Metamath Proof Explorer


Theorem binomcxplemnotnn0

Description: Lemma for binomcxp . When C is not a nonnegative integer, the generalized sum in binomcxplemnn0 —which we will call P —is a convergent power series: its base b is always of smaller absolute value than the radius of convergence.

pserdv2 gives the derivative of P , which by dvradcnv also converges in that radius. When A is fixed at one, ( A + b ) times that derivative equals ( C x. P ) and fraction ( P / ( ( A + b ) ^c C ) ) is always defined with derivative zero, so the fraction is a constant—specifically one, because ( ( 1 + 0 ) ^c C ) = 1 . Thus ( ( 1 + b ) ^c C ) = ( Pb ) .

Finally, let b be ( B / A ) , and multiply both the binomial ( ( 1 + ( B / A ) ) ^c C ) and the sum ( P( B / A ) ) by ( A ^c C ) to get the result. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φA+
binomcxp.b φB
binomcxp.lt φB<A
binomcxp.c φC
binomcxplem.f F=j0CC𝑐j
binomcxplem.s S=bk0Fkbk
binomcxplem.r R=supr|seq0+Srdom*<
binomcxplem.e E=bkkFkbk1
binomcxplem.d D=abs-10R
binomcxplem.p P=bDk0Sbk
Assertion binomcxplemnotnn0 φ¬C0A+BC=k0CC𝑐kACkBk

Proof

Step Hyp Ref Expression
1 binomcxp.a φA+
2 binomcxp.b φB
3 binomcxp.lt φB<A
4 binomcxp.c φC
5 binomcxplem.f F=j0CC𝑐j
6 binomcxplem.s S=bk0Fkbk
7 binomcxplem.r R=supr|seq0+Srdom*<
8 binomcxplem.e E=bkkFkbk1
9 binomcxplem.d D=abs-10R
10 binomcxplem.p P=bDk0Sbk
11 nfcv _babs-1
12 nfcv _b0
13 nfcv _b.
14 nfcv _b+
15 nfmpt1 _bbk0Fkbk
16 6 15 nfcxfr _bS
17 nfcv _br
18 16 17 nffv _bSr
19 12 14 18 nfseq _bseq0+Sr
20 19 nfel1 bseq0+Srdom
21 nfcv _b
22 20 21 nfrabw _br|seq0+Srdom
23 nfcv _b*
24 nfcv _b<
25 22 23 24 nfsup _bsupr|seq0+Srdom*<
26 7 25 nfcxfr _bR
27 12 13 26 nfov _b0R
28 11 27 nfima _babs-10R
29 9 28 nfcxfr _bD
30 nfcv _xD
31 nfcv _xk0Sbk
32 nfcv _b0
33 nfcv _bx
34 16 33 nffv _bSx
35 nfcv _bk
36 34 35 nffv _bSxk
37 32 36 nfsum _bk0Sxk
38 simpl b=xk0b=x
39 38 fveq2d b=xk0Sb=Sx
40 39 fveq1d b=xk0Sbk=Sxk
41 40 sumeq2dv b=xk0Sbk=k0Sxk
42 29 30 31 37 41 cbvmptf bDk0Sbk=xDk0Sxk
43 10 42 eqtri P=xDk0Sxk
44 43 a1i φ¬C0P=xDk0Sxk
45 simplr φ¬C0x=BAk0x=BA
46 45 fveq2d φ¬C0x=BAk0Sx=SBA
47 46 fveq1d φ¬C0x=BAk0Sxk=SBAk
48 47 sumeq2dv φ¬C0x=BAk0Sxk=k0SBAk
49 2 recnd φB
50 49 adantr φ¬C0B
51 1 rpcnd φA
52 51 adantr φ¬C0A
53 0red φ¬C00
54 50 abscld φ¬C0B
55 52 abscld φ¬C0A
56 50 absge0d φ¬C00B
57 3 adantr φ¬C0B<A
58 53 54 55 56 57 lelttrd φ¬C00<A
59 58 gt0ne0d φ¬C0A0
60 52 abs00ad φ¬C0A=0A=0
61 60 necon3bid φ¬C0A0A0
62 59 61 mpbid φ¬C0A0
63 50 52 62 divcld φ¬C0BA
64 63 abscld φ¬C0BA
65 63 absge0d φ¬C00BA
66 55 recnd φ¬C0A
67 66 mulridd φ¬C0A1=A
68 57 67 breqtrrd φ¬C0B<A1
69 1red φ¬C01
70 55 58 elrpd φ¬C0A+
71 54 69 70 ltdivmuld φ¬C0BA<1B<A1
72 68 71 mpbird φ¬C0BA<1
73 50 52 62 absdivd φ¬C0BA=BA
74 1 2 3 4 5 6 7 binomcxplemradcnv φ¬C0R=1
75 72 73 74 3brtr4d φ¬C0BA<R
76 0re 0
77 ssrab2 r|seq0+Srdom
78 ressxr *
79 77 78 sstri r|seq0+Srdom*
80 supxrcl r|seq0+Srdom*supr|seq0+Srdom*<*
81 79 80 ax-mp supr|seq0+Srdom*<*
82 7 81 eqeltri R*
83 elico2 0R*BA0RBA0BABA<R
84 76 82 83 mp2an BA0RBA0BABA<R
85 64 65 75 84 syl3anbrc φ¬C0BA0R
86 9 eleq2i BADBAabs-10R
87 absf abs:
88 ffn abs:absFn
89 elpreima absFnBAabs-10RBABA0R
90 87 88 89 mp2b BAabs-10RBABA0R
91 86 90 bitri BADBABA0R
92 63 85 91 sylanbrc φ¬C0BAD
93 sumex k0SBAkV
94 93 a1i φ¬C0k0SBAkV
95 44 48 92 94 fvmptd φ¬C0PBA=k0SBAk
96 eqid abs=abs
97 96 cnbl0 R*abs-10R=0ballabsR
98 82 97 ax-mp abs-10R=0ballabsR
99 9 98 eqtri D=0ballabsR
100 0cnd φ¬C00
101 82 a1i φ¬C0R*
102 mulcl xyxy
103 102 adantl φ¬C0xyxy
104 nfv bφ¬C0
105 29 nfcri bxD
106 104 105 nfan bφ¬C0xD
107 37 nfel1 bk0Sxk
108 106 107 nfim bφ¬C0xDk0Sxk
109 eleq1 b=xbDxD
110 109 anbi2d b=xφ¬C0bDφ¬C0xD
111 41 eleq1d b=xk0Sbkk0Sxk
112 110 111 imbi12d b=xφ¬C0bDk0Sbkφ¬C0xDk0Sxk
113 nn0uz 0=0
114 0zd φ¬C0bD0
115 eqidd φ¬C0bDk0Sbk=Sbk
116 cnvimass abs-10Rdomabs
117 9 116 eqsstri Ddomabs
118 87 fdmi domabs=
119 117 118 sseqtri D
120 119 sseli bDb
121 6 a1i φS=bk0Fkbk
122 nn0ex 0V
123 122 mptex k0FkbkV
124 123 a1i φbk0FkbkV
125 121 124 fvmpt2d φbSb=k0Fkbk
126 ovexd φbk0FkbkV
127 125 126 fvmpt2d φbk0Sbk=Fkbk
128 5 a1i φk0F=j0CC𝑐j
129 simpr φk0j=kj=k
130 129 oveq2d φk0j=kCC𝑐j=CC𝑐k
131 simpr φk0k0
132 ovexd φk0CC𝑐kV
133 128 130 131 132 fvmptd φk0Fk=CC𝑐k
134 133 oveq1d φk0Fkbk=CC𝑐kbk
135 134 adantlr φbk0Fkbk=CC𝑐kbk
136 127 135 eqtrd φbk0Sbk=CC𝑐kbk
137 120 136 sylanl2 φbDk0Sbk=CC𝑐kbk
138 4 ad2antrr φbDk0C
139 simpr φbDk0k0
140 138 139 bcccl φbDk0CC𝑐k
141 120 ad2antlr φbDk0b
142 141 139 expcld φbDk0bk
143 140 142 mulcld φbDk0CC𝑐kbk
144 137 143 eqeltrd φbDk0Sbk
145 144 adantllr φ¬C0bDk0Sbk
146 eleq1 x=bxDbD
147 146 anbi2d x=bφxDφbD
148 fveq2 x=bSx=Sb
149 148 seqeq3d x=bseq0+Sx=seq0+Sb
150 149 eleq1d x=bseq0+Sxdomseq0+Sbdom
151 fveq2 x=bEx=Eb
152 151 seqeq3d x=bseq1+Ex=seq1+Eb
153 152 eleq1d x=bseq1+Exdomseq1+Ebdom
154 150 153 anbi12d x=bseq0+Sxdomseq1+Exdomseq0+Sbdomseq1+Ebdom
155 147 154 imbi12d x=bφxDseq0+Sxdomseq1+ExdomφbDseq0+Sbdomseq1+Ebdom
156 1 2 3 4 5 6 7 8 9 binomcxplemcvg φxDseq0+Sxdomseq1+Exdom
157 155 156 chvarvv φbDseq0+Sbdomseq1+Ebdom
158 157 simpld φbDseq0+Sbdom
159 158 adantlr φ¬C0bDseq0+Sbdom
160 113 114 115 145 159 isumcl φ¬C0bDk0Sbk
161 108 112 160 chvarfv φ¬C0xDk0Sxk
162 161 43 fmptd φ¬C0P:D
163 1cnd φ¬C0xD1
164 119 sseli xDx
165 164 adantl φ¬C0xDx
166 163 165 addcld φ¬C0xD1+x
167 4 ad2antrr φ¬C0xDC
168 167 negcld φ¬C0xDC
169 166 168 cxpcld φ¬C0xD1+xC
170 nfcv _x1+bC
171 nfcv _b1+xC
172 oveq2 b=x1+b=1+x
173 172 oveq1d b=x1+bC=1+xC
174 29 30 170 171 173 cbvmptf bD1+bC=xD1+xC
175 169 174 fmptd φ¬C0bD1+bC:D
176 cnex V
177 fex abs:VabsV
178 87 176 177 mp2an absV
179 178 cnvex abs-1V
180 imaexg abs-1Vabs-10RV
181 179 180 ax-mp abs-10RV
182 9 181 eqeltri DV
183 182 a1i φ¬C0DV
184 inidm DD=D
185 103 162 175 183 183 184 off φ¬C0P×fbD1+bC:D
186 1ex 1V
187 186 fconst D×1:D1
188 fconstmpt D×1=xD1
189 nfcv _b1
190 nfcv _x1
191 eqidd x=b1=1
192 30 29 189 190 191 cbvmptf xD1=bD1
193 188 192 eqtri D×1=bD1
194 193 feq1i D×1:D1bD1:D1
195 187 194 mpbi bD1:D1
196 ax-1cn 1
197 snssi 11
198 196 197 ax-mp 1
199 fss bD1:D11bD1:D
200 195 198 199 mp2an bD1:D
201 200 a1i φ¬C0bD1:D
202 cnelprrecn
203 202 a1i φ¬C0
204 1 2 3 4 5 6 7 8 9 10 binomcxplemdvsum φDP=bDkEbk
205 204 adantr φ¬C0DP=bDkEbk
206 nfcv _xkEbk
207 nfcv _b
208 nfmpt1 _bbkkFkbk1
209 8 208 nfcxfr _bE
210 209 33 nffv _bEx
211 210 35 nffv _bExk
212 207 211 nfsum _bkExk
213 simpl b=xkb=x
214 213 fveq2d b=xkEb=Ex
215 214 fveq1d b=xkEbk=Exk
216 215 sumeq2dv b=xkEbk=kExk
217 29 30 206 212 216 cbvmptf bDkEbk=xDkExk
218 205 217 eqtrdi φ¬C0DP=xDkExk
219 sumex kExkV
220 219 a1i φ¬C0xDkExkV
221 218 220 fmpt3d φ¬C0P:DV
222 221 fdmd φ¬C0domP=D
223 1 2 3 4 5 6 7 8 9 binomcxplemdvbinom φ¬C0dbD1+bCdb=bDC1+b-C-1
224 nfcv _xC1+b-C-1
225 nfcv _bC1+x-C-1
226 172 oveq1d b=x1+b-C-1=1+x-C-1
227 226 oveq2d b=xC1+b-C-1=C1+x-C-1
228 29 30 224 225 227 cbvmptf bDC1+b-C-1=xDC1+x-C-1
229 223 228 eqtrdi φ¬C0dbD1+bCdb=xDC1+x-C-1
230 168 163 subcld φ¬C0xD-C-1
231 166 230 cxpcld φ¬C0xD1+x-C-1
232 168 231 mulcld φ¬C0xDC1+x-C-1
233 229 232 fmpt3d φ¬C0dbD1+bCdb:D
234 233 fdmd φ¬C0domdbD1+bCdb=D
235 203 162 175 222 234 dvmulf φ¬C0DP×fbD1+bC=P×fbD1+bC+fdbD1+bCdb×fP
236 4 ad2antrr φ¬C0bDC
237 236 mulridd φ¬C0bDC1=C
238 237 oveq1d φ¬C0bDC1+CkCC𝑐kbk=C+CkCC𝑐kbk
239 1cnd φ¬C0bD1
240 nnuz =1
241 1zzd φ¬C0bD1
242 nnnn0 kk0
243 242 137 sylan2 φbDkSbk=CC𝑐kbk
244 243 adantllr φ¬C0bDkSbk=CC𝑐kbk
245 4 ad3antrrr φ¬C0bDk0C
246 simpr φ¬C0bDk0k0
247 245 246 bcccl φ¬C0bDk0CC𝑐k
248 242 247 sylan2 φ¬C0bDkCC𝑐k
249 120 adantl φ¬C0bDb
250 249 adantr φ¬C0bDk0b
251 250 246 expcld φ¬C0bDk0bk
252 242 251 sylan2 φ¬C0bDkbk
253 248 252 mulcld φ¬C0bDkCC𝑐kbk
254 1nn0 10
255 254 a1i φbD10
256 113 255 144 iserex φbDseq0+Sbdomseq1+Sbdom
257 158 256 mpbid φbDseq1+Sbdom
258 257 adantlr φ¬C0bDseq1+Sbdom
259 240 241 244 253 258 isumcl φ¬C0bDkCC𝑐kbk
260 236 239 259 adddid φ¬C0bDC1+kCC𝑐kbk=C1+CkCC𝑐kbk
261 8 a1i φE=bkkFkbk1
262 nnex V
263 262 mptex kkFkbk1V
264 263 a1i φbkkFkbk1V
265 261 264 fvmpt2d φbEb=kkFkbk1
266 120 265 sylan2 φbDEb=kkFkbk1
267 266 adantlr φ¬C0bDEb=kkFkbk1
268 ovexd φ¬C0bDkkFkbk1V
269 267 268 fmpt3d φ¬C0bDEb:V
270 269 feqmptd φ¬C0bDEb=kEbk
271 ovexd φbkkFkbk1V
272 265 271 fvmpt2d φbkEbk=kFkbk1
273 242 133 sylan2 φkFk=CC𝑐k
274 273 oveq2d φkkFk=kCC𝑐k
275 274 oveq1d φkkFkbk1=kCC𝑐kbk1
276 275 adantlr φbkkFkbk1=kCC𝑐kbk1
277 272 276 eqtrd φbkEbk=kCC𝑐kbk1
278 4 adantr φkC
279 nnm1nn0 kk10
280 279 adantl φkk10
281 278 280 bccp1k φkCC𝑐k-1+1=CC𝑐k1Ck1k-1+1
282 242 adantl φkk0
283 282 nn0cnd φkk
284 1cnd φk1
285 283 284 npcand φkk-1+1=k
286 285 oveq2d φkCC𝑐k-1+1=CC𝑐k
287 285 oveq2d φkCk1k-1+1=Ck1k
288 287 oveq2d φkCC𝑐k1Ck1k-1+1=CC𝑐k1Ck1k
289 281 286 288 3eqtr3d φkCC𝑐k=CC𝑐k1Ck1k
290 289 oveq2d φkkCC𝑐k=kCC𝑐k1Ck1k
291 278 280 bcccl φkCC𝑐k1
292 283 284 subcld φkk1
293 278 292 subcld φkCk1
294 nnne0 kk0
295 294 adantl φkk0
296 291 293 283 295 divassd φkCC𝑐k1Ck1k=CC𝑐k1Ck1k
297 296 oveq2d φkkCC𝑐k1Ck1k=kCC𝑐k1Ck1k
298 291 293 mulcld φkCC𝑐k1Ck1
299 298 283 295 divcan2d φkkCC𝑐k1Ck1k=CC𝑐k1Ck1
300 290 297 299 3eqtr2d φkkCC𝑐k=CC𝑐k1Ck1
301 300 oveq1d φkkCC𝑐kbk1=CC𝑐k1Ck1bk1
302 301 adantlr φbkkCC𝑐kbk1=CC𝑐k1Ck1bk1
303 291 adantlr φbkCC𝑐k1
304 293 adantlr φbkCk1
305 303 304 mulcomd φbkCC𝑐k1Ck1=Ck1CC𝑐k1
306 305 oveq1d φbkCC𝑐k1Ck1bk1=Ck1CC𝑐k1bk1
307 277 302 306 3eqtrd φbkEbk=Ck1CC𝑐k1bk1
308 120 307 sylanl2 φbDkEbk=Ck1CC𝑐k1bk1
309 308 adantllr φ¬C0bDkEbk=Ck1CC𝑐k1bk1
310 309 mpteq2dva φ¬C0bDkEbk=kCk1CC𝑐k1bk1
311 270 310 eqtrd φ¬C0bDEb=kCk1CC𝑐k1bk1
312 311 oveq1d φ¬C0bDEbshift-1=kCk1CC𝑐k1bk1shift-1
313 eqid kCk1CC𝑐k1bk1=kCk1CC𝑐k1bk1
314 ovex Ck1CC𝑐k1bk1V
315 oveq1 k=j-1k1=j--1-1
316 315 oveq2d k=j-1Ck1=Cj--1-1
317 315 oveq2d k=j-1CC𝑐k1=CC𝑐j--1-1
318 316 317 oveq12d k=j-1Ck1CC𝑐k1=Cj--1-1CC𝑐j--1-1
319 315 oveq2d k=j-1bk1=bj--1-1
320 318 319 oveq12d k=j-1Ck1CC𝑐k1bk1=Cj--1-1CC𝑐j--1-1bj--1-1
321 1pneg1e0 1+-1=0
322 321 fveq2i 1+-1=0
323 113 322 eqtr4i 0=1+-1
324 241 znegcld φ¬C0bD1
325 313 314 320 240 323 241 324 uzmptshftfval φ¬C0bDkCk1CC𝑐k1bk1shift-1=j0Cj--1-1CC𝑐j--1-1bj--1-1
326 oveq1 j=kj-1=k-1
327 326 oveq1d j=kj--1-1=k--1-1
328 327 oveq2d j=kCj--1-1=Ck--1-1
329 327 oveq2d j=kCC𝑐j--1-1=CC𝑐k--1-1
330 328 329 oveq12d j=kCj--1-1CC𝑐j--1-1=Ck--1-1CC𝑐k--1-1
331 327 oveq2d j=kbj--1-1=bk--1-1
332 330 331 oveq12d j=kCj--1-1CC𝑐j--1-1bj--1-1=Ck--1-1CC𝑐k--1-1bk--1-1
333 332 cbvmptv j0Cj--1-1CC𝑐j--1-1bj--1-1=k0Ck--1-1CC𝑐k--1-1bk--1-1
334 333 a1i φ¬C0bDj0Cj--1-1CC𝑐j--1-1bj--1-1=k0Ck--1-1CC𝑐k--1-1bk--1-1
335 312 325 334 3eqtrd φ¬C0bDEbshift-1=k0Ck--1-1CC𝑐k--1-1bk--1-1
336 nn0cn k0k
337 1cnd k01
338 336 337 subnegd k0k-1=k+1
339 338 oveq1d k0k--1-1=k+1-1
340 336 337 pncand k0k+1-1=k
341 339 340 eqtrd k0k--1-1=k
342 341 adantl φ¬C0bDk0k--1-1=k
343 342 oveq2d φ¬C0bDk0Ck--1-1=Ck
344 342 oveq2d φ¬C0bDk0CC𝑐k--1-1=CC𝑐k
345 343 344 oveq12d φ¬C0bDk0Ck--1-1CC𝑐k--1-1=CkCC𝑐k
346 342 oveq2d φ¬C0bDk0bk--1-1=bk
347 345 346 oveq12d φ¬C0bDk0Ck--1-1CC𝑐k--1-1bk--1-1=CkCC𝑐kbk
348 347 mpteq2dva φ¬C0bDk0Ck--1-1CC𝑐k--1-1bk--1-1=k0CkCC𝑐kbk
349 335 348 eqtrd φ¬C0bDEbshift-1=k0CkCC𝑐kbk
350 ovexd φ¬C0bDk0CkCC𝑐kbkV
351 349 350 fvmpt2d φ¬C0bDk0Ebshift-1k=CkCC𝑐kbk
352 242 351 sylan2 φ¬C0bDkEbshift-1k=CkCC𝑐kbk
353 336 adantl φ¬C0bDk0k
354 245 353 subcld φ¬C0bDk0Ck
355 354 247 mulcld φ¬C0bDk0CkCC𝑐k
356 355 251 mulcld φ¬C0bDk0CkCC𝑐kbk
357 242 356 sylan2 φ¬C0bDkCkCC𝑐kbk
358 fveq2 k=jEbk=Ebj
359 358 oveq2d k=jbEbk=bEbj
360 359 cbvmptv kbEbk=jbEbj
361 309 oveq2d φ¬C0bDkbEbk=bCk1CC𝑐k1bk1
362 249 adantr φ¬C0bDkb
363 4 ad3antrrr φ¬C0bDkC
364 nncn kk
365 364 adantl φ¬C0bDkk
366 1cnd φ¬C0bDk1
367 365 366 subcld φ¬C0bDkk1
368 363 367 subcld φ¬C0bDkCk1
369 279 adantl φ¬C0bDkk10
370 363 369 bcccl φ¬C0bDkCC𝑐k1
371 368 370 mulcld φ¬C0bDkCk1CC𝑐k1
372 362 369 expcld φ¬C0bDkbk1
373 362 371 372 mul12d φ¬C0bDkbCk1CC𝑐k1bk1=Ck1CC𝑐k1bbk1
374 362 372 mulcomd φ¬C0bDkbbk1=bk1b
375 362 369 expp1d φ¬C0bDkbk-1+1=bk1b
376 285 adantlr φ¬C0kk-1+1=k
377 376 adantlr φ¬C0bDkk-1+1=k
378 377 oveq2d φ¬C0bDkbk-1+1=bk
379 374 375 378 3eqtr2d φ¬C0bDkbbk1=bk
380 379 oveq2d φ¬C0bDkCk1CC𝑐k1bbk1=Ck1CC𝑐k1bk
381 373 380 eqtrd φ¬C0bDkbCk1CC𝑐k1bk1=Ck1CC𝑐k1bk
382 361 381 eqtrd φ¬C0bDkbEbk=Ck1CC𝑐k1bk
383 382 mpteq2dva φ¬C0bDkbEbk=kCk1CC𝑐k1bk
384 360 383 eqtr3id φ¬C0bDjbEbj=kCk1CC𝑐k1bk
385 ovexd φ¬C0bDkCk1CC𝑐k1bkV
386 384 385 fvmpt2d φ¬C0bDkjbEbjk=Ck1CC𝑐k1bk
387 371 252 mulcld φ¬C0bDkCk1CC𝑐k1bk
388 climrel Rel
389 157 simprd φbDseq1+Ebdom
390 389 adantlr φ¬C0bDseq1+Ebdom
391 climdm seq1+Ebdomseq1+Ebseq1+Eb
392 390 391 sylib φ¬C0bDseq1+Ebseq1+Eb
393 0z 0
394 neg1z 1
395 fvex EbV
396 395 seqshft 01seq0+Ebshift-1=seq0-1+Ebshift-1
397 393 394 396 mp2an seq0+Ebshift-1=seq0-1+Ebshift-1
398 0cn 0
399 398 196 subnegi 0-1=0+1
400 0p1e1 0+1=1
401 399 400 eqtri 0-1=1
402 seqeq1 0-1=1seq0-1+Eb=seq1+Eb
403 401 402 ax-mp seq0-1+Eb=seq1+Eb
404 403 oveq1i seq0-1+Ebshift-1=seq1+Ebshift-1
405 397 404 eqtri seq0+Ebshift-1=seq1+Ebshift-1
406 405 breq1i seq0+Ebshift-1seq1+Ebseq1+Ebshift-1seq1+Eb
407 seqex seq1+EbV
408 climshft 1seq1+EbVseq1+Ebshift-1seq1+Ebseq1+Ebseq1+Eb
409 394 407 408 mp2an seq1+Ebshift-1seq1+Ebseq1+Ebseq1+Eb
410 406 409 bitri seq0+Ebshift-1seq1+Ebseq1+Ebseq1+Eb
411 392 410 sylibr φ¬C0bDseq0+Ebshift-1seq1+Eb
412 releldm Relseq0+Ebshift-1seq1+Ebseq0+Ebshift-1dom
413 388 411 412 sylancr φ¬C0bDseq0+Ebshift-1dom
414 254 a1i φ¬C0bD10
415 351 356 eqeltrd φ¬C0bDk0Ebshift-1k
416 113 414 415 iserex φ¬C0bDseq0+Ebshift-1domseq1+Ebshift-1dom
417 413 416 mpbid φ¬C0bDseq1+Ebshift-1dom
418 371 372 mulcld φ¬C0bDkCk1CC𝑐k1bk1
419 309 418 eqeltrd φ¬C0bDkEbk
420 386 382 eqtr4d φ¬C0bDkjbEbjk=bEbk
421 240 241 249 392 419 420 isermulc2 φ¬C0bDseq1+jbEbjbseq1+Eb
422 releldm Relseq1+jbEbjbseq1+Ebseq1+jbEbjdom
423 388 421 422 sylancr φ¬C0bDseq1+jbEbjdom
424 240 241 352 357 386 387 417 423 isumadd φ¬C0bDkCkCC𝑐kbk+Ck1CC𝑐k1bk=kCkCC𝑐kbk+kCk1CC𝑐k1bk
425 424 oveq2d φ¬C0bDC+kCkCC𝑐kbk+Ck1CC𝑐k1bk=C+kCkCC𝑐kbk+kCk1CC𝑐k1bk
426 363 365 subcld φ¬C0bDkCk
427 426 248 mulcld φ¬C0bDkCkCC𝑐k
428 427 371 252 adddird φ¬C0bDkCkCC𝑐k+Ck1CC𝑐k1bk=CkCC𝑐kbk+Ck1CC𝑐k1bk
429 428 sumeq2dv φ¬C0bDkCkCC𝑐k+Ck1CC𝑐k1bk=kCkCC𝑐kbk+Ck1CC𝑐k1bk
430 429 oveq2d φ¬C0bDC+kCkCC𝑐k+Ck1CC𝑐k1bk=C+kCkCC𝑐kbk+Ck1CC𝑐k1bk
431 307 sumeq2dv φbkEbk=kCk1CC𝑐k1bk1
432 431 oveq2d φb1+bkEbk=1+bkCk1CC𝑐k1bk1
433 120 432 sylan2 φbD1+bkEbk=1+bkCk1CC𝑐k1bk1
434 433 adantlr φ¬C0bD1+bkEbk=1+bkCk1CC𝑐k1bk1
435 240 241 309 418 390 isumcl φ¬C0bDkCk1CC𝑐k1bk1
436 239 249 435 adddird φ¬C0bD1+bkCk1CC𝑐k1bk1=1kCk1CC𝑐k1bk1+bkCk1CC𝑐k1bk1
437 435 mullidd φ¬C0bD1kCk1CC𝑐k1bk1=kCk1CC𝑐k1bk1
438 240 241 309 418 390 249 isummulc2 φ¬C0bDbkCk1CC𝑐k1bk1=kbCk1CC𝑐k1bk1
439 381 sumeq2dv φ¬C0bDkbCk1CC𝑐k1bk1=kCk1CC𝑐k1bk
440 438 439 eqtrd φ¬C0bDbkCk1CC𝑐k1bk1=kCk1CC𝑐k1bk
441 437 440 oveq12d φ¬C0bD1kCk1CC𝑐k1bk1+bkCk1CC𝑐k1bk1=kCk1CC𝑐k1bk1+kCk1CC𝑐k1bk
442 434 436 441 3eqtrd φ¬C0bD1+bkEbk=kCk1CC𝑐k1bk1+kCk1CC𝑐k1bk
443 400 fveq2i 0+1=1
444 240 443 eqtr4i =0+1
445 oveq1 k=1+jk1=1+j-1
446 445 oveq2d k=1+jCk1=C1+j-1
447 445 oveq2d k=1+jCC𝑐k1=CC𝑐1+j-1
448 446 447 oveq12d k=1+jCk1CC𝑐k1=C1+j-1CC𝑐1+j-1
449 445 oveq2d k=1+jbk1=b1+j-1
450 448 449 oveq12d k=1+jCk1CC𝑐k1bk1=C1+j-1CC𝑐1+j-1b1+j-1
451 113 444 450 241 114 418 isumshft φ¬C0bDkCk1CC𝑐k1bk1=j0C1+j-1CC𝑐1+j-1b1+j-1
452 oveq2 j=k1+j=1+k
453 452 oveq1d j=k1+j-1=1+k-1
454 453 oveq2d j=kC1+j-1=C1+k-1
455 453 oveq2d j=kCC𝑐1+j-1=CC𝑐1+k-1
456 454 455 oveq12d j=kC1+j-1CC𝑐1+j-1=C1+k-1CC𝑐1+k-1
457 453 oveq2d j=kb1+j-1=b1+k-1
458 456 457 oveq12d j=kC1+j-1CC𝑐1+j-1b1+j-1=C1+k-1CC𝑐1+k-1b1+k-1
459 458 cbvsumv j0C1+j-1CC𝑐1+j-1b1+j-1=k0C1+k-1CC𝑐1+k-1b1+k-1
460 459 a1i φ¬C0bDj0C1+j-1CC𝑐1+j-1b1+j-1=k0C1+k-1CC𝑐1+k-1b1+k-1
461 1cnd φ¬C0bDk01
462 461 353 pncan2d φ¬C0bDk01+k-1=k
463 462 oveq2d φ¬C0bDk0C1+k-1=Ck
464 462 oveq2d φ¬C0bDk0CC𝑐1+k-1=CC𝑐k
465 463 464 oveq12d φ¬C0bDk0C1+k-1CC𝑐1+k-1=CkCC𝑐k
466 462 oveq2d φ¬C0bDk0b1+k-1=bk
467 465 466 oveq12d φ¬C0bDk0C1+k-1CC𝑐1+k-1b1+k-1=CkCC𝑐kbk
468 467 sumeq2dv φ¬C0bDk0C1+k-1CC𝑐1+k-1b1+k-1=k0CkCC𝑐kbk
469 451 460 468 3eqtrd φ¬C0bDkCk1CC𝑐k1bk1=k0CkCC𝑐kbk
470 113 114 351 356 413 isum1p φ¬C0bDk0CkCC𝑐kbk=Ebshift-10+k0+1CkCC𝑐kbk
471 simpr φ¬C0bDk=0k=0
472 471 oveq2d φ¬C0bDk=0Ck=C0
473 471 oveq2d φ¬C0bDk=0CC𝑐k=CC𝑐0
474 472 473 oveq12d φ¬C0bDk=0CkCC𝑐k=C0CC𝑐0
475 471 oveq2d φ¬C0bDk=0bk=b0
476 474 475 oveq12d φ¬C0bDk=0CkCC𝑐kbk=C0CC𝑐0b0
477 0nn0 00
478 477 a1i φ¬C0bD00
479 ovexd φ¬C0bDC0CC𝑐0b0V
480 349 476 478 479 fvmptd φ¬C0bDEbshift-10=C0CC𝑐0b0
481 236 subid1d φ¬C0bDC0=C
482 236 bccn0 φ¬C0bDCC𝑐0=1
483 481 482 oveq12d φ¬C0bDC0CC𝑐0=C1
484 483 237 eqtrd φ¬C0bDC0CC𝑐0=C
485 249 exp0d φ¬C0bDb0=1
486 484 485 oveq12d φ¬C0bDC0CC𝑐0b0=C1
487 480 486 237 3eqtrd φ¬C0bDEbshift-10=C
488 444 eqcomi 0+1=
489 488 sumeq1i k0+1CkCC𝑐kbk=kCkCC𝑐kbk
490 489 a1i φ¬C0bDk0+1CkCC𝑐kbk=kCkCC𝑐kbk
491 487 490 oveq12d φ¬C0bDEbshift-10+k0+1CkCC𝑐kbk=C+kCkCC𝑐kbk
492 469 470 491 3eqtrd φ¬C0bDkCk1CC𝑐k1bk1=C+kCkCC𝑐kbk
493 492 oveq1d φ¬C0bDkCk1CC𝑐k1bk1+kCk1CC𝑐k1bk=C+kCkCC𝑐kbk+kCk1CC𝑐k1bk
494 240 241 352 357 417 isumcl φ¬C0bDkCkCC𝑐kbk
495 249 435 mulcld φ¬C0bDbkCk1CC𝑐k1bk1
496 440 495 eqeltrrd φ¬C0bDkCk1CC𝑐k1bk
497 236 494 496 addassd φ¬C0bDC+kCkCC𝑐kbk+kCk1CC𝑐k1bk=C+kCkCC𝑐kbk+kCk1CC𝑐k1bk
498 442 493 497 3eqtrd φ¬C0bD1+bkEbk=C+kCkCC𝑐kbk+kCk1CC𝑐k1bk
499 425 430 498 3eqtr4rd φ¬C0bD1+bkEbk=C+kCkCC𝑐k+Ck1CC𝑐k1bk
500 simpr φkk
501 278 500 binomcxplemwb φkCkCC𝑐k+Ck1CC𝑐k1=CCC𝑐k
502 501 oveq1d φkCkCC𝑐k+Ck1CC𝑐k1bk=CCC𝑐kbk
503 502 sumeq2dv φkCkCC𝑐k+Ck1CC𝑐k1bk=kCCC𝑐kbk
504 503 oveq2d φC+kCkCC𝑐k+Ck1CC𝑐k1bk=C+kCCC𝑐kbk
505 504 ad2antrr φ¬C0bDC+kCkCC𝑐k+Ck1CC𝑐k1bk=C+kCCC𝑐kbk
506 363 248 252 mulassd φ¬C0bDkCCC𝑐kbk=CCC𝑐kbk
507 506 sumeq2dv φ¬C0bDkCCC𝑐kbk=kCCC𝑐kbk
508 240 241 244 253 258 236 isummulc2 φ¬C0bDCkCC𝑐kbk=kCCC𝑐kbk
509 507 508 eqtr4d φ¬C0bDkCCC𝑐kbk=CkCC𝑐kbk
510 509 oveq2d φ¬C0bDC+kCCC𝑐kbk=C+CkCC𝑐kbk
511 499 505 510 3eqtrd φ¬C0bD1+bkEbk=C+CkCC𝑐kbk
512 238 260 511 3eqtr4rd φ¬C0bD1+bkEbk=C1+kCC𝑐kbk
513 6 a1i φ¬C0S=bk0Fkbk
514 123 a1i φ¬C0bk0FkbkV
515 513 514 fvmpt2d φ¬C0bSb=k0Fkbk
516 120 515 sylan2 φ¬C0bDSb=k0Fkbk
517 ovexd φ¬C0bDk0FkbkV
518 516 517 fvmpt2d φ¬C0bDk0Sbk=Fkbk
519 518 sumeq2dv φ¬C0bDk0Sbk=k0Fkbk
520 4 adantr φk0C
521 520 131 bcccl φk0CC𝑐k
522 133 521 eqeltrd φk0Fk
523 522 adantlr φ¬C0k0Fk
524 523 adantlr φ¬C0bDk0Fk
525 524 251 mulcld φ¬C0bDk0Fkbk
526 113 114 518 525 159 isum1p φ¬C0bDk0Fkbk=Sb0+k0+1Fkbk
527 471 fveq2d φ¬C0bDk=0Fk=F0
528 527 475 oveq12d φ¬C0bDk=0Fkbk=F0b0
529 ovexd φ¬C0bDF0b0V
530 516 528 478 529 fvmptd φ¬C0bDSb0=F0b0
531 5 a1i φF=j0CC𝑐j
532 simpr φj=0j=0
533 532 oveq2d φj=0CC𝑐j=CC𝑐0
534 477 a1i φ00
535 ovexd φCC𝑐0V
536 531 533 534 535 fvmptd φF0=CC𝑐0
537 536 ad2antrr φ¬C0bDF0=CC𝑐0
538 537 482 eqtrd φ¬C0bDF0=1
539 538 485 oveq12d φ¬C0bDF0b0=11
540 239 mulridd φ¬C0bD11=1
541 530 539 540 3eqtrd φ¬C0bDSb0=1
542 488 sumeq1i k0+1Fkbk=kFkbk
543 134 adantlr φbDk0Fkbk=CC𝑐kbk
544 242 543 sylan2 φbDkFkbk=CC𝑐kbk
545 544 adantllr φ¬C0bDkFkbk=CC𝑐kbk
546 545 sumeq2dv φ¬C0bDkFkbk=kCC𝑐kbk
547 542 546 eqtrid φ¬C0bDk0+1Fkbk=kCC𝑐kbk
548 541 547 oveq12d φ¬C0bDSb0+k0+1Fkbk=1+kCC𝑐kbk
549 519 526 548 3eqtrrd φ¬C0bD1+kCC𝑐kbk=k0Sbk
550 549 oveq2d φ¬C0bDC1+kCC𝑐kbk=Ck0Sbk
551 512 550 eqtrd φ¬C0bD1+bkEbk=Ck0Sbk
552 236 160 mulcld φ¬C0bDCk0Sbk
553 239 249 addcld φ¬C0bD1+b
554 eqidd φ¬C0bDkEbk=Ebk
555 240 241 554 419 390 isumcl φ¬C0bDkEbk
556 239 249 subnegd φ¬C0bD1b=1+b
557 249 negcld φ¬C0bDb
558 elpreima absFnbabs-10Rbb0R
559 87 88 558 mp2b babs-10Rbb0R
560 559 simprbi babs-10Rb0R
561 560 9 eleq2s bDb0R
562 elico2 0R*b0Rb0bb<R
563 76 82 562 mp2an b0Rb0bb<R
564 563 simp3bi b0Rb<R
565 561 564 syl bDb<R
566 565 adantl φ¬C0bDb<R
567 249 absnegd φ¬C0bDb=b
568 567 eqcomd φ¬C0bDb=b
569 74 adantr φ¬C0bDR=1
570 566 568 569 3brtr3d φ¬C0bDb<1
571 1re 1
572 abssubne0 b1b<11b0
573 571 572 mp3an2 bb<11b0
574 557 570 573 syl2anc φ¬C0bD1b0
575 556 574 eqnetrrd φ¬C0bD1+b0
576 552 553 555 575 divmuld φ¬C0bDCk0Sbk1+b=kEbk1+bkEbk=Ck0Sbk
577 551 576 mpbird φ¬C0bDCk0Sbk1+b=kEbk
578 236 160 553 575 div23d φ¬C0bDCk0Sbk1+b=C1+bk0Sbk
579 577 578 eqtr3d φ¬C0bDkEbk=C1+bk0Sbk
580 579 mpteq2dva φ¬C0bDkEbk=bDC1+bk0Sbk
581 ovexd φ¬C0bDC1+bV
582 sumex k0SbkV
583 582 a1i φ¬C0bDk0SbkV
584 eqidd φ¬C0bDC1+b=bDC1+b
585 10 a1i φ¬C0P=bDk0Sbk
586 104 29 183 581 583 584 585 offval2f φ¬C0bDC1+b×fP=bDC1+bk0Sbk
587 580 205 586 3eqtr4d φ¬C0DP=bDC1+b×fP
588 587 oveq1d φ¬C0P×fbD1+bC=bDC1+b×fP×fbD1+bC
589 223 oveq1d φ¬C0dbD1+bCdb×fP=bDC1+b-C-1×fP
590 588 589 oveq12d φ¬C0P×fbD1+bC+fdbD1+bCdb×fP=bDC1+b×fP×fbD1+bC+fbDC1+b-C-1×fP
591 ovexd φ¬C0bDC1+bk0Sbk1+bCV
592 ovexd φ¬C0bDC1+b-C-1k0SbkV
593 ovexd φ¬C0bDC1+bk0SbkV
594 ovexd φ¬C0bD1+bCV
595 eqidd φ¬C0bD1+bC=bD1+bC
596 104 29 183 593 594 586 595 offval2f φ¬C0bDC1+b×fP×fbD1+bC=bDC1+bk0Sbk1+bC
597 ovexd φ¬C0bDC1+b-C-1V
598 eqidd φ¬C0bDC1+b-C-1=bDC1+b-C-1
599 104 29 183 597 583 598 585 offval2f φ¬C0bDC1+b-C-1×fP=bDC1+b-C-1k0Sbk
600 104 29 183 591 592 596 599 offval2f φ¬C0bDC1+b×fP×fbD1+bC+fbDC1+b-C-1×fP=bDC1+bk0Sbk1+bC+C1+b-C-1k0Sbk
601 235 590 600 3eqtrd φ¬C0DP×fbD1+bC=bDC1+bk0Sbk1+bC+C1+b-C-1k0Sbk
602 236 553 575 divcld φ¬C0bDC1+b
603 236 negcld φ¬C0bDC
604 553 603 cxpcld φ¬C0bD1+bC
605 602 160 604 mul32d φ¬C0bDC1+bk0Sbk1+bC=C1+b1+bCk0Sbk
606 236 553 604 575 div32d φ¬C0bDC1+b1+bC=C1+bC1+b
607 553 575 603 239 cxpsubd φ¬C0bD1+b-C-1=1+bC1+b1
608 553 cxp1d φ¬C0bD1+b1=1+b
609 608 oveq2d φ¬C0bD1+bC1+b1=1+bC1+b
610 607 609 eqtr2d φ¬C0bD1+bC1+b=1+b-C-1
611 610 oveq2d φ¬C0bDC1+bC1+b=C1+b-C-1
612 606 611 eqtrd φ¬C0bDC1+b1+bC=C1+b-C-1
613 612 oveq1d φ¬C0bDC1+b1+bCk0Sbk=C1+b-C-1k0Sbk
614 605 613 eqtrd φ¬C0bDC1+bk0Sbk1+bC=C1+b-C-1k0Sbk
615 603 239 subcld φ¬C0bD-C-1
616 553 615 cxpcld φ¬C0bD1+b-C-1
617 236 616 mulneg1d φ¬C0bDC1+b-C-1=C1+b-C-1
618 617 oveq1d φ¬C0bDC1+b-C-1k0Sbk=C1+b-C-1k0Sbk
619 236 616 mulcld φ¬C0bDC1+b-C-1
620 619 160 mulneg1d φ¬C0bDC1+b-C-1k0Sbk=C1+b-C-1k0Sbk
621 618 620 eqtrd φ¬C0bDC1+b-C-1k0Sbk=C1+b-C-1k0Sbk
622 614 621 oveq12d φ¬C0bDC1+bk0Sbk1+bC+C1+b-C-1k0Sbk=C1+b-C-1k0Sbk+C1+b-C-1k0Sbk
623 619 160 mulcld φ¬C0bDC1+b-C-1k0Sbk
624 623 negidd φ¬C0bDC1+b-C-1k0Sbk+C1+b-C-1k0Sbk=0
625 622 624 eqtrd φ¬C0bDC1+bk0Sbk1+bC+C1+b-C-1k0Sbk=0
626 625 mpteq2dva φ¬C0bDC1+bk0Sbk1+bC+C1+b-C-1k0Sbk=bD0
627 601 626 eqtrd φ¬C0DP×fbD1+bC=bD0
628 nfcv _x0
629 eqidd x=b0=0
630 30 29 12 628 629 cbvmptf xD0=bD0
631 627 630 eqtr4di φ¬C0DP×fbD1+bC=xD0
632 c0ex 0V
633 632 snid 00
634 633 a1i φ¬C0xD00
635 631 634 fmpt3d φ¬C0P×fbD1+bC:D0
636 635 fdmd φ¬C0domP×fbD1+bC=D
637 1cnd φ¬C0x1
638 0cnd φ¬C0x0
639 dvconst 1D×1=×0
640 196 639 ax-mp D×1=×0
641 fconstmpt ×1=x1
642 641 oveq2i D×1=dx1dx
643 fconstmpt ×0=x0
644 640 642 643 3eqtr3i dx1dx=x0
645 644 a1i φ¬C0dx1dx=x0
646 119 a1i φ¬C0D
647 fvex TopOpenfldV
648 cnfldtps fldTopSp
649 cnfldbas =Basefld
650 eqid TopOpenfld=TopOpenfld
651 649 650 tpsuni fldTopSp=TopOpenfld
652 648 651 ax-mp =TopOpenfld
653 652 restid TopOpenfldVTopOpenfld𝑡=TopOpenfld
654 647 653 ax-mp TopOpenfld𝑡=TopOpenfld
655 654 eqcomi TopOpenfld=TopOpenfld𝑡
656 650 cnfldtop TopOpenfldTop
657 cnxmet abs∞Met
658 650 cnfldtopn TopOpenfld=MetOpenabs
659 658 blopn abs∞Met0R*0ballabsRTopOpenfld
660 657 398 82 659 mp3an 0ballabsRTopOpenfld
661 99 660 eqeltri DTopOpenfld
662 isopn3i TopOpenfldTopDTopOpenfldintTopOpenfldD=D
663 656 661 662 mp2an intTopOpenfldD=D
664 663 a1i φ¬C0intTopOpenfldD=D
665 203 637 638 645 646 655 650 664 dvmptres2 φ¬C0dxD1dx=xD0
666 192 oveq2i dxD1dx=dbD1db
667 665 666 630 3eqtr3g φ¬C0dbD1db=bD0
668 626 601 667 3eqtr4d φ¬C0DP×fbD1+bC=dbD1db
669 1rp 1+
670 74 669 eqeltrdi φ¬C0R+
671 blcntr abs∞Met0R+00ballabsR
672 657 398 671 mp3an12 R+00ballabsR
673 670 672 syl φ¬C000ballabsR
674 673 99 eleqtrrdi φ¬C00D
675 0zd φ¬C00
676 eqidd φ¬C0k0S0k=S0k
677 nfv bφ
678 29 nfel2 b0D
679 677 678 nfan bφ0D
680 nfv bk0
681 679 680 nfan bφ0Dk0
682 16 12 nffv _bS0
683 682 35 nffv _bS0k
684 683 nfel1 bS0k
685 681 684 nfim bφ0Dk0S0k
686 eleq1 b=0bD0D
687 686 anbi2d b=0φbDφ0D
688 687 anbi1d b=0φbDk0φ0Dk0
689 fveq2 b=0Sb=S0
690 689 fveq1d b=0Sbk=S0k
691 690 eleq1d b=0SbkS0k
692 688 691 imbi12d b=0φbDk0Sbkφ0Dk0S0k
693 685 632 692 144 vtoclf φ0Dk0S0k
694 674 693 syldanl φ¬C0k0S0k
695 12 14 682 nfseq _bseq0+S0
696 695 nfel1 bseq0+S0dom
697 679 696 nfim bφ0Dseq0+S0dom
698 689 seqeq3d b=0seq0+Sb=seq0+S0
699 698 eleq1d b=0seq0+Sbdomseq0+S0dom
700 687 699 imbi12d b=0φbDseq0+Sbdomφ0Dseq0+S0dom
701 697 632 700 158 vtoclf φ0Dseq0+S0dom
702 674 701 syldan φ¬C0seq0+S0dom
703 113 675 676 694 702 isum1p φ¬C0k0S0k=S00+k0+1S0k
704 133 adantlr φ¬C0k0Fk=CC𝑐k
705 704 adantlr φ¬C0b=0k0Fk=CC𝑐k
706 simplr φ¬C0b=0k0b=0
707 706 oveq1d φ¬C0b=0k0bk=0k
708 705 707 oveq12d φ¬C0b=0k0Fkbk=CC𝑐k0k
709 708 mpteq2dva φ¬C0b=0k0Fkbk=k0CC𝑐k0k
710 122 mptex k0CC𝑐k0kV
711 710 a1i φ¬C0k0CC𝑐k0kV
712 513 709 100 711 fvmptd φ¬C0S0=k0CC𝑐k0k
713 simpr φ¬C0k=0k=0
714 713 oveq2d φ¬C0k=0CC𝑐k=CC𝑐0
715 713 oveq2d φ¬C0k=00k=00
716 714 715 oveq12d φ¬C0k=0CC𝑐k0k=CC𝑐000
717 477 a1i φ¬C000
718 ovexd φ¬C0CC𝑐000V
719 712 716 717 718 fvmptd φ¬C0S00=CC𝑐000
720 4 adantr φ¬C0C
721 720 bccn0 φ¬C0CC𝑐0=1
722 100 exp0d φ¬C000=1
723 721 722 oveq12d φ¬C0CC𝑐000=11
724 1t1e1 11=1
725 724 a1i φ¬C011=1
726 719 723 725 3eqtrd φ¬C0S00=1
727 ovexd φ¬C0k0CC𝑐k0kV
728 712 727 fvmpt2d φ¬C0k0S0k=CC𝑐k0k
729 242 728 sylan2 φ¬C0kS0k=CC𝑐k0k
730 simpr φ¬C0kk
731 730 0expd φ¬C0k0k=0
732 731 oveq2d φ¬C0kCC𝑐k0k=CC𝑐k0
733 521 adantlr φ¬C0k0CC𝑐k
734 242 733 sylan2 φ¬C0kCC𝑐k
735 734 mul01d φ¬C0kCC𝑐k0=0
736 729 732 735 3eqtrd φ¬C0kS0k=0
737 736 sumeq2dv φ¬C0kS0k=k0
738 444 sumeq1i kS0k=k0+1S0k
739 240 eqimssi 1
740 739 orci 1Fin
741 sumz 1Fink0=0
742 740 741 ax-mp k0=0
743 737 738 742 3eqtr3g φ¬C0k0+1S0k=0
744 726 743 oveq12d φ¬C0S00+k0+1S0k=1+0
745 703 744 eqtrd φ¬C0k0S0k=1+0
746 1p0e1 1+0=1
747 746 oveq1i 1+0C=1C
748 720 negcld φ¬C0C
749 748 1cxpd φ¬C01C=1
750 747 749 eqtrid φ¬C01+0C=1
751 745 750 oveq12d φ¬C0k0S0k1+0C=1+01
752 746 oveq1i 1+01=11
753 752 724 eqtri 1+01=1
754 751 753 eqtrdi φ¬C0k0S0k1+0C=1
755 162 ffnd φ¬C0PFnD
756 175 ffnd φ¬C0bD1+bCFnD
757 43 a1i φ¬C00DP=xDk0Sxk
758 simplr φ¬C00Dx=0k0x=0
759 758 fveq2d φ¬C00Dx=0k0Sx=S0
760 759 fveq1d φ¬C00Dx=0k0Sxk=S0k
761 760 sumeq2dv φ¬C00Dx=0k0Sxk=k0S0k
762 simpr φ¬C00D0D
763 sumex k0S0kV
764 763 a1i φ¬C00Dk0S0kV
765 757 761 762 764 fvmptd φ¬C00DP0=k0S0k
766 174 a1i φ¬C00DbD1+bC=xD1+xC
767 simpr φ¬C00Dx=0x=0
768 767 oveq2d φ¬C00Dx=01+x=1+0
769 768 oveq1d φ¬C00Dx=01+xC=1+0C
770 ovexd φ¬C00D1+0CV
771 766 769 762 770 fvmptd φ¬C00DbD1+bC0=1+0C
772 755 756 183 183 184 765 771 ofval φ¬C00DP×fbD1+bC0=k0S0k1+0C
773 674 772 mpdan φ¬C0P×fbD1+bC0=k0S0k1+0C
774 193 fveq1i D×10=bD10
775 186 fvconst2 0DD×10=1
776 674 775 syl φ¬C0D×10=1
777 774 776 eqtr3id φ¬C0bD10=1
778 754 773 777 3eqtr4d φ¬C0P×fbD1+bC0=bD10
779 99 100 101 185 201 636 668 674 778 dv11cn φ¬C0P×fbD1+bC=bD1
780 779 oveq1d φ¬C0P×fbD1+bC÷fbD1+bC=bD1÷fbD1+bC
781 nfv b1+x0
782 106 781 nfim bφ¬C0xD1+x0
783 172 neeq1d b=x1+b01+x0
784 110 783 imbi12d b=xφ¬C0bD1+b0φ¬C0xD1+x0
785 782 784 575 chvarfv φ¬C0xD1+x0
786 166 785 168 cxpne0d φ¬C0xD1+xC0
787 eldifsn 1+xC01+xC1+xC0
788 169 786 787 sylanbrc φ¬C0xD1+xC0
789 788 174 fmptd φ¬C0bD1+bC:D0
790 ofdivcan4 DVP:DbD1+bC:D0P×fbD1+bC÷fbD1+bC=P
791 183 162 789 790 syl3anc φ¬C0P×fbD1+bC÷fbD1+bC=P
792 eqidd φ¬C0bD1=bD1
793 104 29 183 239 604 792 595 offval2f φ¬C0bD1÷fbD1+bC=bD11+bC
794 780 791 793 3eqtr3d φ¬C0P=bD11+bC
795 553 575 603 cxpnegd φ¬C0bD1+bC=11+bC
796 236 negnegd φ¬C0bDC=C
797 796 oveq2d φ¬C0bD1+bC=1+bC
798 795 797 eqtr3d φ¬C0bD11+bC=1+bC
799 798 mpteq2dva φ¬C0bD11+bC=bD1+bC
800 794 799 eqtrd φ¬C0P=bD1+bC
801 nfcv _x1+bC
802 nfcv _b1+xC
803 172 oveq1d b=x1+bC=1+xC
804 29 30 801 802 803 cbvmptf bD1+bC=xD1+xC
805 800 804 eqtrdi φ¬C0P=xD1+xC
806 simpr φ¬C0x=BAx=BA
807 806 oveq2d φ¬C0x=BA1+x=1+BA
808 807 oveq1d φ¬C0x=BA1+xC=1+BAC
809 1cnd φ¬C01
810 809 63 addcld φ¬C01+BA
811 810 720 cxpcld φ¬C01+BAC
812 805 808 92 811 fvmptd φ¬C0PBA=1+BAC
813 704 adantlr φ¬C0b=BAk0Fk=CC𝑐k
814 simplr φ¬C0b=BAk0b=BA
815 814 oveq1d φ¬C0b=BAk0bk=BAk
816 813 815 oveq12d φ¬C0b=BAk0Fkbk=CC𝑐kBAk
817 816 mpteq2dva φ¬C0b=BAk0Fkbk=k0CC𝑐kBAk
818 122 mptex k0CC𝑐kBAkV
819 818 a1i φ¬C0k0CC𝑐kBAkV
820 513 817 63 819 fvmptd φ¬C0SBA=k0CC𝑐kBAk
821 ovexd φ¬C0k0CC𝑐kBAkV
822 820 821 fvmpt2d φ¬C0k0SBAk=CC𝑐kBAk
823 822 sumeq2dv φ¬C0k0SBAk=k0CC𝑐kBAk
824 95 812 823 3eqtr3d φ¬C01+BAC=k0CC𝑐kBAk
825 824 oveq1d φ¬C01+BACAC=k0CC𝑐kBAkAC
826 2 1 rerpdivcld φBA
827 826 adantr φ¬C0BA
828 69 827 readdcld φ¬C01+BA
829 df-neg BA=0BA
830 826 recnd φBA
831 830 negcld φBA
832 831 abscld φBA
833 1red φ1
834 830 absnegd φBA=BA
835 1 rpne0d φA0
836 49 51 835 absdivd φBA=BA
837 834 836 eqtrd φBA=BA
838 49 abscld φB
839 669 a1i φ1+
840 51 835 absrpcld φA+
841 838 recnd φB
842 841 div1d φB1=B
843 842 3 eqbrtrd φB1<A
844 838 839 840 843 ltdiv23d φBA<1
845 837 844 eqbrtrd φBA<1
846 832 833 845 ltled φBA1
847 826 renegcld φBA
848 847 833 absled φBA11BABA1
849 846 848 mpbid φ1BABA1
850 849 simprd φBA1
851 829 850 eqbrtrrid φ0BA1
852 0red φ0
853 852 826 833 lesubaddd φ0BA101+BA
854 851 853 mpbid φ01+BA
855 854 adantr φ¬C001+BA
856 1 adantr φ¬C0A+
857 856 rpred φ¬C0A
858 856 rpge0d φ¬C00A
859 828 855 857 858 720 mulcxpd φ¬C01+BAAC=1+BACAC
860 809 63 52 adddird φ¬C01+BAA=1A+BAA
861 52 mullidd φ¬C01A=A
862 50 52 62 divcan1d φ¬C0BAA=B
863 861 862 oveq12d φ¬C01A+BAA=A+B
864 860 863 eqtrd φ¬C01+BAA=A+B
865 864 oveq1d φ¬C01+BAAC=A+BC
866 859 865 eqtr3d φ¬C01+BACAC=A+BC
867 63 adantr φ¬C0k0BA
868 simpr φ¬C0k0k0
869 867 868 expcld φ¬C0k0BAk
870 733 869 mulcld φ¬C0k0CC𝑐kBAk
871 1 2 3 4 5 6 7 8 9 binomcxplemcvg φBADseq0+SBAdomseq1+EBAdom
872 871 simpld φBADseq0+SBAdom
873 92 872 syldan φ¬C0seq0+SBAdom
874 52 720 cxpcld φ¬C0AC
875 113 675 822 870 873 874 isummulc1 φ¬C0k0CC𝑐kBAkAC=k0CC𝑐kBAkAC
876 49 ad2antrr φ¬C0k0B
877 51 ad2antrr φ¬C0k0A
878 835 ad2antrr φ¬C0k0A0
879 876 877 878 divrecd φ¬C0k0BA=B1A
880 879 oveq1d φ¬C0k0BAk=B1Ak
881 877 878 reccld φ¬C0k01A
882 876 881 868 mulexpd φ¬C0k0B1Ak=Bk1Ak
883 880 882 eqtrd φ¬C0k0BAk=Bk1Ak
884 883 oveq2d φ¬C0k0CC𝑐kBAk=CC𝑐kBk1Ak
885 876 868 expcld φ¬C0k0Bk
886 881 868 expcld φ¬C0k01Ak
887 733 885 886 mulassd φ¬C0k0CC𝑐kBk1Ak=CC𝑐kBk1Ak
888 884 887 eqtr4d φ¬C0k0CC𝑐kBAk=CC𝑐kBk1Ak
889 888 oveq1d φ¬C0k0CC𝑐kBAkAC=CC𝑐kBk1AkAC
890 733 885 mulcld φ¬C0k0CC𝑐kBk
891 874 adantr φ¬C0k0AC
892 890 886 891 mul32d φ¬C0k0CC𝑐kBk1AkAC=CC𝑐kBkAC1Ak
893 890 891 886 mulassd φ¬C0k0CC𝑐kBkAC1Ak=CC𝑐kBkAC1Ak
894 889 892 893 3eqtrd φ¬C0k0CC𝑐kBAkAC=CC𝑐kBkAC1Ak
895 868 nn0cnd φ¬C0k0k
896 877 895 cxpcld φ¬C0k0Ak
897 877 878 895 cxpne0d φ¬C0k0Ak0
898 891 896 897 divrecd φ¬C0k0ACAk=AC1Ak
899 4 ad2antrr φ¬C0k0C
900 877 878 899 895 cxpsubd φ¬C0k0ACk=ACAk
901 868 nn0zd φ¬C0k0k
902 877 878 901 exprecd φ¬C0k01Ak=1Ak
903 cxpexp Ak0Ak=Ak
904 877 868 903 syl2anc φ¬C0k0Ak=Ak
905 904 oveq2d φ¬C0k01Ak=1Ak
906 902 905 eqtr4d φ¬C0k01Ak=1Ak
907 906 oveq2d φ¬C0k0AC1Ak=AC1Ak
908 898 900 907 3eqtr4rd φ¬C0k0AC1Ak=ACk
909 908 oveq2d φ¬C0k0CC𝑐kBkAC1Ak=CC𝑐kBkACk
910 899 895 subcld φ¬C0k0Ck
911 877 910 cxpcld φ¬C0k0ACk
912 733 885 911 mul32d φ¬C0k0CC𝑐kBkACk=CC𝑐kACkBk
913 894 909 912 3eqtrd φ¬C0k0CC𝑐kBAkAC=CC𝑐kACkBk
914 733 911 885 mulassd φ¬C0k0CC𝑐kACkBk=CC𝑐kACkBk
915 913 914 eqtrd φ¬C0k0CC𝑐kBAkAC=CC𝑐kACkBk
916 915 sumeq2dv φ¬C0k0CC𝑐kBAkAC=k0CC𝑐kACkBk
917 875 916 eqtrd φ¬C0k0CC𝑐kBAkAC=k0CC𝑐kACkBk
918 825 866 917 3eqtr3d φ¬C0A+BC=k0CC𝑐kACkBk