Metamath Proof Explorer


Theorem fourierdlem104

Description: The half upper part of the integral equal to the fourier partial sum, converges to half the right limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem104.f φF:
fourierdlem104.xre φX
fourierdlem104.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
fourierdlem104.m φM
fourierdlem104.v φVPM
fourierdlem104.x φXranV
fourierdlem104.fcn φi0..^MFViVi+1:ViVi+1cn
fourierdlem104.fbdioo φi0..^MwtViVi+1Ftw
fourierdlem104.fdvcn φi0..^MFViVi+1:ViVi+1cn
fourierdlem104.fdvbd φi0..^MztViVi+1Ftz
fourierdlem104.r φi0..^MRFViVi+1limVi
fourierdlem104.l φi0..^MLFViVi+1limVi+1
fourierdlem104.h H=sππifs=00FX+sif0<sYWs
fourierdlem104.k K=sππifs=01s2sins2
fourierdlem104.u U=sππHsKs
fourierdlem104.s S=sππsinn+12s
fourierdlem104.g G=sππUsSs
fourierdlem104.z Z=m0πFX+sDmsds
fourierdlem104.e E=n0πGsdsπ
fourierdlem104.y φYFX+∞limX
fourierdlem104.w φWF−∞XlimX
fourierdlem104.a φAF−∞XlimX
fourierdlem104.b φBFX+∞limX
fourierdlem104.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
fourierdlem104.o O=Udπ
fourierdlem104.t T=dπranQdπ
fourierdlem104.n N=T1
fourierdlem104.j J=ιf|fIsom<,<0NT
fourierdlem104.q Q=i0MViX
fourierdlem104.1 C=ιl0..^M|JkJk+1QlQl+1
fourierdlem104.ch χφe+d0πk0dUssink+12sds<e2dπUssink+12sds<e2
Assertion fourierdlem104 φZY2

Proof

Step Hyp Ref Expression
1 fourierdlem104.f φF:
2 fourierdlem104.xre φX
3 fourierdlem104.p P=mp0m|p0=-π+Xpm=π+Xi0..^mpi<pi+1
4 fourierdlem104.m φM
5 fourierdlem104.v φVPM
6 fourierdlem104.x φXranV
7 fourierdlem104.fcn φi0..^MFViVi+1:ViVi+1cn
8 fourierdlem104.fbdioo φi0..^MwtViVi+1Ftw
9 fourierdlem104.fdvcn φi0..^MFViVi+1:ViVi+1cn
10 fourierdlem104.fdvbd φi0..^MztViVi+1Ftz
11 fourierdlem104.r φi0..^MRFViVi+1limVi
12 fourierdlem104.l φi0..^MLFViVi+1limVi+1
13 fourierdlem104.h H=sππifs=00FX+sif0<sYWs
14 fourierdlem104.k K=sππifs=01s2sins2
15 fourierdlem104.u U=sππHsKs
16 fourierdlem104.s S=sππsinn+12s
17 fourierdlem104.g G=sππUsSs
18 fourierdlem104.z Z=m0πFX+sDmsds
19 fourierdlem104.e E=n0πGsdsπ
20 fourierdlem104.y φYFX+∞limX
21 fourierdlem104.w φWF−∞XlimX
22 fourierdlem104.a φAF−∞XlimX
23 fourierdlem104.b φBFX+∞limX
24 fourierdlem104.d D=nsifsmod2π=02n+12πsinn+12s2πsins2
25 fourierdlem104.o O=Udπ
26 fourierdlem104.t T=dπranQdπ
27 fourierdlem104.n N=T1
28 fourierdlem104.j J=ιf|fIsom<,<0NT
29 fourierdlem104.q Q=i0MViX
30 fourierdlem104.1 C=ιl0..^M|JkJk+1QlQl+1
31 fourierdlem104.ch χφe+d0πk0dUssink+12sds<e2dπUssink+12sds<e2
32 eqid 1=1
33 1zzd φ1
34 nfv nφ
35 nfmpt1 _nn0πGsds
36 nfmpt1 _nnπ
37 nfmpt1 _nn0πGsdsπ
38 19 37 nfcxfr _nE
39 nnuz =1
40 elioore d0πd
41 40 adantl φd0πd
42 pire π
43 42 a1i φd0ππ
44 ioossre X+∞
45 44 a1i φX+∞
46 1 45 fssresd φFX+∞:X+∞
47 ioosscn X+∞
48 47 a1i φX+∞
49 eqid TopOpenfld=TopOpenfld
50 pnfxr +∞*
51 50 a1i φ+∞*
52 2 ltpnfd φX<+∞
53 49 51 2 52 lptioo1cn φXlimPtTopOpenfldX+∞
54 46 48 53 20 limcrecl φY
55 ioossre −∞X
56 55 a1i φ−∞X
57 1 56 fssresd φF−∞X:−∞X
58 ioosscn −∞X
59 58 a1i φ−∞X
60 mnfxr −∞*
61 60 a1i φ−∞*
62 2 mnfltd φ−∞<X
63 49 61 2 62 lptioo2cn φXlimPtTopOpenfld−∞X
64 57 59 63 21 limcrecl φW
65 1 2 54 64 13 14 15 fourierdlem55 φU:ππ
66 ax-resscn
67 66 a1i φ
68 65 67 fssd φU:ππ
69 68 adantr φd0πU:ππ
70 42 renegcli π
71 70 a1i φd0ππ
72 70 a1i d0ππ
73 0red d0π0
74 negpilt0 π<0
75 74 a1i d0ππ<0
76 0xr 0*
77 42 rexri π*
78 ioogtlb 0*π*d0π0<d
79 76 77 78 mp3an12 d0π0<d
80 72 73 40 75 79 lttrd d0ππ<d
81 72 40 80 ltled d0ππd
82 81 adantl φd0ππd
83 43 leidd φd0πππ
84 iccss πππdππdπππ
85 71 43 82 83 84 syl22anc φd0πdπππ
86 69 85 fssresd φd0πUdπ:dπ
87 25 a1i φd0πO=Udπ
88 87 feq1d φd0πO:dπUdπ:dπ
89 86 88 mpbird φd0πO:dπ
90 42 elexi πV
91 90 prid2 πdπ
92 elun1 πdππdπranQdπ
93 91 92 ax-mp πdπranQdπ
94 93 26 eleqtrri πT
95 94 ne0ii T
96 95 a1i φT
97 prfi dπFin
98 97 a1i φdπFin
99 fzfi 0MFin
100 29 rnmptfi 0MFinranQFin
101 99 100 ax-mp ranQFin
102 infi ranQFinranQdπFin
103 101 102 mp1i φranQdπFin
104 unfi dπFinranQdπFindπranQdπFin
105 98 103 104 syl2anc φdπranQdπFin
106 26 105 eqeltrid φTFin
107 hashnncl TFinTT
108 106 107 syl φTT
109 96 108 mpbird φT
110 nnm1nn0 TT10
111 109 110 syl φT10
112 27 111 eqeltrid φN0
113 112 adantr φd0πN0
114 0red φd0π0
115 1red φd0π1
116 113 nn0red φd0πN
117 0lt1 0<1
118 117 a1i φd0π0<1
119 2re 2
120 119 a1i φd0π2
121 109 nnred φT
122 121 adantr φd0πT
123 iooltub 0*π*d0πd<π
124 76 77 123 mp3an12 d0πd<π
125 40 124 ltned d0πdπ
126 125 adantl φd0πdπ
127 hashprg dπdπdπ=2
128 41 42 127 sylancl φd0πdπdπ=2
129 126 128 mpbid φd0πdπ=2
130 129 eqcomd φd0π2=dπ
131 106 adantr φd0πTFin
132 ssun1 dπdπranQdπ
133 132 26 sseqtrri dπT
134 hashssle TFindπTdπT
135 131 133 134 sylancl φd0πdπT
136 130 135 eqbrtrd φd0π2T
137 120 122 115 136 lesub1dd φd0π21T1
138 1e2m1 1=21
139 137 138 27 3brtr4g φd0π1N
140 114 115 116 118 139 ltletrd φd0π0<N
141 140 gt0ne0d φd0πN0
142 elnnne0 NN0N0
143 113 141 142 sylanbrc φd0πN
144 41 leidd φd0πdd
145 42 a1i d0ππ
146 40 145 124 ltled d0πdπ
147 146 adantl φd0πdπ
148 41 43 41 144 147 eliccd φd0πddπ
149 41 43 43 147 83 eliccd φd0ππdπ
150 148 149 jca φd0πddππdπ
151 vex dV
152 151 90 prss ddππdπdπdπ
153 150 152 sylib φd0πdπdπ
154 inss2 ranQdπdπ
155 154 a1i φd0πranQdπdπ
156 ioossicc dπdπ
157 155 156 sstrdi φd0πranQdπdπ
158 153 157 unssd φd0πdπranQdπdπ
159 26 158 eqsstrid φd0πTdπ
160 151 prid1 ddπ
161 elun1 ddπddπranQdπ
162 160 161 ax-mp ddπranQdπ
163 162 26 eleqtrri dT
164 163 a1i φd0πdT
165 94 a1i φd0ππT
166 131 27 28 41 43 159 164 165 fourierdlem52 φd0πJ:0NdπJ0=dJN=π
167 166 simplld φd0πJ:0Ndπ
168 166 simplrd φd0πJ0=d
169 166 simprd φd0πJN=π
170 elfzoelz k0..^Nk
171 170 zred k0..^Nk
172 171 adantl φd0πk0..^Nk
173 172 ltp1d φd0πk0..^Nk<k+1
174 40 145 jca d0πdπ
175 151 90 prss dπdπ
176 174 175 sylib d0πdπ
177 176 adantl φd0πdπ
178 ioossre dπ
179 154 178 sstri ranQdπ
180 179 a1i φd0πranQdπ
181 177 180 unssd φd0πdπranQdπ
182 26 181 eqsstrid φd0πT
183 131 182 28 27 fourierdlem36 φd0πJIsom<,<0NT
184 183 adantr φd0πk0..^NJIsom<,<0NT
185 elfzofz k0..^Nk0N
186 185 adantl φd0πk0..^Nk0N
187 fzofzp1 k0..^Nk+10N
188 187 adantl φd0πk0..^Nk+10N
189 isorel JIsom<,<0NTk0Nk+10Nk<k+1Jk<Jk+1
190 184 186 188 189 syl12anc φd0πk0..^Nk<k+1Jk<Jk+1
191 173 190 mpbid φd0πk0..^NJk<Jk+1
192 65 adantr φd0πU:ππ
193 192 85 feqresmpt φd0πUdπ=sdπUs
194 85 sselda φd0πsdπsππ
195 1 2 54 64 13 fourierdlem9 φH:ππ
196 195 ad2antrr φd0πsdπH:ππ
197 196 194 ffvelcdmd φd0πsdπHs
198 14 fourierdlem43 K:ππ
199 198 a1i φd0πsdπK:ππ
200 199 194 ffvelcdmd φd0πsdπKs
201 197 200 remulcld φd0πsdπHsKs
202 15 fvmpt2 sππHsKsUs=HsKs
203 194 201 202 syl2anc φd0πsdπUs=HsKs
204 0red d0πsdπ0
205 40 adantr d0πsdπd
206 42 a1i d0πsdππ
207 simpr d0πsdπsdπ
208 eliccre dπsdπs
209 205 206 207 208 syl3anc d0πsdπs
210 79 adantr d0πsdπ0<d
211 205 rexrd d0πsdπd*
212 77 a1i d0πsdππ*
213 iccgelb d*π*sdπds
214 211 212 207 213 syl3anc d0πsdπds
215 204 205 209 210 214 ltletrd d0πsdπ0<s
216 215 gt0ne0d d0πsdπs0
217 216 adantll φd0πsdπs0
218 217 neneqd φd0πsdπ¬s=0
219 218 iffalsed φd0πsdπifs=00FX+sif0<sYWs=FX+sif0<sYWs
220 215 adantll φd0πsdπ0<s
221 220 iftrued φd0πsdπif0<sYW=Y
222 221 oveq2d φd0πsdπFX+sif0<sYW=FX+sY
223 222 oveq1d φd0πsdπFX+sif0<sYWs=FX+sYs
224 219 223 eqtrd φd0πsdπifs=00FX+sif0<sYWs=FX+sYs
225 1 ad2antrr φd0πsdπF:
226 2 ad2antrr φd0πsdπX
227 iccssre ππππ
228 70 42 227 mp2an ππ
229 228 194 sselid φd0πsdπs
230 226 229 readdcld φd0πsdπX+s
231 225 230 ffvelcdmd φd0πsdπFX+s
232 54 ad2antrr φd0πsdπY
233 231 232 resubcld φd0πsdπFX+sY
234 233 229 217 redivcld φd0πsdπFX+sYs
235 224 234 eqeltrd φd0πsdπifs=00FX+sif0<sYWs
236 13 fvmpt2 sππifs=00FX+sif0<sYWsHs=ifs=00FX+sif0<sYWs
237 194 235 236 syl2anc φd0πsdπHs=ifs=00FX+sif0<sYWs
238 237 219 223 3eqtrd φd0πsdπHs=FX+sYs
239 206 renegcld d0πsdππ
240 74 a1i d0πsdππ<0
241 239 204 209 240 215 lttrd d0πsdππ<s
242 239 209 241 ltled d0πsdππs
243 iccleub d*π*sdπsπ
244 211 212 207 243 syl3anc d0πsdπsπ
245 239 206 209 242 244 eliccd d0πsdπsππ
246 216 neneqd d0πsdπ¬s=0
247 246 iffalsed d0πsdπifs=01s2sins2=s2sins2
248 119 a1i d0πsdπ2
249 209 rehalfcld d0πsdπs2
250 249 resincld d0πsdπsins2
251 248 250 remulcld d0πsdπ2sins2
252 2cnd d0πsdπ2
253 209 recnd d0πsdπs
254 253 halfcld d0πsdπs2
255 254 sincld d0πsdπsins2
256 2ne0 20
257 256 a1i d0πsdπ20
258 fourierdlem44 sππs0sins20
259 245 216 258 syl2anc d0πsdπsins20
260 252 255 257 259 mulne0d d0πsdπ2sins20
261 209 251 260 redivcld d0πsdπs2sins2
262 247 261 eqeltrd d0πsdπifs=01s2sins2
263 14 fvmpt2 sππifs=01s2sins2Ks=ifs=01s2sins2
264 245 262 263 syl2anc d0πsdπKs=ifs=01s2sins2
265 264 adantll φd0πsdπKs=ifs=01s2sins2
266 238 265 oveq12d φd0πsdπHsKs=FX+sYsifs=01s2sins2
267 218 iffalsed φd0πsdπifs=01s2sins2=s2sins2
268 267 oveq2d φd0πsdπFX+sYsifs=01s2sins2=FX+sYss2sins2
269 203 266 268 3eqtrd φd0πsdπUs=FX+sYss2sins2
270 269 mpteq2dva φd0πsdπUs=sdπFX+sYss2sins2
271 87 193 270 3eqtrd φd0πO=sdπFX+sYss2sins2
272 271 adantr φd0πk0..^NO=sdπFX+sYss2sins2
273 272 reseq1d φd0πk0..^NOJkJk+1=sdπFX+sYss2sins2JkJk+1
274 1 adantr φd0πF:
275 2 adantr φd0πX
276 4 adantr φd0πM
277 5 adantr φd0πVPM
278 7 adantlr φd0πi0..^MFViVi+1:ViVi+1cn
279 11 adantlr φd0πi0..^MRFViVi+1limVi
280 12 adantlr φd0πi0..^MLFViVi+1limVi+1
281 124 adantl φd0πd<π
282 73 40 ltnled d0π0<d¬d0
283 79 282 mpbid d0π¬d0
284 283 intn3an2d d0π¬0d00π
285 elicc2 dπ0dπ0d00π
286 40 42 285 sylancl d0π0dπ0d00π
287 284 286 mtbird d0π¬0dπ
288 287 adantl φd0π¬0dπ
289 54 adantr φd0πY
290 eqid sdπFX+sYss2sins2=sdπFX+sYss2sins2
291 eqid ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12=ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12
292 eqid ifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJkJk2sinJk2=ifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJkJk2sinJk2
293 fveq2 l=iQl=Qi
294 oveq1 l=il+1=i+1
295 294 fveq2d l=iQl+1=Qi+1
296 293 295 oveq12d l=iQlQl+1=QiQi+1
297 296 sseq2d l=iJkJk+1QlQl+1JkJk+1QiQi+1
298 297 cbvriotavw ιl0..^M|JkJk+1QlQl+1=ιi0..^M|JkJk+1QiQi+1
299 274 275 3 276 277 278 279 280 41 43 281 85 288 289 290 29 26 27 28 291 292 298 fourierdlem86 φd0πk0..^NifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12sdπFX+sYss2sins2JkJk+1limJk+1ifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJkJk2sinJk2sdπFX+sYss2sins2JkJk+1limJksdπFX+sYss2sins2JkJk+1:JkJk+1cn
300 299 simprd φd0πk0..^NsdπFX+sYss2sins2JkJk+1:JkJk+1cn
301 273 300 eqeltrd φd0πk0..^NOJkJk+1:JkJk+1cn
302 299 simplld φd0πk0..^NifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12sdπFX+sYss2sins2JkJk+1limJk+1
303 272 eqcomd φd0πk0..^NsdπFX+sYss2sins2=O
304 303 reseq1d φd0πk0..^NsdπFX+sYss2sins2JkJk+1=OJkJk+1
305 304 oveq1d φd0πk0..^NsdπFX+sYss2sins2JkJk+1limJk+1=OJkJk+1limJk+1
306 302 305 eleqtrd φd0πk0..^NifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12OJkJk+1limJk+1
307 299 simplrd φd0πk0..^NifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJkJk2sinJk2sdπFX+sYss2sins2JkJk+1limJk
308 304 oveq1d φd0πk0..^NsdπFX+sYss2sins2JkJk+1limJk=OJkJk+1limJk
309 307 308 eleqtrd φd0πk0..^NifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJkJk2sinJk2OJkJk+1limJk
310 eqid DO=DO
311 89 adantr φd0πk0..^NO:dπ
312 41 ad2antrr φd0πk0..^NsJkJk+1d
313 42 a1i φd0πk0..^NsJkJk+1π
314 elioore sJkJk+1s
315 314 adantl φd0πk0..^NsJkJk+1s
316 85 228 sstrdi φd0πdπ
317 316 adantr φd0πk0..^Ndπ
318 167 adantr φd0πk0..^NJ:0Ndπ
319 318 186 ffvelcdmd φd0πk0..^NJkdπ
320 317 319 sseldd φd0πk0..^NJk
321 320 adantr φd0πk0..^NsJkJk+1Jk
322 41 adantr φd0πk0..^Nd
323 322 rexrd φd0πk0..^Nd*
324 77 a1i φd0πk0..^Nπ*
325 iccgelb d*π*JkdπdJk
326 323 324 319 325 syl3anc φd0πk0..^NdJk
327 326 adantr φd0πk0..^NsJkJk+1dJk
328 321 rexrd φd0πk0..^NsJkJk+1Jk*
329 318 188 ffvelcdmd φd0πk0..^NJk+1dπ
330 317 329 sseldd φd0πk0..^NJk+1
331 330 rexrd φd0πk0..^NJk+1*
332 331 adantr φd0πk0..^NsJkJk+1Jk+1*
333 simpr φd0πk0..^NsJkJk+1sJkJk+1
334 ioogtlb Jk*Jk+1*sJkJk+1Jk<s
335 328 332 333 334 syl3anc φd0πk0..^NsJkJk+1Jk<s
336 312 321 315 327 335 lelttrd φd0πk0..^NsJkJk+1d<s
337 312 315 336 ltled φd0πk0..^NsJkJk+1ds
338 330 adantr φd0πk0..^NsJkJk+1Jk+1
339 iooltub Jk*Jk+1*sJkJk+1s<Jk+1
340 328 332 333 339 syl3anc φd0πk0..^NsJkJk+1s<Jk+1
341 iccleub d*π*Jk+1dπJk+1π
342 323 324 329 341 syl3anc φd0πk0..^NJk+1π
343 342 adantr φd0πk0..^NsJkJk+1Jk+1π
344 315 338 313 340 343 ltletrd φd0πk0..^NsJkJk+1s<π
345 315 313 344 ltled φd0πk0..^NsJkJk+1sπ
346 312 313 315 337 345 eliccd φd0πk0..^NsJkJk+1sdπ
347 346 ralrimiva φd0πk0..^NsJkJk+1sdπ
348 dfss3 JkJk+1dπsJkJk+1sdπ
349 347 348 sylibr φd0πk0..^NJkJk+1dπ
350 311 349 feqresmpt φd0πk0..^NOJkJk+1=sJkJk+1Os
351 simplll φd0πk0..^NsJkJk+1φ
352 simpllr φd0πk0..^NsJkJk+1d0π
353 25 fveq1i Os=Udπs
354 353 a1i φd0πsdπOs=Udπs
355 fvres sdπUdπs=Us
356 355 adantl φd0πsdπUdπs=Us
357 265 267 eqtrd φd0πsdπKs=s2sins2
358 238 357 oveq12d φd0πsdπHsKs=FX+sYss2sins2
359 233 recnd φd0πsdπFX+sY
360 253 adantll φd0πsdπs
361 2cnd φd0πsdπ2
362 360 halfcld φd0πsdπs2
363 362 sincld φd0πsdπsins2
364 361 363 mulcld φd0πsdπ2sins2
365 260 adantll φd0πsdπ2sins20
366 359 360 364 217 365 dmdcan2d φd0πsdπFX+sYss2sins2=FX+sY2sins2
367 203 358 366 3eqtrd φd0πsdπUs=FX+sY2sins2
368 354 356 367 3eqtrd φd0πsdπOs=FX+sY2sins2
369 351 352 346 368 syl21anc φd0πk0..^NsJkJk+1Os=FX+sY2sins2
370 351 352 346 366 syl21anc φd0πk0..^NsJkJk+1FX+sYss2sins2=FX+sY2sins2
371 370 eqcomd φd0πk0..^NsJkJk+1FX+sY2sins2=FX+sYss2sins2
372 eqidd φk0..^NsJkJk+1tJkJk+1FX+tYt=tJkJk+1FX+tYt
373 oveq2 t=sX+t=X+s
374 373 fveq2d t=sFX+t=FX+s
375 374 oveq1d t=sFX+tY=FX+sY
376 id t=st=s
377 375 376 oveq12d t=sFX+tYt=FX+sYs
378 377 adantl φk0..^NsJkJk+1t=sFX+tYt=FX+sYs
379 simpr φk0..^NsJkJk+1sJkJk+1
380 ovex FX+sYsV
381 380 a1i φk0..^NsJkJk+1FX+sYsV
382 372 378 379 381 fvmptd φk0..^NsJkJk+1tJkJk+1FX+tYts=FX+sYs
383 eqidd φk0..^NsJkJk+1tJkJk+1t2sint2=tJkJk+1t2sint2
384 oveq1 t=st2=s2
385 384 fveq2d t=ssint2=sins2
386 385 oveq2d t=s2sint2=2sins2
387 376 386 oveq12d t=st2sint2=s2sins2
388 387 adantl φk0..^NsJkJk+1t=st2sint2=s2sins2
389 ovex s2sins2V
390 389 a1i φk0..^NsJkJk+1s2sins2V
391 383 388 379 390 fvmptd φk0..^NsJkJk+1tJkJk+1t2sint2s=s2sins2
392 382 391 oveq12d φk0..^NsJkJk+1tJkJk+1FX+tYtstJkJk+1t2sint2s=FX+sYss2sins2
393 392 eqcomd φk0..^NsJkJk+1FX+sYss2sins2=tJkJk+1FX+tYtstJkJk+1t2sint2s
394 393 adantllr φd0πk0..^NsJkJk+1FX+sYss2sins2=tJkJk+1FX+tYtstJkJk+1t2sint2s
395 369 371 394 3eqtrd φd0πk0..^NsJkJk+1Os=tJkJk+1FX+tYtstJkJk+1t2sint2s
396 395 mpteq2dva φd0πk0..^NsJkJk+1Os=sJkJk+1tJkJk+1FX+tYtstJkJk+1t2sint2s
397 350 396 eqtr2d φd0πk0..^NsJkJk+1tJkJk+1FX+tYtstJkJk+1t2sint2s=OJkJk+1
398 397 oveq2d φd0πk0..^NdsJkJk+1tJkJk+1FX+tYtstJkJk+1t2sint2sds=DOJkJk+1
399 66 a1i φd0πk0..^N
400 349 317 sstrd φd0πk0..^NJkJk+1
401 49 tgioo2 topGenran.=TopOpenfld𝑡
402 49 401 dvres O:dπdπJkJk+1DOJkJk+1=OinttopGenran.JkJk+1
403 399 311 317 400 402 syl22anc φd0πk0..^NDOJkJk+1=OinttopGenran.JkJk+1
404 ioontr inttopGenran.JkJk+1=JkJk+1
405 404 a1i φd0πk0..^NinttopGenran.JkJk+1=JkJk+1
406 405 reseq2d φd0πk0..^NOinttopGenran.JkJk+1=OJkJk+1
407 398 403 406 3eqtrrd φd0πk0..^NOJkJk+1=dsJkJk+1tJkJk+1FX+tYtstJkJk+1t2sint2sds
408 1 ad2antrr φd0πk0..^NF:
409 2 ad2antrr φd0πk0..^NX
410 4 ad2antrr φd0πk0..^NM
411 5 ad2antrr φd0πk0..^NVPM
412 9 ad4ant14 φd0πk0..^Ni0..^MFViVi+1:ViVi+1cn
413 85 adantr φd0πk0..^Ndπππ
414 349 413 sstrd φd0πk0..^NJkJk+1ππ
415 76 a1i φd0πk0..^N0*
416 0red φd0πk0..^N0
417 79 ad2antlr φd0πk0..^N0<d
418 416 322 320 417 326 ltletrd φd0πk0..^N0<Jk
419 320 331 415 418 ltnelicc φd0πk0..^N¬0JkJk+1
420 54 ad2antrr φd0πk0..^NY
421 42 a1i φd0πk0..^Nπ
422 281 adantr φd0πk0..^Nd<π
423 simpr φd0πk0..^Nk0..^N
424 biid φd0πk0..^Ni0..^MJkJk+1QiQi+1v0..^MJkJk+1QvQv+1φd0πk0..^Ni0..^MJkJk+1QiQi+1v0..^MJkJk+1QvQv+1
425 409 3 410 411 322 421 422 413 29 26 27 28 423 298 424 fourierdlem50 φd0πk0..^Nιl0..^M|JkJk+1QlQl+10..^MJkJk+1Qιl0..^M|JkJk+1QlQl+1Qιl0..^M|JkJk+1QlQl+1+1
426 425 simpld φd0πk0..^Nιl0..^M|JkJk+1QlQl+10..^M
427 425 simprd φd0πk0..^NJkJk+1Qιl0..^M|JkJk+1QlQl+1Qιl0..^M|JkJk+1QlQl+1+1
428 377 cbvmptv tJkJk+1FX+tYt=sJkJk+1FX+sYs
429 387 cbvmptv tJkJk+1t2sint2=sJkJk+1s2sins2
430 eqid sJkJk+1tJkJk+1FX+tYtstJkJk+1t2sint2s=sJkJk+1tJkJk+1FX+tYtstJkJk+1t2sint2s
431 408 409 3 410 411 412 320 330 191 414 419 420 29 426 427 428 429 430 fourierdlem72 φd0πk0..^NdsJkJk+1tJkJk+1FX+tYtstJkJk+1t2sint2sds:JkJk+1cn
432 407 431 eqeltrd φd0πk0..^NOJkJk+1:JkJk+1cn
433 eqid sdπFX+sY2sins2=sdπFX+sY2sins2
434 eqid X+JkX+Jk+1=X+JkX+Jk+1
435 30 426 eqeltrid φd0πk0..^NC0..^M
436 simpll φd0πk0..^Nφ
437 436 435 jca φd0πk0..^NφC0..^M
438 eleq1 i=Ci0..^MC0..^M
439 438 anbi2d i=Cφi0..^MφC0..^M
440 fveq2 i=CVi=VC
441 oveq1 i=Ci+1=C+1
442 441 fveq2d i=CVi+1=VC+1
443 440 442 oveq12d i=CViVi+1=VCVC+1
444 raleq ViVi+1=VCVC+1tViVi+1FtwtVCVC+1Ftw
445 443 444 syl i=CtViVi+1FtwtVCVC+1Ftw
446 445 rexbidv i=CwtViVi+1FtwwtVCVC+1Ftw
447 439 446 imbi12d i=Cφi0..^MwtViVi+1FtwφC0..^MwtVCVC+1Ftw
448 447 8 vtoclg C0..^MφC0..^MwtVCVC+1Ftw
449 435 437 448 sylc φd0πk0..^NwtVCVC+1Ftw
450 nfv tφd0πk0..^N
451 nfra1 ttVCVC+1Ftw
452 450 451 nfan tφd0πk0..^NtVCVC+1Ftw
453 simplr φd0πk0..^NtVCVC+1FtwtX+JkX+Jk+1tVCVC+1Ftw
454 70 a1i φπ
455 454 2 readdcld φ-π+X
456 42 a1i φπ
457 456 2 readdcld φπ+X
458 455 457 iccssred φ-π+Xπ+X
459 ressxr *
460 458 459 sstrdi φ-π+Xπ+X*
461 460 ad2antrr φd0πk0..^N-π+Xπ+X*
462 3 410 411 fourierdlem15 φd0πk0..^NV:0M-π+Xπ+X
463 elfzofz C0..^MC0M
464 435 463 syl φd0πk0..^NC0M
465 462 464 ffvelcdmd φd0πk0..^NVC-π+Xπ+X
466 461 465 sseldd φd0πk0..^NVC*
467 466 adantr φd0πk0..^NtX+JkX+Jk+1VC*
468 fzofzp1 C0..^MC+10M
469 435 468 syl φd0πk0..^NC+10M
470 462 469 ffvelcdmd φd0πk0..^NVC+1-π+Xπ+X
471 461 470 sseldd φd0πk0..^NVC+1*
472 471 adantr φd0πk0..^NtX+JkX+Jk+1VC+1*
473 elioore tX+JkX+Jk+1t
474 473 adantl φd0πk0..^NtX+JkX+Jk+1t
475 70 a1i φd0πk0..^Nπ
476 475 421 409 3 410 411 464 29 fourierdlem13 φd0πk0..^NQC=VCXVC=X+QC
477 476 simprd φd0πk0..^NVC=X+QC
478 477 adantr φd0πk0..^NtX+JkX+Jk+1VC=X+QC
479 458 ad2antrr φd0πk0..^N-π+Xπ+X
480 479 465 sseldd φd0πk0..^NVC
481 480 adantr φd0πk0..^NtX+JkX+Jk+1VC
482 478 481 eqeltrrd φd0πk0..^NtX+JkX+Jk+1X+QC
483 409 320 readdcld φd0πk0..^NX+Jk
484 483 adantr φd0πk0..^NtX+JkX+Jk+1X+Jk
485 476 simpld φd0πk0..^NQC=VCX
486 480 409 resubcld φd0πk0..^NVCX
487 485 486 eqeltrd φd0πk0..^NQC
488 475 421 409 3 410 411 469 29 fourierdlem13 φd0πk0..^NQC+1=VC+1XVC+1=X+QC+1
489 488 simpld φd0πk0..^NQC+1=VC+1X
490 479 470 sseldd φd0πk0..^NVC+1
491 490 409 resubcld φd0πk0..^NVC+1X
492 489 491 eqeltrd φd0πk0..^NQC+1
493 30 eqcomi ιl0..^M|JkJk+1QlQl+1=C
494 493 fveq2i Qιl0..^M|JkJk+1QlQl+1=QC
495 493 oveq1i ιl0..^M|JkJk+1QlQl+1+1=C+1
496 495 fveq2i Qιl0..^M|JkJk+1QlQl+1+1=QC+1
497 494 496 oveq12i Qιl0..^M|JkJk+1QlQl+1Qιl0..^M|JkJk+1QlQl+1+1=QCQC+1
498 427 497 sseqtrdi φd0πk0..^NJkJk+1QCQC+1
499 487 492 320 330 191 498 fourierdlem10 φd0πk0..^NQCJkJk+1QC+1
500 499 simpld φd0πk0..^NQCJk
501 487 320 409 500 leadd2dd φd0πk0..^NX+QCX+Jk
502 501 adantr φd0πk0..^NtX+JkX+Jk+1X+QCX+Jk
503 484 rexrd φd0πk0..^NtX+JkX+Jk+1X+Jk*
504 409 330 readdcld φd0πk0..^NX+Jk+1
505 504 rexrd φd0πk0..^NX+Jk+1*
506 505 adantr φd0πk0..^NtX+JkX+Jk+1X+Jk+1*
507 simpr φd0πk0..^NtX+JkX+Jk+1tX+JkX+Jk+1
508 ioogtlb X+Jk*X+Jk+1*tX+JkX+Jk+1X+Jk<t
509 503 506 507 508 syl3anc φd0πk0..^NtX+JkX+Jk+1X+Jk<t
510 482 484 474 502 509 lelttrd φd0πk0..^NtX+JkX+Jk+1X+QC<t
511 478 510 eqbrtrd φd0πk0..^NtX+JkX+Jk+1VC<t
512 504 adantr φd0πk0..^NtX+JkX+Jk+1X+Jk+1
513 488 simprd φd0πk0..^NVC+1=X+QC+1
514 513 490 eqeltrrd φd0πk0..^NX+QC+1
515 514 adantr φd0πk0..^NtX+JkX+Jk+1X+QC+1
516 iooltub X+Jk*X+Jk+1*tX+JkX+Jk+1t<X+Jk+1
517 503 506 507 516 syl3anc φd0πk0..^NtX+JkX+Jk+1t<X+Jk+1
518 499 simprd φd0πk0..^NJk+1QC+1
519 330 492 409 518 leadd2dd φd0πk0..^NX+Jk+1X+QC+1
520 519 adantr φd0πk0..^NtX+JkX+Jk+1X+Jk+1X+QC+1
521 474 512 515 517 520 ltletrd φd0πk0..^NtX+JkX+Jk+1t<X+QC+1
522 513 eqcomd φd0πk0..^NX+QC+1=VC+1
523 522 adantr φd0πk0..^NtX+JkX+Jk+1X+QC+1=VC+1
524 521 523 breqtrd φd0πk0..^NtX+JkX+Jk+1t<VC+1
525 467 472 474 511 524 eliood φd0πk0..^NtX+JkX+Jk+1tVCVC+1
526 525 adantlr φd0πk0..^NtVCVC+1FtwtX+JkX+Jk+1tVCVC+1
527 rspa tVCVC+1FtwtVCVC+1Ftw
528 453 526 527 syl2anc φd0πk0..^NtVCVC+1FtwtX+JkX+Jk+1Ftw
529 528 ex φd0πk0..^NtVCVC+1FtwtX+JkX+Jk+1Ftw
530 452 529 ralrimi φd0πk0..^NtVCVC+1FtwtX+JkX+Jk+1Ftw
531 530 ex φd0πk0..^NtVCVC+1FtwtX+JkX+Jk+1Ftw
532 531 reximdv φd0πk0..^NwtVCVC+1FtwwtX+JkX+Jk+1Ftw
533 449 532 mpd φd0πk0..^NwtX+JkX+Jk+1Ftw
534 443 raleqdv i=CtViVi+1FtztVCVC+1Ftz
535 534 rexbidv i=CztViVi+1FtzztVCVC+1Ftz
536 439 535 imbi12d i=Cφi0..^MztViVi+1FtzφC0..^MztVCVC+1Ftz
537 536 10 vtoclg C0..^MφC0..^MztVCVC+1Ftz
538 435 437 537 sylc φd0πk0..^NztVCVC+1Ftz
539 nfra1 ttVCVC+1Ftz
540 450 539 nfan tφd0πk0..^NtVCVC+1Ftz
541 1 67 fssd φF:
542 ssid
543 542 a1i φ
544 ioossre X+JkX+Jk+1
545 544 a1i φX+JkX+Jk+1
546 49 401 dvres F:X+JkX+Jk+1DFX+JkX+Jk+1=FinttopGenran.X+JkX+Jk+1
547 67 541 543 545 546 syl22anc φDFX+JkX+Jk+1=FinttopGenran.X+JkX+Jk+1
548 ioontr inttopGenran.X+JkX+Jk+1=X+JkX+Jk+1
549 548 reseq2i FinttopGenran.X+JkX+Jk+1=FX+JkX+Jk+1
550 547 549 eqtrdi φDFX+JkX+Jk+1=FX+JkX+Jk+1
551 550 fveq1d φFX+JkX+Jk+1t=FX+JkX+Jk+1t
552 fvres tX+JkX+Jk+1FX+JkX+Jk+1t=Ft
553 551 552 sylan9eq φtX+JkX+Jk+1FX+JkX+Jk+1t=Ft
554 553 ad4ant14 φd0πk0..^NtX+JkX+Jk+1FX+JkX+Jk+1t=Ft
555 554 fveq2d φd0πk0..^NtX+JkX+Jk+1FX+JkX+Jk+1t=Ft
556 555 adantlr φd0πk0..^NtVCVC+1FtztX+JkX+Jk+1FX+JkX+Jk+1t=Ft
557 simplr φd0πk0..^NtVCVC+1FtztX+JkX+Jk+1tVCVC+1Ftz
558 525 adantlr φd0πk0..^NtVCVC+1FtztX+JkX+Jk+1tVCVC+1
559 rspa tVCVC+1FtztVCVC+1Ftz
560 557 558 559 syl2anc φd0πk0..^NtVCVC+1FtztX+JkX+Jk+1Ftz
561 556 560 eqbrtrd φd0πk0..^NtVCVC+1FtztX+JkX+Jk+1FX+JkX+Jk+1tz
562 561 ex φd0πk0..^NtVCVC+1FtztX+JkX+Jk+1FX+JkX+Jk+1tz
563 540 562 ralrimi φd0πk0..^NtVCVC+1FtztX+JkX+Jk+1FX+JkX+Jk+1tz
564 563 ex φd0πk0..^NtVCVC+1FtztX+JkX+Jk+1FX+JkX+Jk+1tz
565 564 reximdv φd0πk0..^NztVCVC+1FtzztX+JkX+Jk+1FX+JkX+Jk+1tz
566 538 565 mpd φd0πk0..^NztX+JkX+Jk+1FX+JkX+Jk+1tz
567 323 324 318 423 fourierdlem8 φd0πk0..^NJkJk+1dπ
568 143 ad2antrr φd0πrdπ¬rranJN
569 167 316 fssd φd0πJ:0N
570 569 ad2antrr φd0πrdπ¬rranJJ:0N
571 simpr φd0πrdπrdπ
572 168 eqcomd φd0πd=J0
573 169 eqcomd φd0ππ=JN
574 572 573 oveq12d φd0πdπ=J0JN
575 574 adantr φd0πrdπdπ=J0JN
576 571 575 eleqtrd φd0πrdπrJ0JN
577 576 adantr φd0πrdπ¬rranJrJ0JN
578 simpr φd0πrdπ¬rranJ¬rranJ
579 fveq2 j=kJj=Jk
580 579 breq1d j=kJj<rJk<r
581 580 cbvrabv j0..^N|Jj<r=k0..^N|Jk<r
582 581 supeq1i supj0..^N|Jj<r<=supk0..^N|Jk<r<
583 568 570 577 578 582 fourierdlem25 φd0πrdπ¬rranJm0..^NrJmJm+1
584 541 ad2antrr φd0πk0..^NF:
585 542 a1i φd0πk0..^N
586 544 a1i φd0πk0..^NX+JkX+Jk+1
587 399 584 585 586 546 syl22anc φd0πk0..^NDFX+JkX+Jk+1=FinttopGenran.X+JkX+Jk+1
588 525 ralrimiva φd0πk0..^NtX+JkX+Jk+1tVCVC+1
589 dfss3 X+JkX+Jk+1VCVC+1tX+JkX+Jk+1tVCVC+1
590 588 589 sylibr φd0πk0..^NX+JkX+Jk+1VCVC+1
591 resabs2 X+JkX+Jk+1VCVC+1FX+JkX+Jk+1VCVC+1=FX+JkX+Jk+1
592 590 591 syl φd0πk0..^NFX+JkX+Jk+1VCVC+1=FX+JkX+Jk+1
593 549 587 592 3eqtr4a φd0πk0..^NDFX+JkX+Jk+1=FX+JkX+Jk+1VCVC+1
594 590 resabs1d φd0πk0..^NFVCVC+1X+JkX+Jk+1=FX+JkX+Jk+1
595 594 eqcomd φd0πk0..^NFX+JkX+Jk+1=FVCVC+1X+JkX+Jk+1
596 593 592 595 3eqtrrd φd0πk0..^NFVCVC+1X+JkX+Jk+1=DFX+JkX+Jk+1
597 443 reseq2d i=CFViVi+1=FVCVC+1
598 597 443 feq12d i=CFViVi+1:ViVi+1FVCVC+1:VCVC+1
599 439 598 imbi12d i=Cφi0..^MFViVi+1:ViVi+1φC0..^MFVCVC+1:VCVC+1
600 cncff FViVi+1:ViVi+1cnFViVi+1:ViVi+1
601 9 600 syl φi0..^MFViVi+1:ViVi+1
602 599 601 vtoclg C0..^MφC0..^MFVCVC+1:VCVC+1
603 602 anabsi7 φC0..^MFVCVC+1:VCVC+1
604 437 603 syl φd0πk0..^NFVCVC+1:VCVC+1
605 604 590 fssresd φd0πk0..^NFVCVC+1X+JkX+Jk+1:X+JkX+Jk+1
606 596 605 feq1dd φd0πk0..^NFX+JkX+Jk+1:X+JkX+Jk+1
607 375 386 oveq12d t=sFX+tY2sint2=FX+sY2sins2
608 607 cbvmptv tJkJk+1FX+tY2sint2=sJkJk+1FX+sY2sins2
609 fveq2 r=tFr=Ft
610 609 fveq2d r=tFr=Ft
611 610 breq1d r=tFrwFtw
612 611 cbvralvw rX+JkX+Jk+1FrwtX+JkX+Jk+1Ftw
613 612 anbi2i φd0πk0..^NwzrX+JkX+Jk+1Frwφd0πk0..^NwztX+JkX+Jk+1Ftw
614 fveq2 r=tFX+JkX+Jk+1r=FX+JkX+Jk+1t
615 614 fveq2d r=tFX+JkX+Jk+1r=FX+JkX+Jk+1t
616 615 breq1d r=tFX+JkX+Jk+1rzFX+JkX+Jk+1tz
617 616 cbvralvw rX+JkX+Jk+1FX+JkX+Jk+1rztX+JkX+Jk+1FX+JkX+Jk+1tz
618 613 617 anbi12i φd0πk0..^NwzrX+JkX+Jk+1FrwrX+JkX+Jk+1FX+JkX+Jk+1rzφd0πk0..^NwztX+JkX+Jk+1FtwtX+JkX+Jk+1FX+JkX+Jk+1tz
619 274 275 41 43 85 288 289 433 434 533 566 167 191 567 583 606 608 618 fourierdlem80 φd0πbsdomdsdπFX+sY2sins2dsdsdπFX+sY2sins2dssb
620 366 mpteq2dva φd0πsdπFX+sYss2sins2=sdπFX+sY2sins2
621 271 620 eqtrd φd0πO=sdπFX+sY2sins2
622 621 oveq2d φd0πDO=dsdπFX+sY2sins2ds
623 622 dmeqd φd0πdomO=domdsdπFX+sY2sins2ds
624 nfcv _sdomO
625 nfcv _s
626 nfcv _sD
627 nfmpt1 _ssdπFX+sY2sins2
628 625 626 627 nfov _sdsdπFX+sY2sins2ds
629 628 nfdm _sdomdsdπFX+sY2sins2ds
630 624 629 raleqf domO=domdsdπFX+sY2sins2dssdomOOsbsdomdsdπFX+sY2sins2dsOsb
631 623 630 syl φd0πsdomOOsbsdomdsdπFX+sY2sins2dsOsb
632 622 fveq1d φd0πOs=dsdπFX+sY2sins2dss
633 632 fveq2d φd0πOs=dsdπFX+sY2sins2dss
634 633 breq1d φd0πOsbdsdπFX+sY2sins2dssb
635 634 ralbidv φd0πsdomdsdπFX+sY2sins2dsOsbsdomdsdπFX+sY2sins2dsdsdπFX+sY2sins2dssb
636 631 635 bitrd φd0πsdomOOsbsdomdsdπFX+sY2sins2dsdsdπFX+sY2sins2dssb
637 636 rexbidv φd0πbsdomOOsbbsdomdsdπFX+sY2sins2dsdsdπFX+sY2sins2dssb
638 619 637 mpbird φd0πbsdomOOsb
639 eqid l+dπOssinlsds=l+dπOssinlsds
640 eqeq1 t=st=Jks=Jk
641 fveq2 h=lQh=Ql
642 oveq1 h=lh+1=l+1
643 642 fveq2d h=lQh+1=Ql+1
644 641 643 oveq12d h=lQhQh+1=QlQl+1
645 644 sseq2d h=lJkJk+1QhQh+1JkJk+1QlQl+1
646 645 cbvriotavw ιh0..^M|JkJk+1QhQh+1=ιl0..^M|JkJk+1QlQl+1
647 646 fveq2i Qιh0..^M|JkJk+1QhQh+1=Qιl0..^M|JkJk+1QlQl+1
648 647 eqeq2i Jk=Qιh0..^M|JkJk+1QhQh+1Jk=Qιl0..^M|JkJk+1QlQl+1
649 648 a1i Jk=Qιh0..^M|JkJk+1QhQh+1Jk=Qιl0..^M|JkJk+1QlQl+1
650 csbeq1 ιh0..^M|JkJk+1QhQh+1=ιl0..^M|JkJk+1QlQl+1ιh0..^M|JkJk+1QhQh+1/iR=ιl0..^M|JkJk+1QlQl+1/iR
651 646 650 mp1i ιh0..^M|JkJk+1QhQh+1/iR=ιl0..^M|JkJk+1QlQl+1/iR
652 649 651 ifbieq1d ifJk=Qιh0..^M|JkJk+1QhQh+1ιh0..^M|JkJk+1QhQh+1/iRFX+Jk=ifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+Jk
653 652 mptru ifJk=Qιh0..^M|JkJk+1QhQh+1ιh0..^M|JkJk+1QhQh+1/iRFX+Jk=ifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+Jk
654 653 oveq1i ifJk=Qιh0..^M|JkJk+1QhQh+1ιh0..^M|JkJk+1QhQh+1/iRFX+JkY=ifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkY
655 654 oveq1i ifJk=Qιh0..^M|JkJk+1QhQh+1ιh0..^M|JkJk+1QhQh+1/iRFX+JkYJk=ifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJk
656 655 oveq1i ifJk=Qιh0..^M|JkJk+1QhQh+1ιh0..^M|JkJk+1QhQh+1/iRFX+JkYJkJk2sinJk2=ifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJkJk2sinJk2
657 656 a1i t=sifJk=Qιh0..^M|JkJk+1QhQh+1ιh0..^M|JkJk+1QhQh+1/iRFX+JkYJkJk2sinJk2=ifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJkJk2sinJk2
658 eqeq1 t=st=Jk+1s=Jk+1
659 646 oveq1i ιh0..^M|JkJk+1QhQh+1+1=ιl0..^M|JkJk+1QlQl+1+1
660 659 fveq2i Qιh0..^M|JkJk+1QhQh+1+1=Qιl0..^M|JkJk+1QlQl+1+1
661 660 eqeq2i Jk+1=Qιh0..^M|JkJk+1QhQh+1+1Jk+1=Qιl0..^M|JkJk+1QlQl+1+1
662 661 a1i Jk+1=Qιh0..^M|JkJk+1QhQh+1+1Jk+1=Qιl0..^M|JkJk+1QlQl+1+1
663 csbeq1 ιh0..^M|JkJk+1QhQh+1=ιl0..^M|JkJk+1QlQl+1ιh0..^M|JkJk+1QhQh+1/iL=ιl0..^M|JkJk+1QlQl+1/iL
664 646 663 mp1i ιh0..^M|JkJk+1QhQh+1/iL=ιl0..^M|JkJk+1QlQl+1/iL
665 662 664 ifbieq1d ifJk+1=Qιh0..^M|JkJk+1QhQh+1+1ιh0..^M|JkJk+1QhQh+1/iLFX+Jk+1=ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1
666 665 mptru ifJk+1=Qιh0..^M|JkJk+1QhQh+1+1ιh0..^M|JkJk+1QhQh+1/iLFX+Jk+1=ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1
667 666 oveq1i ifJk+1=Qιh0..^M|JkJk+1QhQh+1+1ιh0..^M|JkJk+1QhQh+1/iLFX+Jk+1Y=ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1Y
668 667 oveq1i ifJk+1=Qιh0..^M|JkJk+1QhQh+1+1ιh0..^M|JkJk+1QhQh+1/iLFX+Jk+1YJk+1=ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1
669 668 oveq1i ifJk+1=Qιh0..^M|JkJk+1QhQh+1+1ιh0..^M|JkJk+1QhQh+1/iLFX+Jk+1YJk+1Jk+12sinJk+12=ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12
670 669 a1i t=sifJk+1=Qιh0..^M|JkJk+1QhQh+1+1ιh0..^M|JkJk+1QhQh+1/iLFX+Jk+1YJk+1Jk+12sinJk+12=ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12
671 fveq2 t=sOt=Os
672 658 670 671 ifbieq12d t=sift=Jk+1ifJk+1=Qιh0..^M|JkJk+1QhQh+1+1ιh0..^M|JkJk+1QhQh+1/iLFX+Jk+1YJk+1Jk+12sinJk+12Ot=ifs=Jk+1ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12Os
673 640 657 672 ifbieq12d t=sift=JkifJk=Qιh0..^M|JkJk+1QhQh+1ιh0..^M|JkJk+1QhQh+1/iRFX+JkYJkJk2sinJk2ift=Jk+1ifJk+1=Qιh0..^M|JkJk+1QhQh+1+1ιh0..^M|JkJk+1QhQh+1/iLFX+Jk+1YJk+1Jk+12sinJk+12Ot=ifs=JkifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJkJk2sinJk2ifs=Jk+1ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12Os
674 673 cbvmptv tJkJk+1ift=JkifJk=Qιh0..^M|JkJk+1QhQh+1ιh0..^M|JkJk+1QhQh+1/iRFX+JkYJkJk2sinJk2ift=Jk+1ifJk+1=Qιh0..^M|JkJk+1QhQh+1+1ιh0..^M|JkJk+1QhQh+1/iLFX+Jk+1YJk+1Jk+12sinJk+12Ot=sJkJk+1ifs=JkifJk=Qιl0..^M|JkJk+1QlQl+1ιl0..^M|JkJk+1QlQl+1/iRFX+JkYJkJk2sinJk2ifs=Jk+1ifJk+1=Qιl0..^M|JkJk+1QlQl+1+1ιl0..^M|JkJk+1QlQl+1/iLFX+Jk+1YJk+1Jk+12sinJk+12Os
675 41 43 89 143 167 168 169 191 301 306 309 310 432 638 639 674 fourierdlem73 φd0πe+jlj+∞dπOssinlsds<e
676 breq2 e=adπOssinlsds<edπOssinlsds<a
677 676 rexralbidv e=ajlj+∞dπOssinlsds<ejlj+∞dπOssinlsds<a
678 677 cbvralvw e+jlj+∞dπOssinlsds<ea+jlj+∞dπOssinlsds<a
679 675 678 sylib φd0πa+jlj+∞dπOssinlsds<a
680 679 adantlr φe+d0πa+jlj+∞dπOssinlsds<a
681 rphalfcl e+e2+
682 681 ad2antlr φe+d0πe2+
683 breq2 a=e2dπOssinlsds<adπOssinlsds<e2
684 683 rexralbidv a=e2jlj+∞dπOssinlsds<ajlj+∞dπOssinlsds<e2
685 684 rspccva a+jlj+∞dπOssinlsds<ae2+jlj+∞dπOssinlsds<e2
686 680 682 685 syl2anc φe+d0πjlj+∞dπOssinlsds<e2
687 156 a1i φd0πdπdπ
688 687 sselda φd0πsdπsdπ
689 688 355 syl φd0πsdπUdπs=Us
690 353 689 eqtr2id φd0πsdπUs=Os
691 690 oveq1d φd0πsdπUssinls=Ossinls
692 691 itgeq2dv φd0πdπUssinlsds=dπOssinlsds
693 692 adantr φd0πdπOssinlsds<e2dπUssinlsds=dπOssinlsds
694 693 fveq2d φd0πdπOssinlsds<e2dπUssinlsds=dπOssinlsds
695 simpr φd0πdπOssinlsds<e2dπOssinlsds<e2
696 694 695 eqbrtrd φd0πdπOssinlsds<e2dπUssinlsds<e2
697 696 ex φd0πdπOssinlsds<e2dπUssinlsds<e2
698 697 adantlr φe+d0πdπOssinlsds<e2dπUssinlsds<e2
699 698 ralimdv φe+d0πlj+∞dπOssinlsds<e2lj+∞dπUssinlsds<e2
700 699 reximdv φe+d0πjlj+∞dπOssinlsds<e2jlj+∞dπUssinlsds<e2
701 686 700 mpd φe+d0πjlj+∞dπUssinlsds<e2
702 701 adantr φe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2
703 nfv kφe+d0π
704 nfra1 kk0dUssink+12sds<e2
705 703 704 nfan kφe+d0πk0dUssink+12sds<e2
706 nfv kj
707 705 706 nfan kφe+d0πk0dUssink+12sds<e2j
708 nfv klj+∞dπUssinlsds<e2
709 707 708 nfan kφe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2
710 simpll φe+d0πjkjφe+d0π
711 eluznn jkjk
712 711 adantll φe+d0πjkjk
713 710 712 jca φe+d0πjkjφe+d0πk
714 713 adantllr φe+d0πk0dUssink+12sds<e2jkjφe+d0πk
715 simpllr φe+d0πk0dUssink+12sds<e2jkjk0dUssink+12sds<e2
716 711 adantll φe+d0πk0dUssink+12sds<e2jkjk
717 rspa k0dUssink+12sds<e2k0dUssink+12sds<e2
718 715 716 717 syl2anc φe+d0πk0dUssink+12sds<e2jkj0dUssink+12sds<e2
719 714 718 jca φe+d0πk0dUssink+12sds<e2jkjφe+d0πk0dUssink+12sds<e2
720 719 adantlr φe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2kjφe+d0πk0dUssink+12sds<e2
721 nnre jj
722 721 rexrd jj*
723 722 adantr jkjj*
724 50 a1i jkj+∞*
725 eluzelre kjk
726 halfre 12
727 726 a1i kj12
728 725 727 readdcld kjk+12
729 728 adantl jkjk+12
730 721 adantr jkjj
731 725 adantl jkjk
732 eluzle kjjk
733 732 adantl jkjjk
734 halfgt0 0<12
735 734 a1i jkj0<12
736 726 a1i jkj12
737 736 731 ltaddposd jkj0<12k<k+12
738 735 737 mpbid jkjk<k+12
739 730 731 729 733 738 lelttrd jkjj<k+12
740 729 ltpnfd jkjk+12<+∞
741 723 724 729 739 740 eliood jkjk+12j+∞
742 741 adantlr jlj+∞dπUssinlsds<e2kjk+12j+∞
743 simplr jlj+∞dπUssinlsds<e2kjlj+∞dπUssinlsds<e2
744 oveq1 l=k+12ls=k+12s
745 744 fveq2d l=k+12sinls=sink+12s
746 745 oveq2d l=k+12Ussinls=Ussink+12s
747 746 adantr l=k+12sdπUssinls=Ussink+12s
748 747 itgeq2dv l=k+12dπUssinlsds=dπUssink+12sds
749 748 fveq2d l=k+12dπUssinlsds=dπUssink+12sds
750 749 breq1d l=k+12dπUssinlsds<e2dπUssink+12sds<e2
751 750 rspcv k+12j+∞lj+∞dπUssinlsds<e2dπUssink+12sds<e2
752 742 743 751 sylc jlj+∞dπUssinlsds<e2kjdπUssink+12sds<e2
753 752 adantlll φe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2kjdπUssink+12sds<e2
754 720 753 31 sylanbrc φe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2kjχ
755 0red χ0
756 42 a1i χπ
757 ioossicc 0π0π
758 31 biimpi χφe+d0πk0dUssink+12sds<e2dπUssink+12sds<e2
759 simp-4r φe+d0πk0dUssink+12sds<e2dπUssink+12sds<e2d0π
760 758 759 syl χd0π
761 757 760 sselid χd0π
762 simp-5l φe+d0πk0dUssink+12sds<e2dπUssink+12sds<e2φ
763 758 762 syl χφ
764 65 adantr φs0πU:ππ
765 70 rexri π*
766 0re 0
767 70 766 74 ltleii π0
768 iooss1 π*π00πππ
769 765 767 768 mp2an 0πππ
770 ioossicc ππππ
771 769 770 sstri 0πππ
772 771 sseli s0πsππ
773 772 adantl φs0πsππ
774 764 773 ffvelcdmd φs0πUs
775 763 774 sylan χs0πUs
776 simpllr φe+d0πk0dUssink+12sds<e2dπUssink+12sds<e2k
777 758 776 syl χk
778 777 nnred χk
779 726 a1i χ12
780 778 779 readdcld χk+12
781 780 adantr χs0πk+12
782 elioore s0πs
783 782 adantl χs0πs
784 781 783 remulcld χs0πk+12s
785 784 resincld χs0πsink+12s
786 775 785 remulcld χs0πUssink+12s
787 786 recnd χs0πUssink+12s
788 76 a1i χ0*
789 77 a1i χπ*
790 755 leidd χ00
791 ioossre 0π
792 791 760 sselid χd
793 788 789 760 123 syl3anc χd<π
794 792 756 793 ltled χdπ
795 ioossioo 0*π*00dπ0d0π
796 788 789 790 794 795 syl22anc χ0d0π
797 ioombl 0ddomvol
798 797 a1i χ0ddomvol
799 eleq1 n=knk
800 799 anbi2d n=kφnφk
801 simpl n=ks0πn=k
802 801 oveq1d n=ks0πn+12=k+12
803 802 oveq1d n=ks0πn+12s=k+12s
804 803 fveq2d n=ks0πsinn+12s=sink+12s
805 804 oveq2d n=ks0πUssinn+12s=Ussink+12s
806 805 mpteq2dva n=ks0πUssinn+12s=s0πUssink+12s
807 806 eleq1d n=ks0πUssinn+12s𝐿1s0πUssink+12s𝐿1
808 800 807 imbi12d n=kφns0πUssinn+12s𝐿1φks0πUssink+12s𝐿1
809 771 a1i φn0πππ
810 ioombl 0πdomvol
811 810 a1i φn0πdomvol
812 65 ffvelcdmda φsππUs
813 812 adantlr φnsππUs
814 nnre nn
815 readdcl n12n+12
816 814 726 815 sylancl nn+12
817 816 adantr nsππn+12
818 simpr nsππsππ
819 228 818 sselid nsππs
820 817 819 remulcld nsππn+12s
821 820 resincld nsππsinn+12s
822 821 adantll φnsππsinn+12s
823 813 822 remulcld φnsππUssinn+12s
824 16 fvmpt2 sππsinn+12sSs=sinn+12s
825 818 821 824 syl2anc nsππSs=sinn+12s
826 825 adantll φnsππSs=sinn+12s
827 826 oveq2d φnsππUsSs=Ussinn+12s
828 827 mpteq2dva φnsππUsSs=sππUssinn+12s
829 17 828 eqtr2id φnsππUssinn+12s=G
830 1 adantr φnF:
831 6 adantr φnXranV
832 20 adantr φnYFX+∞limX
833 21 adantr φnWF−∞XlimX
834 814 adantl φnn
835 4 adantr φnM
836 5 adantr φnVPM
837 7 adantlr φni0..^MFViVi+1:ViVi+1cn
838 11 adantlr φni0..^MRFViVi+1limVi
839 12 adantlr φni0..^MLFViVi+1limVi+1
840 eqid mp0m|p0=πpm=πi0..^mpi<pi+1=mp0m|p0=πpm=πi0..^mpi<pi+1
841 eqid DF=DF
842 601 adantlr φni0..^MFViVi+1:ViVi+1
843 22 adantr φnAF−∞XlimX
844 23 adantr φnBFX+∞limX
845 3 830 831 832 833 13 14 15 834 16 17 835 836 837 838 839 29 840 841 842 843 844 fourierdlem88 φnG𝐿1
846 829 845 eqeltrd φnsππUssinn+12s𝐿1
847 809 811 823 846 iblss φns0πUssinn+12s𝐿1
848 808 847 chvarvv φks0πUssink+12s𝐿1
849 763 777 848 syl2anc χs0πUssink+12s𝐿1
850 796 798 786 849 iblss χs0dUssink+12s𝐿1
851 788 789 760 78 syl3anc χ0<d
852 755 792 851 ltled χ0d
853 756 leidd χππ
854 ioossioo 0*π*0dππdπ0π
855 788 789 852 853 854 syl22anc χdπ0π
856 ioombl dπdomvol
857 856 a1i χdπdomvol
858 855 857 786 849 iblss χsdπUssink+12s𝐿1
859 755 756 761 787 850 858 itgsplitioo χ0πUssink+12sds=0dUssink+12sds+dπUssink+12sds
860 859 fveq2d χ0πUssink+12sds=0dUssink+12sds+dπUssink+12sds
861 796 sselda χs0ds0π
862 861 786 syldan χs0dUssink+12s
863 862 850 itgcl χ0dUssink+12sds
864 855 sselda χsdπs0π
865 864 786 syldan χsdπUssink+12s
866 865 858 itgcl χdπUssink+12sds
867 863 866 addcld χ0dUssink+12sds+dπUssink+12sds
868 867 abscld χ0dUssink+12sds+dπUssink+12sds
869 863 abscld χ0dUssink+12sds
870 866 abscld χdπUssink+12sds
871 869 870 readdcld χ0dUssink+12sds+dπUssink+12sds
872 simp-5r φe+d0πk0dUssink+12sds<e2dπUssink+12sds<e2e+
873 758 872 syl χe+
874 873 rpred χe
875 863 866 abstrid χ0dUssink+12sds+dπUssink+12sds0dUssink+12sds+dπUssink+12sds
876 758 simplrd χ0dUssink+12sds<e2
877 758 simprd χdπUssink+12sds<e2
878 869 870 874 876 877 lt2halvesd χ0dUssink+12sds+dπUssink+12sds<e
879 868 871 874 875 878 lelttrd χ0dUssink+12sds+dπUssink+12sds<e
880 860 879 eqbrtrd χ0πUssink+12sds<e
881 754 880 syl φe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2kj0πUssink+12sds<e
882 881 ex φe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2kj0πUssink+12sds<e
883 709 882 ralrimi φe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2kj0πUssink+12sds<e
884 883 ex φe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2kj0πUssink+12sds<e
885 884 reximdva φe+d0πk0dUssink+12sds<e2jlj+∞dπUssinlsds<e2jkj0πUssink+12sds<e
886 702 885 mpd φe+d0πk0dUssink+12sds<e2jkj0πUssink+12sds<e
887 pipos 0<π
888 70 766 42 lttri π<00<ππ<π
889 74 887 888 mp2an π<π
890 70 42 889 ltleii ππ
891 890 a1i φππ
892 3 fourierdlem2 MVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
893 4 892 syl φVPMV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
894 5 893 mpbid φV0MV0=-π+XVM=π+Xi0..^MVi<Vi+1
895 894 simpld φV0M
896 elmapi V0MV:0M
897 895 896 syl φV:0M
898 897 ffvelcdmda φi0MVi
899 2 adantr φi0MX
900 898 899 resubcld φi0MViX
901 900 29 fmptd φQ:0M
902 29 a1i φQ=i0MViX
903 fveq2 i=0Vi=V0
904 903 oveq1d i=0ViX=V0X
905 904 adantl φi=0ViX=V0X
906 4 nnnn0d φM0
907 nn0uz 0=0
908 906 907 eleqtrdi φM0
909 eluzfz1 M000M
910 908 909 syl φ00M
911 897 910 ffvelcdmd φV0
912 911 2 resubcld φV0X
913 902 905 910 912 fvmptd φQ0=V0X
914 894 simprd φV0=-π+XVM=π+Xi0..^MVi<Vi+1
915 914 simplld φV0=-π+X
916 915 oveq1d φV0X=π+X-X
917 454 recnd φπ
918 2 recnd φX
919 917 918 pncand φπ+X-X=π
920 913 916 919 3eqtrd φQ0=π
921 454 456 2 3 840 4 5 29 fourierdlem14 φQmp0m|p0=πpm=πi0..^mpi<pi+1M
922 840 fourierdlem2 MQmp0m|p0=πpm=πi0..^mpi<pi+1MQ0MQ0=πQM=πi0..^MQi<Qi+1
923 4 922 syl φQmp0m|p0=πpm=πi0..^mpi<pi+1MQ0MQ0=πQM=πi0..^MQi<Qi+1
924 921 923 mpbid φQ0MQ0=πQM=πi0..^MQi<Qi+1
925 924 simprd φQ0=πQM=πi0..^MQi<Qi+1
926 925 simplrd φQM=π
927 925 simprd φi0..^MQi<Qi+1
928 927 r19.21bi φi0..^MQi<Qi+1
929 1 adantr φi0..^MF:
930 840 4 921 fourierdlem15 φQ:0Mππ
931 930 adantr φi0..^MQ:0Mππ
932 elfzofz i0..^Mi0M
933 932 adantl φi0..^Mi0M
934 931 933 ffvelcdmd φi0..^MQiππ
935 fzofzp1 i0..^Mi+10M
936 935 adantl φi0..^Mi+10M
937 931 936 ffvelcdmd φi0..^MQi+1ππ
938 2 adantr φi0..^MX
939 ffn V:0MVFn0M
940 895 896 939 3syl φVFn0M
941 fvelrnb VFn0MXranVi0MVi=X
942 940 941 syl φXranVi0MVi=X
943 6 942 mpbid φi0MVi=X
944 oveq1 Vi=XViX=XX
945 944 adantl φi0MVi=XViX=XX
946 918 subidd φXX=0
947 946 ad2antrr φi0MVi=XXX=0
948 945 947 eqtr2d φi0MVi=X0=ViX
949 948 ex φi0MVi=X0=ViX
950 949 reximdva φi0MVi=Xi0M0=ViX
951 943 950 mpd φi0M0=ViX
952 29 elrnmpt 00ranQi0M0=ViX
953 766 952 ax-mp 0ranQi0M0=ViX
954 951 953 sylibr φ0ranQ
955 840 4 921 954 fourierdlem12 φi0..^M¬0QiQi+1
956 897 adantr φi0..^MV:0M
957 956 933 ffvelcdmd φi0..^MVi
958 957 938 resubcld φi0..^MViX
959 29 fvmpt2 i0MViXQi=ViX
960 933 958 959 syl2anc φi0..^MQi=ViX
961 960 oveq1d φi0..^MQi+X=Vi-X+X
962 957 recnd φi0..^MVi
963 918 adantr φi0..^MX
964 962 963 npcand φi0..^MVi-X+X=Vi
965 961 964 eqtrd φi0..^MQi+X=Vi
966 fveq2 j=iVj=Vi
967 966 oveq1d j=iVjX=ViX
968 967 cbvmptv j0MVjX=i0MViX
969 29 968 eqtr4i Q=j0MVjX
970 969 a1i φi0..^MQ=j0MVjX
971 fveq2 j=i+1Vj=Vi+1
972 971 oveq1d j=i+1VjX=Vi+1X
973 972 adantl φi0..^Mj=i+1VjX=Vi+1X
974 956 936 ffvelcdmd φi0..^MVi+1
975 974 938 resubcld φi0..^MVi+1X
976 970 973 936 975 fvmptd φi0..^MQi+1=Vi+1X
977 976 oveq1d φi0..^MQi+1+X=Vi+1-X+X
978 974 recnd φi0..^MVi+1
979 978 963 npcand φi0..^MVi+1-X+X=Vi+1
980 977 979 eqtrd φi0..^MQi+1+X=Vi+1
981 965 980 oveq12d φi0..^MQi+XQi+1+X=ViVi+1
982 981 reseq2d φi0..^MFQi+XQi+1+X=FViVi+1
983 981 oveq1d φi0..^MQi+XQi+1+Xcn=ViVi+1cn
984 7 982 983 3eltr4d φi0..^MFQi+XQi+1+X:Qi+XQi+1+Xcn
985 54 adantr φi0..^MY
986 64 adantr φi0..^MW
987 929 934 937 938 955 984 985 986 13 fourierdlem40 φi0..^MHQiQi+1:QiQi+1cn
988 id FViVi+1:ViVi+1FViVi+1:ViVi+1
989 66 a1i FViVi+1:ViVi+1
990 988 989 fssd FViVi+1:ViVi+1FViVi+1:ViVi+1
991 9 600 990 3syl φi0..^MFViVi+1:ViVi+1
992 eqid ifVi=XBRifVi<XWYQi=ifVi=XBRifVi<XWYQi
993 2 3 1 6 20 64 13 4 5 11 29 840 841 991 23 992 fourierdlem75 φi0..^MifVi=XBRifVi<XWYQiHQiQi+1limQi
994 eqid ifVi+1=XALifVi+1<XWYQi+1=ifVi+1=XALifVi+1<XWYQi+1
995 2 3 1 6 54 21 13 4 5 12 29 840 841 601 22 994 fourierdlem74 φi0..^MifVi+1=XALifVi+1<XWYQi+1HQiQi+1limQi+1
996 fveq2 j=iQj=Qi
997 oveq1 j=ij+1=i+1
998 997 fveq2d j=iQj+1=Qi+1
999 996 998 oveq12d j=iQjQj+1=QiQi+1
1000 999 cbvmptv j0..^MQjQj+1=i0..^MQiQi+1
1001 454 456 891 195 4 901 920 926 928 987 993 995 1000 fourierdlem70 φxsππHsx
1002 eqid e3y=e3y
1003 fveq2 t=sGt=Gs
1004 1003 fveq2d t=sGt=Gs
1005 1004 breq1d t=sGtyGsy
1006 1005 cbvralvw tππGtysππGsy
1007 1006 ralbii ntππGtynsππGsy
1008 1007 3anbi3i φe+y+ntππGtyφe+y+nsππGsy
1009 1008 anbi1i φe+y+ntππGtyudomvolφe+y+nsππGsyudomvol
1010 1009 anbi1i φe+y+ntππGtyudomvoluππvolue3yφe+y+nsππGsyudomvoluππvolue3y
1011 1010 anbi1i φe+y+ntππGtyudomvoluππvolue3ynφe+y+nsππGsyudomvoluππvolue3yn
1012 1 2 54 64 13 14 15 16 17 1001 845 1002 1011 fourierdlem87 φe+c+udomvoluππvoluckuUssink+12sds<e2
1013 iftrue cπ2ifcπ2cπ2=c
1014 1013 adantl c+cπ2ifcπ2cπ2=c
1015 76 a1i c+cπ20*
1016 77 a1i c+cπ2π*
1017 rpre c+c
1018 1017 adantr c+cπ2c
1019 rpgt0 c+0<c
1020 1019 adantr c+cπ20<c
1021 42 rehalfcli π2
1022 1021 a1i c+cπ2π2
1023 42 a1i c+cπ2π
1024 simpr c+cπ2cπ2
1025 halfpos π0<ππ2<π
1026 42 1025 ax-mp 0<ππ2<π
1027 887 1026 mpbi π2<π
1028 1027 a1i c+cπ2π2<π
1029 1018 1022 1023 1024 1028 lelttrd c+cπ2c<π
1030 1015 1016 1018 1020 1029 eliood c+cπ2c0π
1031 1014 1030 eqeltrd c+cπ2ifcπ2cπ20π
1032 iffalse ¬cπ2ifcπ2cπ2=π2
1033 2pos 0<2
1034 42 119 887 1033 divgt0ii 0<π2
1035 elioo2 0*π*π20ππ20<π2π2<π
1036 76 77 1035 mp2an π20ππ20<π2π2<π
1037 1021 1034 1027 1036 mpbir3an π20π
1038 1037 a1i ¬cπ2π20π
1039 1032 1038 eqeltrd ¬cπ2ifcπ2cπ20π
1040 1039 adantl c+¬cπ2ifcπ2cπ20π
1041 1031 1040 pm2.61dan c+ifcπ2cπ20π
1042 1041 3ad2ant2 φe+c+udomvoluππvoluckuUssink+12sds<e2ifcπ2cπ20π
1043 ioombl 0ifcπ2cπ2domvol
1044 1043 a1i c+udomvoluππvoluckuUssink+12sds<e20ifcπ2cπ2domvol
1045 simpr c+udomvoluππvoluckuUssink+12sds<e2udomvoluππvoluckuUssink+12sds<e2
1046 1044 1045 jca c+udomvoluππvoluckuUssink+12sds<e20ifcπ2cπ2domvoludomvoluππvoluckuUssink+12sds<e2
1047 ioossicc 0ifcπ2cπ20ifcπ2cπ2
1048 70 a1i c+π
1049 42 a1i c+π
1050 767 a1i c+π0
1051 791 1041 sselid c+ifcπ2cπ2
1052 1021 a1i c+π2
1053 min2 cπ2ifcπ2cπ2π2
1054 1017 1021 1053 sylancl c+ifcπ2cπ2π2
1055 1027 a1i c+π2<π
1056 1051 1052 1049 1054 1055 lelttrd c+ifcπ2cπ2<π
1057 1051 1049 1056 ltled c+ifcπ2cπ2π
1058 iccss πππ0ifcπ2cπ2π0ifcπ2cπ2ππ
1059 1048 1049 1050 1057 1058 syl22anc c+0ifcπ2cπ2ππ
1060 1047 1059 sstrid c+0ifcπ2cπ2ππ
1061 0red c+0
1062 1020 1014 breqtrrd c+cπ20<ifcπ2cπ2
1063 1034 1032 breqtrrid ¬cπ20<ifcπ2cπ2
1064 1063 adantl c+¬cπ20<ifcπ2cπ2
1065 1062 1064 pm2.61dan c+0<ifcπ2cπ2
1066 1061 1051 1065 ltled c+0ifcπ2cπ2
1067 volioo 0ifcπ2cπ20ifcπ2cπ2vol0ifcπ2cπ2=ifcπ2cπ20
1068 1061 1051 1066 1067 syl3anc c+vol0ifcπ2cπ2=ifcπ2cπ20
1069 1051 recnd c+ifcπ2cπ2
1070 1069 subid1d c+ifcπ2cπ20=ifcπ2cπ2
1071 1068 1070 eqtrd c+vol0ifcπ2cπ2=ifcπ2cπ2
1072 min1 cπ2ifcπ2cπ2c
1073 1017 1021 1072 sylancl c+ifcπ2cπ2c
1074 1071 1073 eqbrtrd c+vol0ifcπ2cπ2c
1075 1060 1074 jca c+0ifcπ2cπ2ππvol0ifcπ2cπ2c
1076 1075 adantr c+udomvoluππvoluckuUssink+12sds<e20ifcπ2cπ2ππvol0ifcπ2cπ2c
1077 sseq1 u=0ifcπ2cπ2uππ0ifcπ2cπ2ππ
1078 fveq2 u=0ifcπ2cπ2volu=vol0ifcπ2cπ2
1079 1078 breq1d u=0ifcπ2cπ2volucvol0ifcπ2cπ2c
1080 1077 1079 anbi12d u=0ifcπ2cπ2uππvoluc0ifcπ2cπ2ππvol0ifcπ2cπ2c
1081 itgeq1 u=0ifcπ2cπ2uUssink+12sds=0ifcπ2cπ2Ussink+12sds
1082 1081 fveq2d u=0ifcπ2cπ2uUssink+12sds=0ifcπ2cπ2Ussink+12sds
1083 1082 breq1d u=0ifcπ2cπ2uUssink+12sds<e20ifcπ2cπ2Ussink+12sds<e2
1084 1083 ralbidv u=0ifcπ2cπ2kuUssink+12sds<e2k0ifcπ2cπ2Ussink+12sds<e2
1085 1080 1084 imbi12d u=0ifcπ2cπ2uππvoluckuUssink+12sds<e20ifcπ2cπ2ππvol0ifcπ2cπ2ck0ifcπ2cπ2Ussink+12sds<e2
1086 1085 rspcva 0ifcπ2cπ2domvoludomvoluππvoluckuUssink+12sds<e20ifcπ2cπ2ππvol0ifcπ2cπ2ck0ifcπ2cπ2Ussink+12sds<e2
1087 1046 1076 1086 sylc c+udomvoluππvoluckuUssink+12sds<e2k0ifcπ2cπ2Ussink+12sds<e2
1088 1087 3adant1 φe+c+udomvoluππvoluckuUssink+12sds<e2k0ifcπ2cπ2Ussink+12sds<e2
1089 oveq2 d=ifcπ2cπ20d=0ifcπ2cπ2
1090 1089 itgeq1d d=ifcπ2cπ20dUssink+12sds=0ifcπ2cπ2Ussink+12sds
1091 1090 fveq2d d=ifcπ2cπ20dUssink+12sds=0ifcπ2cπ2Ussink+12sds
1092 1091 breq1d d=ifcπ2cπ20dUssink+12sds<e20ifcπ2cπ2Ussink+12sds<e2
1093 1092 ralbidv d=ifcπ2cπ2k0dUssink+12sds<e2k0ifcπ2cπ2Ussink+12sds<e2
1094 1093 rspcev ifcπ2cπ20πk0ifcπ2cπ2Ussink+12sds<e2d0πk0dUssink+12sds<e2
1095 1042 1088 1094 syl2anc φe+c+udomvoluππvoluckuUssink+12sds<e2d0πk0dUssink+12sds<e2
1096 1095 rexlimdv3a φe+c+udomvoluππvoluckuUssink+12sds<e2d0πk0dUssink+12sds<e2
1097 1012 1096 mpd φe+d0πk0dUssink+12sds<e2
1098 886 1097 r19.29a φe+jkj0πUssink+12sds<e
1099 1098 ralrimiva φe+jkj0πUssink+12sds<e
1100 nnex V
1101 1100 mptex n0πGsdsV
1102 1101 a1i φn0πGsdsV
1103 eqidd φkn0πGsds=n0πGsds
1104 772 adantl φkn=ks0πsππ
1105 774 ad4ant14 φkn=ks0πUs
1106 772 adantl kn=ks0πsππ
1107 simpr kn=kn=k
1108 simpl kn=kk
1109 1107 1108 eqeltrd kn=kn
1110 1109 nnred kn=kn
1111 726 a1i kn=k12
1112 1110 1111 readdcld kn=kn+12
1113 1112 adantr kn=ks0πn+12
1114 228 1106 sselid kn=ks0πs
1115 1113 1114 remulcld kn=ks0πn+12s
1116 1115 resincld kn=ks0πsinn+12s
1117 1106 1116 824 syl2anc kn=ks0πSs=sinn+12s
1118 1117 adantlll φkn=ks0πSs=sinn+12s
1119 1110 adantll φkn=kn
1120 1119 adantr φkn=ks0πn
1121 1red φkn=ks0π1
1122 1121 rehalfcld φkn=ks0π12
1123 1120 1122 readdcld φkn=ks0πn+12
1124 228 1104 sselid φkn=ks0πs
1125 1123 1124 remulcld φkn=ks0πn+12s
1126 1125 resincld φkn=ks0πsinn+12s
1127 1118 1126 eqeltrd φkn=ks0πSs
1128 1105 1127 remulcld φkn=ks0πUsSs
1129 17 fvmpt2 sππUsSsGs=UsSs
1130 1104 1128 1129 syl2anc φkn=ks0πGs=UsSs
1131 oveq1 n=kn+12=k+12
1132 1131 oveq1d n=kn+12s=k+12s
1133 1132 fveq2d n=ksinn+12s=sink+12s
1134 1133 ad2antlr φkn=ks0πsinn+12s=sink+12s
1135 1118 1134 eqtrd φkn=ks0πSs=sink+12s
1136 1135 oveq2d φkn=ks0πUsSs=Ussink+12s
1137 1130 1136 eqtrd φkn=ks0πGs=Ussink+12s
1138 1137 itgeq2dv φkn=k0πGsds=0πUssink+12sds
1139 simpr φkk
1140 805 itgeq2dv n=k0πUssinn+12sds=0πUssink+12sds
1141 1140 eleq1d n=k0πUssinn+12sds0πUssink+12sds
1142 800 1141 imbi12d n=kφn0πUssinn+12sdsφk0πUssink+12sds
1143 774 adantlr φns0πUs
1144 simpr φnn
1145 1144 772 821 syl2an φns0πsinn+12s
1146 1143 1145 remulcld φns0πUssinn+12s
1147 1146 847 itgcl φn0πUssinn+12sds
1148 1142 1147 chvarvv φk0πUssink+12sds
1149 1103 1138 1139 1148 fvmptd φkn0πGsdsk=0πUssink+12sds
1150 39 33 1102 1149 1148 clim0c φn0πGsds0e+jkj0πUssink+12sds<e
1151 1099 1150 mpbird φn0πGsds0
1152 1100 mptex n0πGsdsπV
1153 19 1152 eqeltri EV
1154 1153 a1i φEV
1155 1100 mptex nπV
1156 1155 a1i φnπV
1157 42 recni π
1158 1157 a1i φπ
1159 eqidd mnπ=nπ
1160 eqidd mn=mπ=π
1161 id mm
1162 42 a1i mπ
1163 1159 1160 1161 1162 fvmptd mnπm=π
1164 1163 adantl φmnπm=π
1165 39 33 1156 1158 1164 climconst φnππ
1166 766 887 gtneii π0
1167 1166 a1i φπ0
1168 2 adantr φnX
1169 54 adantr φnY
1170 64 adantr φnW
1171 830 1168 1169 1170 13 14 15 834 16 17 fourierdlem67 φnG:ππ
1172 1171 adantr φns0πG:ππ
1173 809 sselda φns0πsππ
1174 1172 1173 ffvelcdmd φns0πGs
1175 1171 ffvelcdmda φnsππGs
1176 1171 feqmptd φnG=sππGs
1177 1176 845 eqeltrrd φnsππGs𝐿1
1178 809 811 1175 1177 iblss φns0πGs𝐿1
1179 1174 1178 itgcl φn0πGsds
1180 eqid n0πGsds=n0πGsds
1181 1180 fvmpt2 n0πGsdsn0πGsdsn=0πGsds
1182 1144 1179 1181 syl2anc φnn0πGsdsn=0πGsds
1183 1182 1179 eqeltrd φnn0πGsdsn
1184 eqid nπ=nπ
1185 1184 fvmpt2 nπnπn=π
1186 42 1185 mpan2 nnπn=π
1187 1157 a1i nπ
1188 1166 a1i nπ0
1189 eldifsn π0ππ0
1190 1187 1188 1189 sylanbrc nπ0
1191 1186 1190 eqeltrd nnπn0
1192 1191 adantl φnnπn0
1193 1157 a1i φnπ
1194 1166 a1i φnπ0
1195 1179 1193 1194 divcld φn0πGsdsπ
1196 19 fvmpt2 n0πGsdsπEn=0πGsdsπ
1197 1144 1195 1196 syl2anc φnEn=0πGsdsπ
1198 1182 eqcomd φn0πGsds=n0πGsdsn
1199 1186 eqcomd nπ=nπn
1200 1199 adantl φnπ=nπn
1201 1198 1200 oveq12d φn0πGsdsπ=n0πGsdsnnπn
1202 1197 1201 eqtrd φnEn=n0πGsdsnnπn
1203 34 35 36 38 39 33 1151 1154 1165 1167 1183 1192 1202 climdivf φE0π
1204 1157 1166 div0i 0π=0
1205 1204 a1i φ0π=0
1206 1203 1205 breqtrd φE0
1207 1100 mptex m0πFX+sDmsdsV
1208 18 1207 eqeltri ZV
1209 1208 a1i φZV
1210 1100 mptex mY2V
1211 1210 a1i φmY2V
1212 limccl FX+∞limX
1213 1212 20 sselid φY
1214 1213 halfcld φY2
1215 eqidd φn1mY2=mY2
1216 eqidd φn1m=nY2=Y2
1217 39 eqcomi 1=
1218 1217 eleq2i n1n
1219 1218 biimpi n1n
1220 1219 adantl φn1n
1221 1214 adantr φn1Y2
1222 1215 1216 1220 1221 fvmptd φn1mY2n=Y2
1223 32 33 1211 1214 1222 climconst φmY2Y2
1224 1195 19 fmptd φE:
1225 1224 adantr φn1E:
1226 1225 1220 ffvelcdmd φn1En
1227 1222 1221 eqeltrd φn1mY2n
1228 1222 oveq2d φn1En+mY2n=En+Y2
1229 810 a1i φ0πdomvol
1230 0red s0π0
1231 1230 rexrd s0π0*
1232 77 a1i s0ππ*
1233 id s0πs0π
1234 ioogtlb 0*π*s0π0<s
1235 1231 1232 1233 1234 syl3anc s0π0<s
1236 1235 gt0ne0d s0πs0
1237 1236 neneqd s0π¬s=0
1238 velsn s0s=0
1239 1237 1238 sylnibr s0π¬s0
1240 772 1239 eldifd s0πsππ0
1241 1240 ssriv 0πππ0
1242 1241 a1i φ0πππ0
1243 1235 adantl φs0π0<s
1244 1243 iftrued φs0πif0<sYW=Y
1245 eqid Dn=Dn
1246 0red φn0
1247 42 a1i φnπ
1248 766 42 887 ltleii 0π
1249 1248 a1i φn0π
1250 eqid s0πs2+k=1nsinkskπ=s0πs2+k=1nsinkskπ
1251 24 1144 1245 1246 1247 1249 1250 dirkeritg φn0πDnsds=s0πs2+k=1nsinkskππs0πs2+k=1nsinkskπ0
1252 ubicc2 0*π*0ππ0π
1253 76 77 1248 1252 mp3an π0π
1254 oveq1 s=πs2=π2
1255 oveq2 s=πks=kπ
1256 1255 fveq2d s=πsinks=sinkπ
1257 1256 oveq1d s=πsinksk=sinkπk
1258 elfzelz k1nk
1259 1258 zcnd k1nk
1260 1157 a1i k1nπ
1261 1166 a1i k1nπ0
1262 1259 1260 1261 divcan4d k1nkππ=k
1263 1262 1258 eqeltrd k1nkππ
1264 1259 1260 mulcld k1nkπ
1265 sineq0 kπsinkπ=0kππ
1266 1264 1265 syl k1nsinkπ=0kππ
1267 1263 1266 mpbird k1nsinkπ=0
1268 1267 oveq1d k1nsinkπk=0k
1269 0red k1n0
1270 1red k1n1
1271 1258 zred k1nk
1272 117 a1i k1n0<1
1273 elfzle1 k1n1k
1274 1269 1270 1271 1272 1273 ltletrd k1n0<k
1275 1274 gt0ne0d k1nk0
1276 1259 1275 div0d k1n0k=0
1277 1268 1276 eqtrd k1nsinkπk=0
1278 1257 1277 sylan9eq s=πk1nsinksk=0
1279 1278 sumeq2dv s=πk=1nsinksk=k=1n0
1280 fzfi 1nFin
1281 1280 olci 1n˙1nFin
1282 sumz 1n˙1nFink=1n0=0
1283 1281 1282 ax-mp k=1n0=0
1284 1279 1283 eqtrdi s=πk=1nsinksk=0
1285 1254 1284 oveq12d s=πs2+k=1nsinksk=π2+0
1286 1285 oveq1d s=πs2+k=1nsinkskπ=π2+0π
1287 ovex π2+0πV
1288 1286 1250 1287 fvmpt π0πs0πs2+k=1nsinkskππ=π2+0π
1289 1253 1288 ax-mp s0πs2+k=1nsinkskππ=π2+0π
1290 lbicc2 0*π*0π00π
1291 76 77 1248 1290 mp3an 00π
1292 oveq1 s=0s2=02
1293 2cn 2
1294 1293 256 div0i 02=0
1295 1292 1294 eqtrdi s=0s2=0
1296 oveq2 s=0ks=k0
1297 1259 mul01d k1nk0=0
1298 1296 1297 sylan9eq s=0k1nks=0
1299 1298 fveq2d s=0k1nsinks=sin0
1300 sin0 sin0=0
1301 1299 1300 eqtrdi s=0k1nsinks=0
1302 1301 oveq1d s=0k1nsinksk=0k
1303 1276 adantl s=0k1n0k=0
1304 1302 1303 eqtrd s=0k1nsinksk=0
1305 1304 sumeq2dv s=0k=1nsinksk=k=1n0
1306 1305 1283 eqtrdi s=0k=1nsinksk=0
1307 1295 1306 oveq12d s=0s2+k=1nsinksk=0+0
1308 00id 0+0=0
1309 1307 1308 eqtrdi s=0s2+k=1nsinksk=0
1310 1309 oveq1d s=0s2+k=1nsinkskπ=0π
1311 1310 1204 eqtrdi s=0s2+k=1nsinkskπ=0
1312 c0ex 0V
1313 1311 1250 1312 fvmpt 00πs0πs2+k=1nsinkskπ0=0
1314 1291 1313 ax-mp s0πs2+k=1nsinkskπ0=0
1315 1289 1314 oveq12i s0πs2+k=1nsinkskππs0πs2+k=1nsinkskπ0=π2+0π0
1316 1315 a1i φns0πs2+k=1nsinkskππs0πs2+k=1nsinkskπ0=π2+0π0
1317 1021 recni π2
1318 1317 addridi π2+0=π2
1319 1318 oveq1i π2+0π=π2π
1320 1157 1293 1157 256 1166 divdiv32i π2π=ππ2
1321 1157 1166 dividi ππ=1
1322 1321 oveq1i ππ2=12
1323 1319 1320 1322 3eqtri π2+0π=12
1324 1323 oveq1i π2+0π0=120
1325 halfcn 12
1326 1325 subid1i 120=12
1327 1324 1326 eqtri π2+0π0=12
1328 1327 a1i φnπ2+0π0=12
1329 1251 1316 1328 3eqtrd φn0πDnsds=12
1330 1 2 3 4 5 6 7 11 12 13 14 15 16 17 841 601 22 23 20 21 1229 1242 19 24 54 1244 1329 fourierdlem95 φnEn+Y2=0πFX+sDnsds
1331 1220 1330 syldan φn1En+Y2=0πFX+sDnsds
1332 18 a1i φnZ=m0πFX+sDmsds
1333 fveq2 m=nDm=Dn
1334 1333 fveq1d m=nDms=Dns
1335 1334 oveq2d m=nFX+sDms=FX+sDns
1336 1335 adantr m=ns0πFX+sDms=FX+sDns
1337 1336 itgeq2dv m=n0πFX+sDmsds=0πFX+sDnsds
1338 1337 adantl φnm=n0πFX+sDmsds=0πFX+sDnsds
1339 1 adantr φs0πF:
1340 2 adantr φs0πX
1341 782 adantl φs0πs
1342 1340 1341 readdcld φs0πX+s
1343 1339 1342 ffvelcdmd φs0πFX+s
1344 1343 adantlr φns0πFX+s
1345 24 dirkerf nDn:
1346 1345 ad2antlr φns0πDn:
1347 782 adantl φns0πs
1348 1346 1347 ffvelcdmd φns0πDns
1349 1344 1348 remulcld φns0πFX+sDns
1350 1 adantr φsππF:
1351 2 adantr φsππX
1352 228 sseli sππs
1353 1352 adantl φsππs
1354 1351 1353 readdcld φsππX+s
1355 1350 1354 ffvelcdmd φsππFX+s
1356 1355 adantlr φnsππFX+s
1357 1345 ad2antlr φnsππDn:
1358 1352 adantl φnsππs
1359 1357 1358 ffvelcdmd φnsππDns
1360 1356 1359 remulcld φnsππFX+sDns
1361 70 a1i φnπ
1362 24 dirkercncf nDn:cn
1363 1362 adantl φnDn:cn
1364 eqid sππFX+sDns=sππFX+sDns
1365 1361 1247 830 1168 3 835 836 837 838 839 29 840 1363 1364 fourierdlem84 φnsππFX+sDns𝐿1
1366 809 811 1360 1365 iblss φns0πFX+sDns𝐿1
1367 1349 1366 itgrecl φn0πFX+sDnsds
1368 1332 1338 1144 1367 fvmptd φnZn=0πFX+sDnsds
1369 1368 eqcomd φn0πFX+sDnsds=Zn
1370 1220 1369 syldan φn10πFX+sDnsds=Zn
1371 1228 1331 1370 3eqtrrd φn1Zn=En+mY2n
1372 32 33 1206 1209 1223 1226 1227 1371 climadd φZ0+Y2
1373 1214 addlidd φ0+Y2=Y2
1374 1372 1373 breqtrd φZY2