHyzyzyz
207 17 eleq2i yHyxXY|kx+kTA
208 oveq1 x=yx+kT=y+kT
209 208 eleq1d x=yx+kTAy+kTA
210 209 rexbidv x=ykx+kTAky+kTA
211 oveq1 k=jkT=jT
212 211 oveq2d k=jy+kT=y+jT
213 212 eleq1d k=jy+kTAy+jTA
214 213 cbvrexvw ky+kTAjy+jTA
215 210 214 bitrdi x=ykx+kTAjy+jTA
216 215 elrab yxXY|kx+kTAyXYjy+jTA
217 207 216 sylbb yHyXYjy+jTA
218 217 simprd yHjy+jTA
219 218 adantr yHzHjy+jTA
220 17 eleq2i zHzxXY|kx+kTA
221 oveq1 x=zx+kT=z+kT
222 221 eleq1d x=zx+kTAz+kTA
223 222 rexbidv x=zkx+kTAkz+kTA
224 223 elrab zxXY|kx+kTAzXYkz+kTA
225 220 224 sylbb zHzXYkz+kTA
226 225 simprd zHkz+kTA
227 226 adantl yHzHkz+kTA
228 reeanv jky+jTAz+kTAjy+jTAkz+kTA
229 219 227 228 sylanbrc yHzHjky+jTAz+kTA
230 229 ad2antlr φyHzHyzjky+jTAz+kTA
231 simplll φyzyzjky+jTAz+kTAy<zφ
232 simpl1 yzyzy<zy
233 simpl2 yzyzy<zz
234 simpr yzyzy<zy<z
235 232 233 234 3jca yzyzy<zyzy<z
236 235 adantll φyzyzy<zyzy<z
237 236 adantlr φyzyzjky+jTAz+kTAy<zyzy<z
238 simplr φyzyzjky+jTAz+kTAy<zjky+jTAz+kTA
239 eleq1 b=zbz
240 breq2 b=zy<by<z
241 239 240 3anbi23d b=zyby<byzy<z
242 241 anbi2d b=zφyby<bφyzy<z
243 oveq1 b=zb+kT=z+kT
244 243 eleq1d b=zb+kTAz+kTA
245 244 anbi2d b=zy+jTAb+kTAy+jTAz+kTA
246 245 2rexbidv b=zjky+jTAb+kTAjky+jTAz+kTA
247 242 246 anbi12d b=zφyby<bjky+jTAb+kTAφyzy<zjky+jTAz+kTA
248 oveq2 b=zyb=yz
249 248 fveq2d b=zyb=yz
250 249 breq2d b=zEybEyz
251 247 250 imbi12d b=zφyby<bjky+jTAb+kTAEybφyzy<zjky+jTAz+kTAEyz
252 eleq1 a=yay
253 breq1 a=ya<by<b
254 252 253 3anbi13d a=yaba<byby<b
255 254 anbi2d a=yφaba<bφyby<b
256 oveq1 a=ya+jT=y+jT
257 256 eleq1d a=ya+jTAy+jTA
258 257 anbi1d a=ya+jTAb+kTAy+jTAb+kTA
259 258 2rexbidv a=yjka+jTAb+kTAjky+jTAb+kTA
260 255 259 anbi12d a=yφaba<bjka+jTAb+kTAφyby<bjky+jTAb+kTA
261 oveq1 a=yab=yb
262 261 fveq2d a=yab=yb
263 262 breq2d a=yEabEyb
264 260 263 imbi12d a=yφaba<bjka+jTAb+kTAEabφyby<bjky+jTAb+kTAEyb
265 18 simprbi ψjka+jTAb+kTA
266 18 biimpi ψφaba<bjka+jTAb+kTA
267 266 simpld ψφaba<b
268 267 simpld ψφ
269 268 1 syl ψB
270 269 adantr ψa+jTAb+kTAB
271 268 2 syl ψC
272 271 adantr ψa+jTAb+kTAC
273 268 5 syl ψABC
274 273 sselda ψb+kTAb+kTBC
275 274 adantrl ψa+jTAb+kTAb+kTBC
276 273 sselda ψa+jTAa+jTBC
277 276 adantrr ψa+jTAb+kTAa+jTBC
278 270 272 275 277 iccsuble ψa+jTAb+kTAb+kT-a+jTCB
279 278 4 breqtrrdi ψa+jTAb+kTAb+kT-a+jTT
280 279 3adant2 ψjka+jTAb+kTAb+kT-a+jTT
281 280 adantr ψjka+jTAb+kTA¬kjb+kT-a+jTT
282 simpr ψjk¬kj¬kj
283 zre jj
284 283 adantr jkj
285 284 ad2antlr ψjk¬kjj
286 zre kk
287 286 adantl jkk
288 287 ad2antlr ψjk¬kjk
289 285 288 ltnled ψjk¬kjj<k¬kj
290 282 289 mpbird ψjk¬kjj<k
291 2 1 resubcld φCB
292 4 291 eqeltrid φT
293 268 292 syl ψT
294 293 ad2antrr ψjkj<kT
295 287 adantl ψjkk
296 284 adantl ψjkj
297 295 296 resubcld ψjkkj
298 293 adantr ψjkT
299 297 298 remulcld ψjkkjT
300 299 adantr ψjkj<kkjT
301 267 simprd ψaba<b
302 301 simp2d ψb
303 302 adantr ψjkb
304 286 adantl ψkk
305 293 adantr ψkT
306 304 305 remulcld ψkkT
307 306 adantrl ψjkkT
308 303 307 readdcld ψjkb+kT
309 301 simp1d ψa
310 309 adantr ψjka
311 283 adantl ψjj
312 293 adantr ψjT
313 311 312 remulcld ψjjT
314 313 adantrr ψjkjT
315 310 314 readdcld ψjka+jT
316 308 315 resubcld ψjkb+kT-a+jT
317 316 adantr ψjkj<kb+kT-a+jT
318 293 recnd ψT
319 318 mullidd ψ1T=T
320 319 eqcomd ψT=1T
321 320 ad2antrr ψjkj<kT=1T
322 simpr ψjkj<kj<k
323 zltlem1 jkj<kjk1
324 323 ad2antlr ψjkj<kj<kjk1
325 322 324 mpbid ψjkj<kjk1
326 284 ad2antlr ψjkjk1j
327 peano2rem kk1
328 295 327 syl ψjkk1
329 328 adantr ψjkjk1k1
330 1re 1
331 resubcl 1j1j
332 330 326 331 sylancr ψjkjk11j
333 simpr ψjkjk1jk1
334 326 329 332 333 leadd1dd ψjkjk1j+1-jk1+1-j
335 zcn jj
336 335 adantr jkj
337 1cnd jk1
338 336 337 pncan3d jkj+1-j=1
339 338 ad2antlr ψjkjk1j+1-j=1
340 zcn kk
341 340 adantl jkk
342 341 337 336 npncand jkk1+1-j=kj
343 342 ad2antlr ψjkjk1k1+1-j=kj
344 334 339 343 3brtr3d ψjkjk11kj
345 325 344 syldan ψjkj<k1kj
346 330 a1i ψjkj<k1
347 297 adantr ψjkj<kkj
348 1 2 posdifd φB<C0<CB
349 3 348 mpbid φ0<CB
350 349 4 breqtrrdi φ0<T
351 292 350 elrpd φT+
352 268 351 syl ψT+
353 352 ad2antrr ψjkj<kT+
354 346 347 353 lemul1d ψjkj<k1kj1TkjT
355 345 354 mpbid ψjkj<k1TkjT
356 321 355 eqbrtrd ψjkj<kTkjT
357 302 309 resubcld ψba
358 301 simp3d ψa<b
359 309 302 posdifd ψa<b0<ba
360 358 359 mpbid ψ0<ba
361 357 360 elrpd ψba+
362 361 adantr ψjkba+
363 299 362 ltaddrp2d ψjkkjT<b-a+kjT
364 302 recnd ψb
365 364 adantr ψjkb
366 306 recnd ψkkT
367 366 adantrl ψjkkT
368 309 recnd ψa
369 368 adantr ψjka
370 313 recnd ψjjT
371 370 adantrr ψjkjT
372 365 367 369 371 addsub4d ψjkb+kT-a+jT=ba+kT-jT
373 340 ad2antll ψjkk
374 335 ad2antrl ψjkj
375 318 adantr ψjkT
376 373 374 375 subdird ψjkkjT=kTjT
377 376 eqcomd ψjkkTjT=kjT
378 377 oveq2d ψjkba+kT-jT=b-a+kjT
379 372 378 eqtr2d ψjkb-a+kjT=b+kT-a+jT
380 363 379 breqtrd ψjkkjT<b+kT-a+jT
381 380 adantr ψjkj<kkjT<b+kT-a+jT
382 294 300 317 356 381 lelttrd ψjkj<kT<b+kT-a+jT
383 294 317 ltnled ψjkj<kT<b+kT-a+jT¬b+kT-a+jTT
384 382 383 mpbid ψjkj<k¬b+kT-a+jTT
385 290 384 syldan ψjk¬kj¬b+kT-a+jTT
386 385 3adantl3 ψjka+jTAb+kTA¬kj¬b+kT-a+jTT
387 281 386 condan ψjka+jTAb+kTAkj
388 190 193 sselid φsupR<
389 12 388 eqeltrid φE
390 268 389 syl ψE
391 390 3ad2ant1 ψjka+jTAb+kTAE
392 391 ad2antrr ψjka+jTAb+kTAkja+jT=b+kTE
393 293 3ad2ant1 ψjka+jTAb+kTAT
394 393 ad2antrr ψjka+jTAb+kTAkja+jT=b+kTT
395 284 287 resubcld jkjk
396 395 adantl ψjkjk
397 396 298 remulcld ψjkjkT
398 397 3adant3 ψjka+jTAb+kTAjkT
399 398 ad2antrr ψjka+jTAb+kTAkja+jT=b+kTjkT
400 id φφ
401 7 8 jca φBACA
402 400 401 3 3jca φφBACAB<C
403 eleq1 d=CdACA
404 403 anbi2d d=CBAdABACA
405 breq2 d=CB<dB<C
406 404 405 3anbi23d d=CφBAdAB<dφBACAB<C
407 oveq1 d=CdB=CB
408 407 breq2d d=CEdBECB
409 406 408 imbi12d d=CφBAdAB<dEdBφBACAB<CECB
410 simp2l φBAdAB<dBA
411 eleq1 c=BcABA
412 411 anbi1d c=BcAdABAdA
413 breq1 c=Bc<dB<d
414 412 413 3anbi23d c=BφcAdAc<dφBAdAB<d
415 oveq2 c=Bdc=dB
416 415 breq2d c=BEdcEdB
417 414 416 imbi12d c=BφcAdAc<dEdcφBAdAB<dEdB
418 190 a1i φcAdAc<dR
419 0re 0
420 11 eleq2i yRyranDI
421 420 biimpi yRyranDI
422 421 adantl φyRyranDI
423 67 adantr φyRDIFnI
424 fvelrnb DIFnIyranDIxIDIx=y
425 423 424 syl φyRyranDIxIDIx=y
426 422 425 mpbid φyRxIDIx=y
427 127 rpge0d φxI0DIx
428 427 3adant3 φxIDIx=y0DIx
429 simp3 φxIDIx=yDIx=y
430 428 429 breqtrd φxIDIx=y0y
431 430 3exp φxIDIx=y0y
432 431 adantr φyRxIDIx=y0y
433 432 rexlimdv φyRxIDIx=y0y
434 426 433 mpd φyR0y
435 434 ralrimiva φyR0y
436 breq1 x=0xy0y
437 436 ralbidv x=0yRxyyR0y
438 437 rspcev 0yR0yxyRxy
439 419 435 438 sylancr φxyRxy
440 439 3ad2ant1 φcAdAc<dxyRxy
441 pm3.22 cAdAdAcA
442 opelxp dcA×AdAcA
443 441 442 sylibr cAdAdcA×A
444 443 3ad2ant2 φcAdAc<ddcA×A
445 5 58 sstrd φA
446 445 sselda φcAc
447 446 adantrr φcAdAc
448 447 3adant3 φcAdAc<dc
449 simp3 φcAdAc<dc<d
450 448 449 gtned φcAdAc<ddc
451 450 neneqd φcAdAc<d¬d=c
452 df-br dIcdcI
453 vex cV
454 453 ideq dIcd=c
455 452 454 bitr3i dcId=c
456 451 455 sylnibr φcAdAc<d¬dcI
457 444 456 eldifd φcAdAc<ddcA×AI
458 457 10 eleqtrrdi φcAdAc<ddcI
459 448 449 ltned φcAdAc<dcd
460 146 3ad2ant1 φcAdAcdDI=absI
461 460 fveq1d φcAdAcdDIdc=absIdc
462 443 3ad2ant2 φcAdAcddcA×A
463 necom cddc
464 463 biimpi cddc
465 464 neneqd cd¬d=c
466 465 3ad2ant3 φcAdAcd¬d=c
467 466 455 sylnibr φcAdAcd¬dcI
468 462 467 eldifd φcAdAcddcA×AI
469 468 10 eleqtrrdi φcAdAcddcI
470 fvres dcIabsIdc=absdc
471 469 470 syl φcAdAcdabsIdc=absdc
472 simp1 φcAdAcdφ
473 472 469 jca φcAdAcdφdcI
474 eleq1 x=dcxIdcI
475 474 anbi2d x=dcφxIφdcI
476 eleq1 x=dcxdomdcdom
477 475 476 imbi12d x=dcφxIxdomφdcIdcdom
478 477 76 vtoclg dcIφdcIdcdom
479 469 473 478 sylc φcAdAcddcdom
480 fvco Fundcdomabsdc=dc
481 73 479 480 sylancr φcAdAcdabsdc=dc
482 df-ov dc=dc
483 482 eqcomi dc=dc
484 483 fveq2i dc=dc
485 481 484 eqtrdi φcAdAcdabsdc=dc
486 461 471 485 3eqtrd φcAdAcdDIdc=dc
487 459 486 syld3an3 φcAdAc<dDIdc=dc
488 445 sselda φdAd
489 488 adantrl φcAdAd
490 489 3adant3 φcAdAc<dd
491 448 490 449 ltled φcAdAc<dcd
492 448 490 491 abssubge0d φcAdAc<ddc=dc
493 487 492 eqtrd φcAdAc<dDIdc=dc
494 fveq2 x=dcDIx=DIdc
495 494 eqeq1d x=dcDIx=dcDIdc=dc
496 495 rspcev dcIDIdc=dcxIDIx=dc
497 458 493 496 syl2anc φcAdAc<dxIDIx=dc
498 489 447 resubcld φcAdAdc
499 elex dcdcV
500 498 499 syl φcAdAdcV
501 500 3adant3 φcAdAc<ddcV
502 simp1 φcAdAc<dφ
503 eleq1 y=dcyranDIdcranDI
504 eqeq2 y=dcDIx=yDIx=dc
505 504 rexbidv y=dcxIDIx=yxIDIx=dc
506 503 505 bibi12d y=dcyranDIxIDIx=ydcranDIxIDIx=dc
507 506 imbi2d y=dcφyranDIxIDIx=yφdcranDIxIDIx=dc
508 67 424 syl φyranDIxIDIx=y
509 507 508 vtoclg dcVφdcranDIxIDIx=dc
510 501 502 509 sylc φcAdAc<ddcranDIxIDIx=dc
511 497 510 mpbird φcAdAc<ddcranDI
512 511 11 eleqtrrdi φcAdAc<ddcR
513 infrelb RxyRxydcRsupR<dc
514 418 440 512 513 syl3anc φcAdAc<dsupR<dc
515 12 514 eqbrtrid φcAdAc<dEdc
516 417 515 vtoclg BAφBAdAB<dEdB
517 410 516 mpcom φBAdAB<dEdB
518 409 517 vtoclg CAφBACAB<CECB
519 8 402 518 sylc φECB
520 519 4 breqtrrdi φET
521 268 520 syl ψET
522 521 3ad2ant1 ψjka+jTAb+kTAET
523 522 ad2antrr ψjka+jTAb+kTAkja+jT=b+kTET
524 364 adantr ψkb
525 524 366 pncan2d ψkb+kT-b=kT
526 525 oveq1d ψkb+kT-bT=kTT
527 340 adantl ψkk
528 318 adantr ψkT
529 419 a1i φ0
530 529 350 gtned φT0
531 268 530 syl ψT0
532 531 adantr ψkT0
533 527 528 532 divcan4d ψkkTT=k
534 526 533 eqtr2d ψkk=b+kT-bT
535 534 adantrl ψjkk=b+kT-bT
536 535 adantr ψjka+jT=b+kTk=b+kT-bT
537 oveq1 a+jT=b+kTa+jT-b=b+kT-b
538 537 oveq1d a+jT=b+kTa+jT-bT=b+kT-bT
539 538 adantl ψjka+jT=b+kTa+jT-bT=b+kT-bT
540 368 adantr ψja
541 364 adantr ψjb
542 540 370 541 addsubd ψja+jT-b=a-b+jT
543 540 541 subcld ψjab
544 543 370 addcomd ψja-b+jT=jT+a-b
545 542 544 eqtrd ψja+jT-b=jT+a-b
546 545 oveq1d ψja+jT-bT=jT+a-bT
547 318 adantr ψjT
548 531 adantr ψjT0
549 370 543 547 548 divdird ψjjT+a-bT=jTT+abT
550 335 adantl ψjj
551 550 547 548 divcan4d ψjjTT=j
552 551 oveq1d ψjjTT+abT=j+abT
553 546 549 552 3eqtrd ψja+jT-bT=j+abT
554 553 adantrr ψjka+jT-bT=j+abT
555 554 adantr ψjka+jT=b+kTa+jT-bT=j+abT
556 536 539 555 3eqtr2d ψjka+jT=b+kTk=j+abT
557 309 302 resubcld ψab
558 309 302 sublt0d ψab<0a<b
559 358 558 mpbird ψab<0
560 557 352 559 divlt0gt0d ψabT<0
561 560 adantr ψjabT<0
562 335 subidd jjj=0
563 562 eqcomd j0=jj
564 563 adantl ψj0=jj
565 561 564 breqtrd ψjabT<jj
566 557 293 531 redivcld ψabT
567 566 adantr ψjabT
568 311 567 311 ltaddsub2d ψjj+abT<jabT<jj
569 565 568 mpbird ψjj+abT<j
570 569 adantrr ψjkj+abT<j
571 570 adantr ψjka+jT=b+kTj+abT<j
572 556 571 eqbrtrd ψjka+jT=b+kTk<j
573 320 ad2antrr ψjkk<jT=1T
574 simpr jkk<jk<j
575 simplr jkk<jk
576 simpll jkk<jj
577 zltp1le kjk<jk+1j
578 575 576 577 syl2anc jkk<jk<jk+1j
579 574 578 mpbid jkk<jk+1j
580 286 ad2antlr jkk<jk
581 330 a1i jkk<j1
582 283 ad2antrr jkk<jj
583 580 581 582 leaddsub2d jkk<jk+1j1jk
584 579 583 mpbid jkk<j1jk
585 584 adantll ψjkk<j1jk
586 330 a1i ψjkk<j1
587 395 ad2antlr ψjkk<jjk
588 352 ad2antrr ψjkk<jT+
589 586 587 588 lemul1d ψjkk<j1jk1TjkT
590 585 589 mpbid ψjkk<j1TjkT
591 573 590 eqbrtrd ψjkk<jTjkT
592 572 591 syldan ψjka+jT=b+kTTjkT
593 592 adantlr ψjkkja+jT=b+kTTjkT
594 593 3adantll3 ψjka+jTAb+kTAkja+jT=b+kTTjkT
595 392 394 399 523 594 letrd ψjka+jTAb+kTAkja+jT=b+kTEjkT
596 oveq2 a+jT=b+kTb+kT-a+jT=b+kT-b+kT
597 596 oveq1d a+jT=b+kTb+kT-a+jT+jkT=b+kT-b+kT+jkT
598 597 adantl ψa+jTAb+kTAa+jT=b+kTb+kT-a+jT+jkT=b+kT-b+kT+jkT
599 268 445 syl ψA
600 599 sselda ψb+kTAb+kT
601 600 adantrl ψa+jTAb+kTAb+kT
602 601 recnd ψa+jTAb+kTAb+kT
603 602 subidd ψa+jTAb+kTAb+kT-b+kT=0
604 603 oveq1d ψa+jTAb+kTAb+kT-b+kT+jkT=0+jkT
605 604 adantr ψa+jTAb+kTAa+jT=b+kTb+kT-b+kT+jkT=0+jkT
606 598 605 eqtrd ψa+jTAb+kTAa+jT=b+kTb+kT-a+jT+jkT=0+jkT
607 606 3adantl2 ψjka+jTAb+kTAa+jT=b+kTb+kT-a+jT+jkT=0+jkT
608 607 adantlr ψjka+jTAb+kTAkja+jT=b+kTb+kT-a+jT+jkT=0+jkT
609 374 373 subcld ψjkjk
610 609 375 mulcld ψjkjkT
611 610 addlidd ψjk0+jkT=jkT
612 611 3adant3 ψjka+jTAb+kTA0+jkT=jkT
613 612 ad2antrr ψjka+jTAb+kTAkja+jT=b+kT0+jkT=jkT
614 608 613 eqtr2d ψjka+jTAb+kTAkja+jT=b+kTjkT=b+kT-a+jT+jkT
615 595 614 breqtrd ψjka+jTAb+kTAkja+jT=b+kTEb+kT-a+jT+jkT
616 615 adantlr ψjka+jTAb+kTAkja+jTb+kTa+jT=b+kTEb+kT-a+jT+jkT
617 391 ad3antrrr ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTE
618 599 sselda ψa+jTAa+jT
619 618 adantrr ψa+jTAb+kTAa+jT
620 601 619 resubcld ψa+jTAb+kTAb+kT-a+jT
621 620 3adant2 ψjka+jTAb+kTAb+kT-a+jT
622 621 ad3antrrr ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTb+kT-a+jT
623 621 398 readdcld ψjka+jTAb+kTAb+kT-a+jT+jkT
624 623 ad3antrrr ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTb+kT-a+jT+jkT
625 268 adantr ψkjφ
626 625 3ad2antl1 ψjka+jTAb+kTAkjφ
627 626 ad2antrr ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTφ
628 simpl3 ψjka+jTAb+kTAkja+jTAb+kTA
629 628 ad2antrr ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTa+jTAb+kTA
630 simplr ψa+jTAb+kTAa+jTb+kT¬a+jT=b+kTa+jTb+kT
631 619 ad2antrr ψa+jTAb+kTAa+jTb+kT¬a+jT=b+kTa+jT
632 601 ad2antrr ψa+jTAb+kTAa+jTb+kT¬a+jT=b+kTb+kT
633 631 632 lenltd ψa+jTAb+kTAa+jTb+kT¬a+jT=b+kTa+jTb+kT¬b+kT<a+jT
634 630 633 mpbid ψa+jTAb+kTAa+jTb+kT¬a+jT=b+kT¬b+kT<a+jT
635 eqcom a+jT=b+kTb+kT=a+jT
636 635 notbii ¬a+jT=b+kT¬b+kT=a+jT
637 636 biimpi ¬a+jT=b+kT¬b+kT=a+jT
638 637 adantl ψa+jTAb+kTAa+jTb+kT¬a+jT=b+kT¬b+kT=a+jT
639 ioran ¬b+kT<a+jTb+kT=a+jT¬b+kT<a+jT¬b+kT=a+jT
640 634 638 639 sylanbrc ψa+jTAb+kTAa+jTb+kT¬a+jT=b+kT¬b+kT<a+jTb+kT=a+jT
641 632 631 leloed ψa+jTAb+kTAa+jTb+kT¬a+jT=b+kTb+kTa+jTb+kT<a+jTb+kT=a+jT
642 640 641 mtbird ψa+jTAb+kTAa+jTb+kT¬a+jT=b+kT¬b+kTa+jT
643 642 3adantll2 ψjka+jTAb+kTAa+jTb+kT¬a+jT=b+kT¬b+kTa+jT
644 643 adantllr ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kT¬b+kTa+jT
645 619 adantr ψa+jTAb+kTAkja+jT
646 645 3adantl2 ψjka+jTAb+kTAkja+jT
647 646 ad2antrr ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTa+jT
648 601 adantr ψa+jTAb+kTAkjb+kT
649 648 3adantl2 ψjka+jTAb+kTAkjb+kT
650 649 ad2antrr ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTb+kT
651 647 650 ltnled ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTa+jT<b+kT¬b+kTa+jT
652 644 651 mpbird ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTa+jT<b+kT
653 simp2l φa+jTAb+kTAa+jT<b+kTa+jTA
654 eleq1 c=a+jTcAa+jTA
655 654 anbi1d c=a+jTcAb+kTAa+jTAb+kTA
656 breq1 c=a+jTc<b+kTa+jT<b+kT
657 655 656 3anbi23d c=a+jTφcAb+kTAc<b+kTφa+jTAb+kTAa+jT<b+kT
658 oveq2 c=a+jTb+kT-c=b+kT-a+jT
659 658 breq2d c=a+jTEb+kT-cEb+kT-a+jT
660 657 659 imbi12d c=a+jTφcAb+kTAc<b+kTEb+kT-cφa+jTAb+kTAa+jT<b+kTEb+kT-a+jT
661 simp2r φcAb+kTAc<b+kTb+kTA
662 eleq1 d=b+kTdAb+kTA
663 662 anbi2d d=b+kTcAdAcAb+kTA
664 breq2 d=b+kTc<dc<b+kT
665 663 664 3anbi23d d=b+kTφcAdAc<dφcAb+kTAc<b+kT
666 oveq1 d=b+kTdc=b+kT-c
667 666 breq2d d=b+kTEdcEb+kT-c
668 665 667 imbi12d d=b+kTφcAdAc<dEdcφcAb+kTAc<b+kTEb+kT-c
669 668 515 vtoclg b+kTAφcAb+kTAc<b+kTEb+kT-c
670 661 669 mpcom φcAb+kTAc<b+kTEb+kT-c
671 660 670 vtoclg a+jTAφa+jTAb+kTAa+jT<b+kTEb+kT-a+jT
672 653 671 mpcom φa+jTAb+kTAa+jT<b+kTEb+kT-a+jT
673 627 629 652 672 syl3anc ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTEb+kT-a+jT
674 395 ad2antlr ψjkkjjk
675 293 ad2antrr ψjkkjT
676 simpr jkkjkj
677 283 ad2antrr jkkjj
678 286 ad2antlr jkkjk
679 677 678 subge0d jkkj0jkkj
680 676 679 mpbird jkkj0jk
681 680 adantll ψjkkj0jk
682 352 rpge0d ψ0T
683 682 ad2antrr ψjkkj0T
684 674 675 681 683 mulge0d ψjkkj0jkT
685 684 3adantl3 ψjka+jTAb+kTAkj0jkT
686 621 adantr ψjka+jTAb+kTAkjb+kT-a+jT
687 398 adantr ψjka+jTAb+kTAkjjkT
688 686 687 addge01d ψjka+jTAb+kTAkj0jkTb+kT-a+jTb+kT-a+jT+jkT
689 685 688 mpbid ψjka+jTAb+kTAkjb+kT-a+jTb+kT-a+jT+jkT
690 689 ad2antrr ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTb+kT-a+jTb+kT-a+jT+jkT
691 617 622 624 673 690 letrd ψjka+jTAb+kTAkja+jTb+kT¬a+jT=b+kTEb+kT-a+jT+jkT
692 616 691 pm2.61dan ψjka+jTAb+kTAkja+jTb+kTEb+kT-a+jT+jkT
693 372 378 eqtrd ψjkb+kT-a+jT=b-a+kjT
694 693 oveq1d ψjkb+kT-a+jT+jkT=ba+kjT+jkT
695 365 369 subcld ψjkba
696 373 374 subcld ψjkkj
697 696 375 mulcld ψjkkjT
698 695 697 610 addassd ψjkba+kjT+jkT=ba+kjT+jkT
699 341 336 336 341 subadd4b jkkj+j-k=kk+j-j
700 699 adantl ψjkkj+j-k=kk+j-j
701 700 oveq1d ψjkkj+j-kT=kk+j-jT
702 696 609 375 adddird ψjkkj+j-kT=kjT+jkT
703 340 subidd kkk=0
704 703 adantl jkkk=0
705 562 adantr jkjj=0
706 704 705 oveq12d jkkk+j-j=0+0
707 00id 0+0=0
708 706 707 eqtrdi jkkk+j-j=0
709 708 oveq1d jkkk+j-jT=0T
710 709 adantl ψjkkk+j-jT=0T
711 701 702 710 3eqtr3d ψjkkjT+jkT=0T
712 711 oveq2d ψjkba+kjT+jkT=b-a+0T
713 318 mul02d ψ0T=0
714 713 oveq2d ψb-a+0T=b-a+0
715 364 368 subcld ψba
716 715 addridd ψb-a+0=ba
717 714 716 eqtrd ψb-a+0T=ba
718 717 adantr ψjkb-a+0T=ba
719 712 718 eqtrd ψjkba+kjT+jkT=ba
720 694 698 719 3eqtrd ψjkb+kT-a+jT+jkT=ba
721 720 3adant3 ψjka+jTAb+kTAb+kT-a+jT+jkT=ba
722 721 ad2antrr ψjka+jTAb+kTAkja+jTb+kTb+kT-a+jT+jkT=ba
723 692 722 breqtrd ψjka+jTAb+kTAkja+jTb+kTEba
724 simpll ψjka+jTAb+kTAkj¬a+jTb+kTψjka+jTAb+kTA
725 simpr ψjka+jTAb+kTA¬a+jTb+kT¬a+jTb+kT
726 601 3adant2 ψjka+jTAb+kTAb+kT
727 726 adantr ψjka+jTAb+kTA¬a+jTb+kTb+kT
728 619 3adant2 ψjka+jTAb+kTAa+jT
729 728 adantr ψjka+jTAb+kTA¬a+jTb+kTa+jT
730 727 729 ltnled ψjka+jTAb+kTA¬a+jTb+kTb+kT<a+jT¬a+jTb+kT
731 725 730 mpbird ψjka+jTAb+kTA¬a+jTb+kTb+kT<a+jT
732 731 adantlr ψjka+jTAb+kTAkj¬a+jTb+kTb+kT<a+jT
733 535 3adant3 ψjka+jTAb+kTAk=b+kT-bT
734 733 adantr ψjka+jTAb+kTAb+kT<a+jTk=b+kT-bT
735 600 3adant2 ψkb+kTAb+kT
736 302 3ad2ant1 ψkb+kTAb
737 735 736 resubcld ψkb+kTAb+kT-b
738 293 3ad2ant1 ψkb+kTAT
739 531 3ad2ant1 ψkb+kTAT0
740 737 738 739 redivcld ψkb+kTAb+kT-bT
741 740 3adant3l ψka+jTAb+kTAb+kT-bT
742 741 3adant2l ψjka+jTAb+kTAb+kT-bT
743 742 adantr ψjka+jTAb+kTAb+kT<a+jTb+kT-bT
744 618 3adant2 ψja+jTAa+jT
745 302 3ad2ant1 ψja+jTAb
746 744 745 resubcld ψja+jTAa+jT-b
747 293 3ad2ant1 ψja+jTAT
748 531 3ad2ant1 ψja+jTAT0
749 746 747 748 redivcld ψja+jTAa+jT-bT
750 749 3adant3r ψja+jTAb+kTAa+jT-bT
751 750 3adant2r ψjka+jTAb+kTAa+jT-bT
752 751 adantr ψjka+jTAb+kTAb+kT<a+jTa+jT-bT
753 284 3ad2ant2 ψjka+jTAb+kTAj
754 753 adantr ψjka+jTAb+kTAb+kT<a+jTj
755 726 adantr ψjka+jTAb+kTAb+kT<a+jTb+kT
756 302 3ad2ant1 ψjka+jTAb+kTAb
757 756 adantr ψjka+jTAb+kTAb+kT<a+jTb
758 755 757 resubcld ψjka+jTAb+kTAb+kT<a+jTb+kT-b
759 728 adantr ψjka+jTAb+kTAb+kT<a+jTa+jT
760 759 757 resubcld ψjka+jTAb+kTAb+kT<a+jTa+jT-b
761 352 3ad2ant1 ψjka+jTAb+kTAT+
762 761 adantr ψjka+jTAb+kTAb+kT<a+jTT+
763 601 adantr ψa+jTAb+kTAb+kT<a+jTb+kT
764 619 adantr ψa+jTAb+kTAb+kT<a+jTa+jT
765 302 ad2antrr ψa+jTAb+kTAb+kT<a+jTb
766 simpr ψa+jTAb+kTAb+kT<a+jTb+kT<a+jT
767 763 764 765 766 ltsub1dd ψa+jTAb+kTAb+kT<a+jTb+kT-b<a+jT-b
768 767 3adantl2 ψjka+jTAb+kTAb+kT<a+jTb+kT-b<a+jT-b
769 758 760 762 768 ltdiv1dd ψjka+jTAb+kTAb+kT<a+jTb+kT-bT<a+jT-bT
770 554 570 eqbrtrd ψjka+jT-bT<j
771 770 3adant3 ψjka+jTAb+kTAa+jT-bT<j
772 771 adantr ψjka+jTAb+kTAb+kT<a+jTa+jT-bT<j
773 743 752 754 769 772 lttrd ψjka+jTAb+kTAb+kT<a+jTb+kT-bT<j
774 734 773 eqbrtrd ψjka+jTAb+kTAb+kT<a+jTk<j
775 774 adantlr ψjka+jTAb+kTAkjb+kT<a+jTk<j
776 732 775 syldan ψjka+jTAb+kTAkj¬a+jTb+kTk<j
777 391 adantr ψjka+jTAb+kTAk<j1E
778 393 adantr ψjka+jTAb+kTAk<j1T
779 623 adantr ψjka+jTAb+kTAk<j1b+kT-a+jT+jkT
780 522 adantr ψjka+jTAb+kTAk<j1ET
781 peano2rem jj1
782 753 781 syl ψjka+jTAb+kTAj1
783 287 3ad2ant2 ψjka+jTAb+kTAk
784 782 783 resubcld ψjka+jTAb+kTAj-1-k
785 784 393 remulcld ψjka+jTAb+kTAj-1-kT
786 785 adantr ψjka+jTAb+kTAk<j1j-1-kT
787 753 adantr ψjka+jTAb+kTAk<j1j
788 330 a1i ψjka+jTAb+kTAk<j11
789 787 788 resubcld ψjka+jTAb+kTAk<j1j1
790 286 ad2antlr jkk<j1k
791 790 3ad2antl2 ψjka+jTAb+kTAk<j1k
792 789 791 resubcld ψjka+jTAb+kTAk<j1j-1-k
793 682 adantr ψk<j10T
794 793 3ad2antl1 ψjka+jTAb+kTAk<j10T
795 283 ad2antrr jkk<j1j
796 330 a1i jkk<j11
797 795 796 resubcld jkk<j1j1
798 simpr jkk<j1k<j1
799 simplr jkk<j1k
800 simpll jkk<j1j
801 1zzd jkk<j11
802 800 801 zsubcld jkk<j1j1
803 zltlem1 kj1k<j1kj-1-1
804 799 802 803 syl2anc jkk<j1k<j1kj-1-1
805 798 804 mpbid jkk<j1kj-1-1
806 790 797 796 805 lesubd jkk<j11j-1-k
807 806 3ad2antl2 ψjka+jTAb+kTAk<j11j-1-k
808 778 792 794 807 lemulge12d ψjka+jTAb+kTAk<j1Tj-1-kT
809 336 337 341 sub32d jkj-1-k=j-k-1
810 809 oveq1d jkj-1-kT=j-k-1T
811 810 adantl ψjkj-1-kT=j-k-1T
812 1cnd ψjk1
813 609 812 375 subdird ψjkj-k-1T=jkT1T
814 319 oveq2d ψjkT1T=jkTT
815 814 adantr ψjkjkT1T=jkTT
816 811 813 815 3eqtrd ψjkj-1-kT=jkTT
817 816 3adant3 ψjka+jTAb+kTAj-1-kT=jkTT
818 728 726 resubcld ψjka+jTAb+kTAa+jT-b+kT
819 270 272 277 275 iccsuble ψa+jTAb+kTAa+jT-b+kTCB
820 819 4 breqtrrdi ψa+jTAb+kTAa+jT-b+kTT
821 820 3adant2 ψjka+jTAb+kTAa+jT-b+kTT
822 818 393 398 821 lesub2dd ψjka+jTAb+kTAjkTTjkTa+jT-b+kT
823 817 822 eqbrtrd ψjka+jTAb+kTAj-1-kTjkTa+jT-b+kT
824 610 3adant3 ψjka+jTAb+kTAjkT
825 728 recnd ψjka+jTAb+kTAa+jT
826 602 3adant2 ψjka+jTAb+kTAb+kT
827 824 825 826 subsub2d ψjka+jTAb+kTAjkTa+jT-b+kT=jkT+b+kT-a+jT
828 621 recnd ψjka+jTAb+kTAb+kT-a+jT
829 824 828 addcomd ψjka+jTAb+kTAjkT+b+kT-a+jT=b+kT-a+jT+jkT
830 827 829 eqtrd ψjka+jTAb+kTAjkTa+jT-b+kT=b+kT-a+jT+jkT
831 823 830 breqtrd ψjka+jTAb+kTAj-1-kTb+kT-a+jT+jkT
832 831 adantr ψjka+jTAb+kTAk<j1j-1-kTb+kT-a+jT+jkT
833 778 786 779 808 832 letrd ψjka+jTAb+kTAk<j1Tb+kT-a+jT+jkT
834 777 778 779 780 833 letrd ψjka+jTAb+kTAk<j1Eb+kT-a+jT+jkT
835 721 adantr ψjka+jTAb+kTAk<j1b+kT-a+jT+jkT=ba
836 834 835 breqtrd ψjka+jTAb+kTAk<j1Eba
837 836 adantlr ψjka+jTAb+kTAk<jk<j1Eba
838 837 adantlr ψjka+jTAb+kTAk<jb+kT<a+jTk<j1Eba
839 simplll ψjka+jTAb+kTAk<jb+kT<a+jT¬k<j1ψjka+jTAb+kTA
840 simpll2 ψjka+jTAb+kTAk<j¬k<j1jk
841 simplr ψjka+jTAb+kTAk<j¬k<j1k<j
842 simpr ψjka+jTAb+kTAk<j¬k<j1¬k<j1
843 581 582 580 584 lesubd jkk<jkj1
844 843 3adant3 jkk<j¬k<j1kj1
845 simpr jk¬k<j1¬k<j1
846 284 781 syl jkj1
847 846 adantr jk¬k<j1j1
848 286 ad2antlr jk¬k<j1k
849 847 848 lenltd jk¬k<j1j1k¬k<j1
850 845 849 mpbird jk¬k<j1j1k
851 850 3adant2 jkk<j¬k<j1j1k
852 580 3adant3 jkk<j¬k<j1k
853 846 3ad2ant1 jkk<j¬k<j1j1
854 852 853 letri3d jkk<j¬k<j1k=j1kj1j1k
855 844 851 854 mpbir2and jkk<j¬k<j1k=j1
856 840 841 842 855 syl3anc ψjka+jTAb+kTAk<j¬k<j1k=j1
857 856 adantlr ψjka+jTAb+kTAk<jb+kT<a+jT¬k<j1k=j1
858 simpl1 ψjka+jTAb+kTAk=j1ψ
859 simpl2l ψjka+jTAb+kTAk=j1j
860 simpl3l ψjka+jTAb+kTAk=j1a+jTA
861 oveq1 k=j1kT=j1T
862 861 oveq2d k=j1b+kT=b+j1T
863 862 eqcomd k=j1b+j1T=b+kT
864 863 adantl b+kTAk=j1b+j1T=b+kT
865 simpl b+kTAk=j1b+kTA
866 864 865 eqeltrd b+kTAk=j1b+j1TA
867 866 adantll a+jTAb+kTAk=j1b+j1TA
868 867 3ad2antl3 ψjka+jTAb+kTAk=j1b+j1TA
869 860 868 jca ψjka+jTAb+kTAk=j1a+jTAb+j1TA
870 id ψja+jTAψja+jTA
871 870 3adant3r ψja+jTAb+j1TAψja+jTA
872 744 adantr ψja+jTAb+j1T=Ba+jT
873 271 3ad2ant1 ψja+jTAC
874 873 adantr ψja+jTAb+j1T=BC
875 269 adantr ψa+jTAB
876 271 adantr ψa+jTAC
877 elicc2 BCa+jTBCa+jTBa+jTa+jTC
878 875 876 877 syl2anc ψa+jTAa+jTBCa+jTBa+jTa+jTC
879 276 878 mpbid ψa+jTAa+jTBa+jTa+jTC
880 879 simp3d ψa+jTAa+jTC
881 880 3adant2 ψja+jTAa+jTC
882 881 adantr ψja+jTAb+j1T=Ba+jTC
883 nne ¬Ca+jTC=a+jT
884 540 370 pncand ψja+jT-jT=a
885 884 eqcomd ψja=a+jT-jT
886 885 adantr ψjC=a+jTa=a+jT-jT
887 oveq1 C=a+jTCjT=a+jT-jT
888 887 eqcomd C=a+jTa+jT-jT=CjT
889 888 adantl ψjC=a+jTa+jT-jT=CjT
890 4 oveq2i B+T=B+C-B
891 268 161 syl ψB
892 268 162 syl ψC
893 891 892 pncan3d ψB+C-B=C
894 890 893 eqtr2id ψC=B+T
895 894 oveq1d ψCjT=B+T-jT
896 895 adantr ψjCjT=B+T-jT
897 891 adantr ψjB
898 897 370 547 subsub3d ψjBjTT=B+T-jT
899 550 547 mulsubfacd ψjjTT=j1T
900 899 oveq2d ψjBjTT=Bj1T
901 896 898 900 3eqtr2d ψjCjT=Bj1T
902 901 adantr ψjC=a+jTCjT=Bj1T
903 886 889 902 3eqtrd ψjC=a+jTa=Bj1T
904 903 3adantl3 ψja+jTAC=a+jTa=Bj1T
905 904 adantlr ψja+jTAb+j1T=BC=a+jTa=Bj1T
906 oveq1 b+j1T=Bb+j1T-j1T=Bj1T
907 906 eqcomd b+j1T=BBj1T=b+j1T-j1T
908 907 ad2antlr ψja+jTAb+j1T=BC=a+jTBj1T=b+j1T-j1T
909 364 ad2antrr ψjb+j1T=Bb
910 1cnd ψj1
911 550 910 subcld ψjj1
912 911 547 mulcld ψjj1T
913 912 adantr ψjb+j1T=Bj1T
914 909 913 pncand ψjb+j1T=Bb+j1T-j1T=b
915 914 3adantl3 ψja+jTAb+j1T=Bb+j1T-j1T=b
916 915 adantr ψja+jTAb+j1T=BC=a+jTb+j1T-j1T=b
917 905 908 916 3eqtrd ψja+jTAb+j1T=BC=a+jTa=b
918 883 917 sylan2b ψja+jTAb+j1T=B¬Ca+jTa=b
919 309 358 ltned ψab
920 919 neneqd ψ¬a=b
921 920 3ad2ant1 ψja+jTA¬a=b
922 921 ad2antrr ψja+jTAb+j1T=B¬Ca+jT¬a=b
923 918 922 condan ψja+jTAb+j1T=BCa+jT
924 872 874 882 923 leneltd ψja+jTAb+j1T=Ba+jT<C
925 871 924 sylan ψja+jTAb+j1TAb+j1T=Ba+jT<C
926 268 ad2antrr ψa+jTAa+jT<Cφ
927 simplr ψa+jTAa+jT<Ca+jTA
928 926 8 syl ψa+jTAa+jT<CCA
929 simpr ψa+jTAa+jT<Ca+jT<C
930 simp2l φa+jTACAa+jT<Ca+jTA
931 654 anbi1d c=a+jTcACAa+jTACA
932 breq1 c=a+jTc<Ca+jT<C
933 931 932 3anbi23d c=a+jTφcACAc<Cφa+jTACAa+jT<C
934 oveq2 c=a+jTCc=Ca+jT
935 934 breq2d c=a+jTECcECa+jT
936 933 935 imbi12d c=a+jTφcACAc<CECcφa+jTACAa+jT<CECa+jT
937 simp2r φcACAc<CCA
938 403 anbi2d d=CcAdAcACA
939 breq2 d=Cc<dc<C
940 938 939 3anbi23d d=CφcAdAc<dφcACAc<C
941 oveq1 d=Cdc=Cc
942 941 breq2d d=CEdcECc
943 940 942 imbi12d d=CφcAdAc<dEdcφcACAc<CECc
944 943 515 vtoclg CAφcACAc<CECc
945 937 944 mpcom φcACAc<CECc
946 936 945 vtoclg a+jTAφa+jTACAa+jT<CECa+jT
947 930 946 mpcom φa+jTACAa+jT<CECa+jT
948 926 927 928 929 947 syl121anc ψa+jTAa+jT<CECa+jT
949 948 adantlrr ψa+jTAb+j1TAa+jT<CECa+jT
950 949 3adantl2 ψja+jTAb+j1TAa+jT<CECa+jT
951 950 adantlr ψja+jTAb+j1TAb+j1T=Ba+jT<CECa+jT
952 892 adantr ψb+j1TAC
953 599 sselda ψb+j1TAb+j1T
954 953 recnd ψb+j1TAb+j1T
955 952 954 npcand ψb+j1TACb+j1T+b+j1T=C
956 955 eqcomd ψb+j1TAC=Cb+j1T+b+j1T
957 956 oveq1d ψb+j1TACa+jT=Cb+j1T+b+j1T-a+jT
958 957 adantrl ψa+jTAb+j1TACa+jT=Cb+j1T+b+j1T-a+jT
959 958 3adant2 ψja+jTAb+j1TACa+jT=Cb+j1T+b+j1T-a+jT
960 959 adantr ψja+jTAb+j1TAb+j1T=BCa+jT=Cb+j1T+b+j1T-a+jT
961 oveq2 b+j1T=BCb+j1T=CB
962 961 oveq1d b+j1T=BCb+j1T+b+j1T=CB+b+j1T
963 962 oveq1d b+j1T=BCb+j1T+b+j1T-a+jT=CB+b+j1T-a+jT
964 963 adantl ψja+jTAb+j1TAb+j1T=BCb+j1T+b+j1T-a+jT=CB+b+j1T-a+jT
965 4 eqcomi CB=T
966 965 oveq1i CB+b+j1T=T+b+j1T
967 966 a1i ψb+j1TACB+b+j1T=T+b+j1T
968 318 adantr ψb+j1TAT
969 968 954 addcomd ψb+j1TAT+b+j1T=b+j1T+T
970 967 969 eqtrd ψb+j1TACB+b+j1T=b+j1T+T
971 970 oveq1d ψb+j1TACB+b+j1T-a+jT=b+j1T+T-a+jT
972 971 adantrl ψa+jTAb+j1TACB+b+j1T-a+jT=b+j1T+T-a+jT
973 972 3adant2 ψja+jTAb+j1TACB+b+j1T-a+jT=b+j1T+T-a+jT
974 973 adantr ψja+jTAb+j1TAb+j1T=BCB+b+j1T-a+jT=b+j1T+T-a+jT
975 954 adantrl ψa+jTAb+j1TAb+j1T
976 975 3adant2 ψja+jTAb+j1TAb+j1T
977 976 adantr ψja+jTAb+j1TAb+j1T=Bb+j1T
978 318 3ad2ant1 ψja+jTAb+j1TAT
979 978 adantr ψja+jTAb+j1TAb+j1T=BT
980 618 adantrr ψa+jTAb+j1TAa+jT
981 980 recnd ψa+jTAb+j1TAa+jT
982 981 3adant2 ψja+jTAb+j1TAa+jT
983 982 adantr ψja+jTAb+j1TAb+j1T=Ba+jT
984 977 979 983 addsubd ψja+jTAb+j1TAb+j1T=Bb+j1T+T-a+jT=b+j1T-a+jT+T
985 974 984 eqtrd ψja+jTAb+j1TAb+j1T=BCB+b+j1T-a+jT=b+j1T-a+jT+T
986 960 964 985 3eqtrd ψja+jTAb+j1TAb+j1T=BCa+jT=b+j1T-a+jT+T
987 986 adantr ψja+jTAb+j1TAb+j1T=Ba+jT<CCa+jT=b+j1T-a+jT+T
988 951 987 breqtrd ψja+jTAb+j1TAb+j1T=Ba+jT<CEb+j1T-a+jT+T
989 925 988 mpdan ψja+jTAb+j1TAb+j1T=BEb+j1T-a+jT+T
990 simpl1 ψja+jTAb+j1TA¬b+j1T=Bψ
991 simpl3r ψja+jTAb+j1TA¬b+j1T=Bb+j1TA
992 simpr ψja+jTAb+j1TA¬b+j1T=B¬b+j1T=B
993 269 3ad2ant1 ψb+j1TA¬b+j1T=BB
994 953 3adant3 ψb+j1TA¬b+j1T=Bb+j1T
995 273 sselda ψb+j1TAb+j1TBC
996 269 adantr ψb+j1TAB
997 271 adantr ψb+j1TAC
998 elicc2 BCb+j1TBCb+j1TBb+j1Tb+j1TC
999 996 997 998 syl2anc ψb+j1TAb+j1TBCb+j1TBb+j1Tb+j1TC
1000 995 999 mpbid ψb+j1TAb+j1TBb+j1Tb+j1TC
1001 1000 simp2d ψb+j1TABb+j1T
1002 1001 3adant3 ψb+j1TA¬b+j1T=BBb+j1T
1003 neqne ¬b+j1T=Bb+j1TB
1004 1003 3ad2ant3 ψb+j1TA¬b+j1T=Bb+j1TB
1005 993 994 1002 1004 leneltd ψb+j1TA¬b+j1T=BB<b+j1T
1006 990 991 992 1005 syl3anc ψja+jTAb+j1TA¬b+j1T=BB<b+j1T
1007 390 3ad2ant1 ψja+jTAb+j1TAE
1008 1007 adantr ψja+jTAb+j1TAB<b+j1TE
1009 953 adantrl ψa+jTAb+j1TAb+j1T
1010 1009 3adant2 ψja+jTAb+j1TAb+j1T
1011 269 3ad2ant1 ψja+jTAb+j1TAB
1012 1010 1011 resubcld ψja+jTAb+j1TAb+j1T-B
1013 1012 adantr ψja+jTAb+j1TAB<b+j1Tb+j1T-B
1014 1009 980 resubcld ψa+jTAb+j1TAb+j1T-a+jT
1015 293 adantr ψa+jTAb+j1TAT
1016 1014 1015 readdcld ψa+jTAb+j1TAb+j1T-a+jT+T
1017 1016 3adant2 ψja+jTAb+j1TAb+j1T-a+jT+T
1018 1017 adantr ψja+jTAb+j1TAB<b+j1Tb+j1T-a+jT+T
1019 268 adantr ψB<b+j1Tφ
1020 1019 3ad2antl1 ψja+jTAb+j1TAB<b+j1Tφ
1021 1020 7 syl ψja+jTAb+j1TAB<b+j1TBA
1022 simpl3r ψja+jTAb+j1TAB<b+j1Tb+j1TA
1023 simpr ψja+jTAb+j1TAB<b+j1TB<b+j1T
1024 simp2r φBAb+j1TAB<b+j1Tb+j1TA
1025 eleq1 d=b+j1TdAb+j1TA
1026 1025 anbi2d d=b+j1TBAdABAb+j1TA
1027 breq2 d=b+j1TB<dB<b+j1T
1028 1026 1027 3anbi23d d=b+j1TφBAdAB<dφBAb+j1TAB<b+j1T
1029 oveq1 d=b+j1TdB=b+j1T-B
1030 1029 breq2d d=b+j1TEdBEb+j1T-B
1031 1028 1030 imbi12d d=b+j1TφBAdAB<dEdBφBAb+j1TAB<b+j1TEb+j1T-B
1032 1031 517 vtoclg b+j1TAφBAb+j1TAB<b+j1TEb+j1T-B
1033 1024 1032 mpcom φBAb+j1TAB<b+j1TEb+j1T-B
1034 1020 1021 1022 1023 1033 syl121anc ψja+jTAb+j1TAB<b+j1TEb+j1T-B
1035 269 adantr ψa+jTAb+j1TAB
1036 980 1035 resubcld ψa+jTAb+j1TAa+jT-B
1037 965 1015 eqeltrid ψa+jTAb+j1TACB
1038 271 adantr ψa+jTAb+j1TAC
1039 880 adantrr ψa+jTAb+j1TAa+jTC
1040 980 1038 1035 1039 lesub1dd ψa+jTAb+j1TAa+jT-BCB
1041 1036 1037 1014 1040 leadd2dd ψa+jTAb+j1TAb+j1T-a+jT+a+jT-Bb+j1T-a+jT+C-B
1042 975 981 npcand ψa+jTAb+j1TAb+j1T-a+jT+a+jT=b+j1T
1043 1042 eqcomd ψa+jTAb+j1TAb+j1T=b+j1T-a+jT+a+jT
1044 1043 oveq1d ψa+jTAb+j1TAb+j1T-B=b+j1T-a+jT+a+jT-B
1045 1014 recnd ψa+jTAb+j1TAb+j1T-a+jT
1046 891 adantr ψa+jTAb+j1TAB
1047 1045 981 1046 addsubassd ψa+jTAb+j1TAb+j1T-a+jT+a+jT-B=b+j1T-a+jT+a+jT-B
1048 1044 1047 eqtrd ψa+jTAb+j1TAb+j1T-B=b+j1T-a+jT+a+jT-B
1049 4 oveq2i b+j1T-a+jT+T=b+j1T-a+jT+C-B
1050 1049 a1i ψa+jTAb+j1TAb+j1T-a+jT+T=b+j1T-a+jT+C-B
1051 1041 1048 1050 3brtr4d ψa+jTAb+j1TAb+j1T-Bb+j1T-a+jT+T
1052 1051 3adant2 ψja+jTAb+j1TAb+j1T-Bb+j1T-a+jT+T
1053 1052 adantr ψja+jTAb+j1TAB<b+j1Tb+j1T-Bb+j1T-a+jT+T
1054 1008 1013 1018 1034 1053 letrd ψja+jTAb+j1TAB<b+j1TEb+j1T-a+jT+T
1055 1006 1054 syldan ψja+jTAb+j1TA¬b+j1T=BEb+j1T-a+jT+T
1056 989 1055 pm2.61dan ψja+jTAb+j1TAEb+j1T-a+jT+T
1057 858 859 869 1056 syl3anc ψjka+jTAb+kTAk=j1Eb+j1T-a+jT+T
1058 720 eqcomd ψjkba=b+kT-a+jT+jkT
1059 1058 adantr ψjkk=j1ba=b+kT-a+jT+jkT
1060 862 oveq1d k=j1b+kT-a+jT=b+j1T-a+jT
1061 1060 adantl ψjk=j1b+kT-a+jT=b+j1T-a+jT
1062 oveq2 k=j1jk=jj1
1063 1062 oveq1d k=j1jkT=jj1T
1064 1063 adantl ψjk=j1jkT=jj1T
1065 1cnd j1
1066 335 1065 nncand jjj1=1
1067 1066 oveq1d jjj1T=1T
1068 1067 ad2antlr ψjk=j1jj1T=1T
1069 319 ad2antrr ψjk=j11T=T
1070 1064 1068 1069 3eqtrd ψjk=j1jkT=T
1071 1061 1070 oveq12d ψjk=j1b+kT-a+jT+jkT=b+j1T-a+jT+T
1072 1071 adantlrr ψjkk=j1b+kT-a+jT+jkT=b+j1T-a+jT+T
1073 1059 1072 eqtr2d ψjkk=j1b+j1T-a+jT+T=ba
1074 1073 3adantl3 ψjka+jTAb+kTAk=j1b+j1T-a+jT+T=ba
1075 1057 1074 breqtrd ψjka+jTAb+kTAk=j1Eba
1076 839 857 1075 syl2anc ψjka+jTAb+kTAk<jb+kT<a+jT¬k<j1Eba
1077 838 1076 pm2.61dan ψjka+jTAb+kTAk<jb+kT<a+jTEba
1078 724 776 732 1077 syl21anc ψjka+jTAb+kTAkj¬a+jTb+kTEba
1079 723 1078 pm2.61dan ψjka+jTAb+kTAkjEba
1080 387 1079 mpdan ψjka+jTAb+kTAEba
1081 309 302 358 ltled ψab
1082 309 302 1081 abssuble0d ψab=ba
1083 1082 eqcomd ψba=ab
1084 1083 3ad2ant1 ψjka+jTAb+kTAba=ab
1085 1080 1084 breqtrd ψjka+jTAb+kTAEab
1086 1085 3exp ψjka+jTAb+kTAEab
1087 1086 rexlimdvv ψjka+jTAb+kTAEab
1088 265 1087 mpd ψEab
1089 18 1088 sylbir φaba<bjka+jTAb+kTAEab
1090 264 1089 chvarvv φyby<bjky+jTAb+kTAEyb
1091 251 1090 chvarvv φyzy<zjky+jTAz+kTAEyz
1092 231 237 238 1091 syl21anc φyzyzjky+jTAz+kTAy<zEyz
1093 simpr yzyz¬y<z¬y<z
1094 simpl3 yzyz¬y<zyz
1095 simpl1 yzyz¬y<zy
1096 simpl2 yzyz¬y<zz
1097 1095 1096 lttri2d yzyz¬y<zyzy<zz<y
1098 1094 1097 mpbid yzyz¬y<zy<zz<y
1099 1098 ord yzyz¬y<z¬y<zz<y
1100 1093 1099 mpd yzyz¬y<zz<y
1101 1100 adantll φyzyz¬y<zz<y
1102 1101 adantlr φyzyzjky+jTAz+kTA¬y<zz<y
1103 simplll φyzjky+jTAz+kTAz<yφ
1104 simplr yzz<yz
1105 simpll yzz<yy
1106 simpr yzz<yz<y
1107 1104 1105 1106 3jca yzz<yzyz<y
1108 1107 adantll φyzz<yzyz<y
1109 1108 adantlr φyzjky+jTAz+kTAz<yzyz<y
1110 oveq1 j=ijT=iT
1111 1110 oveq2d j=iy+jT=y+iT
1112 1111 eleq1d j=iy+jTAy+iTA
1113 1112 anbi1d j=iy+jTAz+kTAy+iTAz+kTA
1114 oveq1 k=lkT=lT
1115 1114 oveq2d k=lz+kT=z+lT
1116 1115 eleq1d k=lz+kTAz+lTA
1117 1116 anbi2d k=ly+iTAz+kTAy+iTAz+lTA
1118 1113 1117 cbvrex2vw jky+jTAz+kTAily+iTAz+lTA
1119 oveq1 i=kiT=kT
1120 1119 oveq2d i=ky+iT=y+kT
1121 1120 eleq1d i=ky+iTAy+kTA
1122 1121 anbi1d i=ky+iTAz+lTAy+kTAz+lTA
1123 oveq1 l=jlT=jT
1124 1123 oveq2d l=jz+lT=z+jT
1125 1124 eleq1d l=jz+lTAz+jTA
1126 1125 anbi2d l=jy+kTAz+lTAy+kTAz+jTA
1127 1122 1126 cbvrex2vw ily+iTAz+lTAkjy+kTAz+jTA
1128 rexcom kjy+kTAz+jTAjky+kTAz+jTA
1129 ancom y+kTAz+jTAz+jTAy+kTA
1130 1129 2rexbii jky+kTAz+jTAjkz+jTAy+kTA
1131 1127 1128 1130 3bitri ily+iTAz+lTAjkz+jTAy+kTA
1132 1118 1131 sylbb jky+jTAz+kTAjkz+jTAy+kTA
1133 1132 ad2antlr φyzjky+jTAz+kTAz<yjkz+jTAy+kTA
1134 eleq1 b=yby
1135 breq2 b=yz<bz<y
1136 1134 1135 3anbi23d b=yzbz<bzyz<y
1137 1136 anbi2d b=yφzbz<bφzyz<y
1138 oveq1 b=yb+kT=y+kT
1139 1138 eleq1d b=yb+kTAy+kTA
1140 1139 anbi2d b=yz+jTAb+kTAz+jTAy+kTA
1141 1140 2rexbidv b=yjkz+jTAb+kTAjkz+jTAy+kTA
1142 1137 1141 anbi12d b=yφzbz<bjkz+jTAb+kTAφzyz<yjkz+jTAy+kTA
1143 oveq2 b=yzb=zy
1144 1143 fveq2d b=yzb=zy
1145 1144 breq2d b=yEzbEzy
1146 1142 1145 imbi12d b=yφzbz<bjkz+jTAb+kTAEzbφzyz<yjkz+jTAy+kTAEzy
1147 eleq1 a=zaz
1148 breq1 a=za<bz<b
1149 1147 1148 3anbi13d a=zaba<bzbz<b
1150 1149 anbi2d a=zφaba<bφzbz<b
1151 oveq1 a=za+jT=z+jT
1152 1151 eleq1d a=za+jTAz+jTA
1153 1152 anbi1d a=za+jTAb+kTAz+jTAb+kTA
1154 1153 2rexbidv a=zjka+jTAb+kTAjkz+jTAb+kTA
1155 1150 1154 anbi12d a=zφaba<bjka+jTAb+kTAφzbz<bjkz+jTAb+kTA
1156 oveq1 a=zab=zb
1157 1156 fveq2d a=zab=zb
1158 1157 breq2d a=zEabEzb
1159 1155 1158 imbi12d a=zφaba<bjka+jTAb+kTAEabφzbz<bjkz+jTAb+kTAEzb
1160 1159 1089 chvarvv φzbz<bjkz+jTAb+kTAEzb
1161 1146 1160 chvarvv φzyz<yjkz+jTAy+kTAEzy
1162 1103 1109 1133 1161 syl21anc φyzjky+jTAz+kTAz<yEzy
1163 recn zz
1164 1163 adantl yzz
1165 recn yy
1166 1165 adantr yzy
1167 1164 1166 abssubd yzzy=yz
1168 1167 adantl φyzzy=yz
1169 1168 ad2antrr φyzjky+jTAz+kTAz<yzy=yz
1170 1162 1169 breqtrd φyzjky+jTAz+kTAz<yEyz
1171 1170 ex φyzjky+jTAz+kTAz<yEyz
1172 1171 3adantlr3 φyzyzjky+jTAz+kTAz<yEyz
1173 1172 adantr φyzyzjky+jTAz+kTA¬y<zz<yEyz
1174 1102 1173 mpd φyzyzjky+jTAz+kTA¬y<zEyz
1175 1092 1174 pm2.61dan φyzyzjky+jTAz+kTAEyz
1176 198 206 230 1175 syl21anc φyHzHyzEyz
1177 389 ad2antrr φyHzHyzE
1178 200 203 resubcld φyHzHyz
1179 1178 recnd φyHzHyz
1180 1179 abscld φyHzHyz
1181 1180 adantr φyHzHyzyz
1182 1177 1181 lenltd φyHzHyzEyz¬yz<E
1183 1176 1182 mpbid φyHzHyz¬yz<E
1184 nan φyHzH¬yzyz<EφyHzHyz¬yz<E
1185 1183 1184 mpbir φyHzH¬yzyz<E
1186 1185 ralrimivva φyHzH¬yzyz<E
1187 ralnex2 yHzH¬yzyz<E¬yHzHyzyz<E
1188 1186 1187 sylib φ¬yHzHyzyz<E
1189 1188 ad2antrr φxKxlimPtJH¬yHzHyzyz<E
1190 197 1189 pm2.65da φxK¬xlimPtJH
1191 1190 intnanrd φxK¬xlimPtJHxXY
1192 elin xlimPtJHXYxlimPtJHxXY
1193 1191 1192 sylnibr φxK¬xlimPtJHXY
1194 26 a1i φxKJTop
1195 27 adantr φxKXY
1196 24 adantr φxKHXY
1197 30 16 restlp JTopXYHXYlimPtKH=limPtJHXY
1198 1194 1195 1196 1197 syl3anc φxKlimPtKH=limPtJHXY
1199 1193 1198 neleqtrrd φxK¬xlimPtKH
1200 1199 nrexdv φ¬xKxlimPtKH
1201 1200 adantr φ¬HFin¬xKxlimPtKH
1202 41 1201 condan φHFin